12.7 mm弹侵彻不同强度钢靶的数值模拟

王凯雷 李明净 董雷霆

王凯雷, 李明净, 董雷霆. 12.7 mm弹侵彻不同强度钢靶的数值模拟[J]. 爆炸与冲击, 2022, 42(8): 083304. doi: 10.11883/bzycj-2021-0336
引用本文: 王凯雷, 李明净, 董雷霆. 12.7 mm弹侵彻不同强度钢靶的数值模拟[J]. 爆炸与冲击, 2022, 42(8): 083304. doi: 10.11883/bzycj-2021-0336
WANG Kailei, LI Mingjing, DONG Leiting. Simulation on penetration of a 12.7-mm projectile into steel targets with different strengths[J]. Explosion And Shock Waves, 2022, 42(8): 083304. doi: 10.11883/bzycj-2021-0336
Citation: WANG Kailei, LI Mingjing, DONG Leiting. Simulation on penetration of a 12.7-mm projectile into steel targets with different strengths[J]. Explosion And Shock Waves, 2022, 42(8): 083304. doi: 10.11883/bzycj-2021-0336

12.7 mm弹侵彻不同强度钢靶的数值模拟

doi: 10.11883/bzycj-2021-0336
基金项目: 国家自然科学基金(12072011)
详细信息
    作者简介:

    王凯雷(1991- ),男,博士研究生,klwang@buaa.edu.cn

    通讯作者:

    董雷霆(1988- ),男,博士,教授,ltdong@buaa.edu.cn

  • 中图分类号: O347

Simulation on penetration of a 12.7-mm projectile into steel targets with different strengths

  • 摘要: 针对12.7 mm弹侵彻不同强度钢靶时可能出现子弹保持完整或发生破碎的情况,过去的数值模拟仅限于模拟单一模式的子弹侵彻行为。为了克服这种数值模拟的局限性,开展了模型算法、网格尺寸对模拟结果影响的研究,并将模拟结果与实验结果进行了对比,提出了一种能够用于模拟子弹保持完整或破碎的弹靶模型。研究结果表明,为模拟子弹保持完整状态,子弹和靶板应分别采用基于Lagrange算法的有限元法和光滑粒子算法,而且子弹网格尺寸和靶板粒子间距之比应至少保持在5.3左右,否则弹头会产生与实验结果不符合的异常变形。但是,在模拟子弹发生破碎侵蚀时,该比例的网格/粒子尺寸比会引起计算中止。为了克服该问题,进一步建立了一种弹体表面采用大尺寸网格、内部采用细化小尺寸网格的有限元/光滑粒子法耦合弹靶模型。计算结果表明,改进的弹靶模型可模拟子弹保持完整或者发生破碎的情况。
  • 图  1  弹、靶实物

    Figure  1.  The projectile and target

    图  2  数值模型

    Figure  2.  The numerical model

    图  3  603钢参数拟合

    Figure  3.  Parameter fitting of 603 steel

    图  4  12.7 mm穿甲弹侵彻半无限厚603钢板实验与模拟结果对比

    Figure  4.  Comparison between experiment and numerical simulation of 12.7-mm projectiles penetrating semi-infinite 603 steel targets

    图  5  子弹材料与603钢和超高强钢的应力-应变曲线对比

    Figure  5.  Comparison of stress-strain curves of projectile material with those of 603 steel and ultra-high strength steel

    图  6  不同金属材料的$1 + C\ln (\dot \varepsilon /{\dot \varepsilon _0})$C的关系[18]

    Figure  6.  Relations of $1 + C\ln (\dot \varepsilon /{\dot \varepsilon _0})$ and C for different metals[18]

    图  7  采用不同算法建立的靶板模型

    Figure  7.  The target models with different algorithms

    图  8  弹靶网格相互穿透

    Figure  8.  Penetration of the projectile and target grids into each other

    图  9  不同失效应变下,FEM靶板模型与SPH/FEM靶板模型计算得到的侵彻深度的对比

    Figure  9.  Comparison of penetration depths obtained by the FEM target model and the SPH/FEM target model at different given failure strains

    图  10  采用不同算法建立的子弹模型

    Figure  10.  The projectile models with different algorithms

    图  11  不同弹靶模型的计算结果

    Figure  11.  Numerical results obtained by different projectile-target models

    图  12  不同弹靶模型的侵彻过程

    Figure  12.  The penetration processes obtained by different projectile-target models

    图  13  模型1弹头局部放大

    Figure  13.  Partial amplification of the projectile nose for model 1

    图  14  不同的子弹FEM网格尺寸和靶板SPH粒子间距组合下的计算结果

    Figure  14.  Numerical results for different combinations of projectile FEM mesh size and target SPH particle spacing

    图  15  粗糙网格子弹对超高强钢靶的侵彻过程

    Figure  15.  Penetration process of the projectile with coarse mesh into the ultra-high strength steel target

    图  16  细化网格子弹对超高强