弹体侵彻厚混凝土靶迎弹面成坑效应

李明 王可慧 邹慧辉 段建 古仁红 戴湘晖 杨慧

李明, 王可慧, 邹慧辉, 段建, 古仁红, 戴湘晖, 杨慧. 弹体侵彻厚混凝土靶迎弹面成坑效应[J]. 爆炸与冲击, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294
引用本文: 李明, 王可慧, 邹慧辉, 段建, 古仁红, 戴湘晖, 杨慧. 弹体侵彻厚混凝土靶迎弹面成坑效应[J]. 爆炸与冲击, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294
LI Ming, WANG Kehui, ZOU Huihui, DUAN Jian, GU Renhong, DAI Xianghui, YANG Hui. Crater morphology of a projectile penetrating a thick concrete target[J]. Explosion And Shock Waves, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294
Citation: LI Ming, WANG Kehui, ZOU Huihui, DUAN Jian, GU Renhong, DAI Xianghui, YANG Hui. Crater morphology of a projectile penetrating a thick concrete target[J]. Explosion And Shock Waves, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294

弹体侵彻厚混凝土靶迎弹面成坑效应

doi: 10.11883/bzycj-2021-0294
详细信息
    作者简介:

    李 明(1982- ),男,硕士,助理研究员,liming@nint.ac.cn

    通讯作者:

    王可慧(1975- ),女,博士,研究员,wangkehui@nint.ac.cn

  • 中图分类号: O383; TU317.2

Crater morphology of a projectile penetrating a thick concrete target

  • 摘要: 为研究弹体侵彻厚混凝土靶的迎弹面成坑效应,总结了侵彻实验中的成坑现象,分析了经验公式对成坑深度、成坑直径和成坑角等成坑效应的预测效果;考虑了撞击速度、靶板强度、配筋以及弹体直径和质量等因素的影响,采用量纲分析方法建立了新型成坑效应计算公式及成坑阶段耗能计算公式;基于新型成坑效应计算公式,对成坑效应的影响因素和成坑耗能进行了参数化分析。结果表明:无量纲成坑深度受靶板强度、配筋率和弹体质量的影响较大;对于钢筋混凝土,成坑深度随撞击速度提升呈先增大后减小再增大的变化规律;在常见的侵彻速度和质量范围内,成坑角为15°~24°,质量对成坑角影响较小;迎弹面成坑耗能占弹体总动能的10%~25%,且配筋率和靶板强度对成坑耗能比例的影响较小;弹体质量越小,成坑阶段耗能占比越大。新型成坑效应计算公式对成坑深度、直径和角度的计算结果与实验数据吻合较好,可为侵彻弹体设计和工程防护提供参考。
  • 图  1  混凝土靶成坑形态[6]

    Figure  1.  Typical crater of concrete target[6]

    图  2  钢筋混凝土靶成坑形态[15]

    Figure  2.  Typical crater of reinforced concrete target[15]

    图  3  成坑区

    Figure  3.  Crater zone

    图  4  成坑深度经验公式与实验值对比

    Figure  4.  Comparison of the empirical formula result with the experimental data of crater depth

    图  5  成坑深度公式预估偏差对比

    Figure  5.  Predictive deviations by crater depth formulas

    图  6  成坑直径经验公式与实验值对比

    Figure  6.  Comparison of the empirical formula resultsand the experimental data of crater diameter

    图  7  成坑直径公式预估偏差对比

    Figure  7.  Comparison of predictive deviationsof crater diameter formulas

    图  8  公式预测值与成坑角实验值[5-6, 9, 21, 23]对比

    Figure  8.  Comparison of the empirical formula results and the experimental data[5-6, 9, 21, 23] of crater angle

    图  9  不同因素对成坑深度的影响分析

    Figure  9.  Influence of different factors on crater depth

    图  10  成坑角与撞击速度及质量的关系

    Figure  10.  Relation of the crater anglewith impact velocity and mass

    图  11  不同条件下的成坑耗能比例

    Figure  11.  Energy consumption ratio under different conditions

    表  1  本文中参考的实验数据

    Table  1.   Experimental data referred to in this paper

    数据来源初速度/(m·s−1)质量/kg直径/mm弹头曲径比靶板强度/MPa配筋率/%
    文献[5]803~10390.08103~440
    文献[6]1970~36601.72×10−33.4542.7
    文献[9]150~4500.24~1.1127~4524~300
    文献[21]313~632251004280~2
    文献[23]980~22800.002 5~0.155~202~435.4~36.20~0.6
    本文数据1673~860298250440~451.2
    本文数据2390~75010~3052~79436.20.2
    本文数据3657~815110170440.91.2
    本文数据4804~8831173~834350.6
    汇总150~36600.001 72~2983.45~2502~424~450~2
    下载: 导出CSV

    表  2  成坑耗能计算结果与实验结果[24]的对比

    Table  2.   Comparison of the calculated energy ratioswith the experimental results[24]

    v0/(m·s−1)v1s/(m·s−1)[24]v1j/ (m·s−1)δEs/%[24]δEj/%偏差/%
    41935536628.427.3 3.8
    43136336828.931.0–7.0
    60853754921.921.4 2.3
    76866269325.821.417.0
    下载: 导出CSV
  • [1] YOUNG C W. Penetration equations: SAND97-2426 [R]. Albuquerque, USA: Sandia National Laboratories, 1997.
    [2] 武海军, 张爽, 黄风雷. 钢筋混凝土靶的侵彻与贯穿研究进展 [J]. 兵工学报, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-1093.2018.01.020.

    WU H J, ZHANG S, HUANG F L. Research progress in penetration/perforation into reinforced concrete targets [J]. Acta Armamentarii, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-1093.2018.01.020.
    [3] 戴湘晖, 周刚, 沈子楷, 等. 高速弹体对钢筋混凝土靶的侵彻/贯穿效应实验研究 [J]. 高压物理学报, 2019, 33(5): 055101. DOI: 10.11858/gywlxb.20180672.

    DAI X H, ZHOU G, SHEN Z K, et al. Experimental study of high-speed projectile penetration/perforation into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055101. DOI: 10.11858/gywlxb.20180672.
    [4] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [5] 薛建锋, 沈培辉, 王晓鸣. 弹体侵彻混凝土开坑阶段阻力的计算 [J]. 高压物理学报, 2016, 30(6): 499–504. DOI: 10.11858/gywlxb.2016.06.010.

    XUE J F, SHEN P H, WANG X M. Resistance during cratering for projectile penetrating into concrete target [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 499–504. DOI: 10.11858/gywlxb.2016.06.010.
    [6] 钱秉文, 周刚, 李进, 等. 钨合金弹体超高速撞击混凝土靶成坑特性研究 [J]. 北京理工大学学报, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.

    QIAN B W, ZHOU G, LI J, et al. Study of the crater produced by hypervelocity tungsten alloy projectile into concrete target [J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.
    [7] 刘士践, 李胜才. 动能弹垂直侵彻混凝土的实验研究及其数值模拟 [J]. 四川建筑, 2010, 30(1): 224–226. DOI: 10.3969/j.issn.1007-8983.2010.01.091.
    [8] 邓国强, 董军, 杨秀敏, 等. 弹丸冲击下钢筋混凝土板的局部破坏形态分析 [C] // 中国力学学会工程力学编辑部. 第十三届全国结构工程学术会议论文集(第Ⅲ册). 北京: 清华大学出版社, 2004: 33−36.
    [9] 吴祥云, 李永池, 何翔, 等. 细长弹体侵彻混凝土的机理研究 [J]. 岩石力学与工程学报, 2003, 22(11): 1817–1822. DOI: 10.3321/j.issn:1000-6915.2003.11.013.

    WU X Y, LI Y C, HE X, et al. On mechanism of slender projectile penetrating into concrete [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1817–1822. DOI: 10.3321/j.issn:1000-6915.2003.11.013.
    [10] 张爽, 武海军, 黄风雷. 弹体侵彻钢筋混凝土靶开坑深度研究 [J]. 北京理工大学学报, 2018, 38(6): 565–571. DOI: 10.15918/j.tbit1001-0645.2018.06.003.

    ZHANG S, WU H J, HUANG F L. Investigation on crater depth of projectile penetrating into reinforced concrete target [J]. Transactions of Beijing Institute of Technology, 2018, 38(6): 565–571. DOI: 10.15918/j.tbit1001-0645.2018.06.003.
    [11] 戴湘晖, 段建, 周刚, 等. 低速弹体贯穿钢筋混凝土多层靶的破坏特性 [J]. 兵工学报, 2018, 39(4): 698–706. DOI: 10.3969/j.issn.1000-1093.2018.04.009.

    DAI X H, DUAN J, ZHOU G, et al. Damage effect of low velocity projectile perforating into multi-layered reinforced concrete slabs [J]. Acta Armamentarii, 2018, 39(4): 698–706. DOI: 10.3969/j.issn.1000-1093.2018.04.009.
    [12] 刘海鹏, 高世桥, 金磊, 等. 弹侵彻混凝土靶面成坑的分阶段分析 [J]. 兵工学报, 2009, 30(S2): 52–56.

    LIU H P, GAO S Q, JIN L, et al. Phase analysis on crater-forming of projectile penetrating into concrete target [J]. Acta Armamentarii, 2009, 30(S2): 52–56.
    [13] GAULT D E. Displaced mass, depth, diameter, and effects of oblique trajectories for impact craters formed in dense crystalline rocks [J]. The Moon, 1973, 6(1/2): 32–44. DOI: 10.1007/BF02630651.
    [14] FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6.
    [15] 宋春明, 王明洋, 邹慧辉, 等. 装甲陶瓷复合靶体抗侵彻性能试验研究 [J]. 防护工程, 2019, 41(1): 1–6.

    SONG C M, WANG M Y, ZOU H H, et al. Experimental study on anti-penetration performance of armored ceramic composite targets [J]. Protective Engineering, 2019, 41(1): 1–6.
    [16] 晋小超. 弹体侵彻混凝土靶体侵彻深度的数值模拟研究 [D]. 太原: 太原理工大学, 2016. DOI: 10.7666/d.D01008064.

    JIN X C. Numerical study on the depth of penetration into concrete targets by projectiles [D]. Taiyuan: Taiyuan University of Technology, 2016. DOI: 10.7666/d.D01008064.
    [17] 温志鹏, 王玉祥, 吕本明, 等. 弹体垂直侵彻混凝土介质开坑深度的计算方法 [J]. 常州工学院学报, 2005, 18(S1): 82–84. DOI: 10.3969/j.issn.1671-0436.2005.z1.016.
    [18] HOLSAPPLE K A. The scaling of impact processes in planetary sciences [J]. Annual Review of Earth and Planetary Sciences, 1993, 21: 333–373. DOI: 10.1146/annurev.ea.21.050193.002001.
    [19] 闪雨. 弹体非正侵彻混凝土质量侵蚀与运动轨迹研究 [D]. 北京: 北京理工大学, 2015.

    SHAN Y. Investigation on the mass abrasion and motion of the projectile non-normal penetrating into concrete [D]. Beijing: Beijing Institute of Technology, 2015.
    [20] DANCYGIER A N, YANKELEVSKY D Z. Effects of reinforced concrete properties on resistance to hard projectile impact [J]. ACI Structural Journal, 1999, 96(2): 259–267.
    [21] 周宁, 任辉启, 沈兆武, 等. 弹丸侵彻钢筋混凝土的工程解析模型 [J]. 爆炸与冲击, 2007, 27(6): 529–534. DOI: 10.11883/1001-1455(2007)06-0529-06.

    ZHOU N, REN H Q, SHEN Z W, et al. An engineering analytical model for projectiles to penetrate into semi-infinite reinforced concrete targets [J]. Explosion and Shock Waves, 2007, 27(6): 529–534. DOI: 10.11883/1001-1455(2007)06-0529-06.
    [22] 陈小伟. 穿甲/侵彻问题的若干工程研究进展 [J]. 力学进展, 2009, 39(3): 316–351. DOI: 10.3321/j.issn:1000-0992.2009.03.006.

    CHEN X W. Advances in the penetration/perforation of rigid projectiles [J]. Advances in Mechanics, 2009, 39(3): 316–351. DOI: 10.3321/j.issn:1000-0992.2009.03.006.
    [23] 王可慧. 高速弹体侵彻混凝土靶研究 [D]. 北京: 北京理工大学, 2011.
    [24] 柴传国, 皮爱国, 武海军, 等. 卵形弹体侵彻混凝土开坑区侵彻阻力计算 [J]. 爆炸与冲击, 2014, 34(5): 630–635. DOI: 10.11883/1001-1455(2014)05-0630-06.

    CHAI C G, PI A G, WU H J, et al. A calculation of penetration resistance during cratering for ogive-nose projectile into concrete [J]. Explosion and Shock Waves, 2014, 34(5): 630–635. DOI: 10.11883/1001-1455(2014)05-0630-06.
    [25] DONALD E G. Impact cratering [C] // The First Lunar & Planetary Science Conference. 1974: 137−175.
    [26] TAKAGI Y, MIZUTANI H, KAWAKAMI S I. Impact fragmentation experiments of basalts and pyrophyllites [J]. Icarus, 1984, 59(3): 462–477. DOI: 10.1016/0019-1035(84)90114-3.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  265
  • HTML全文浏览量:  235
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 录用日期:  2022-07-07
  • 修回日期:  2021-12-14
  • 网络出版日期:  2022-07-13
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回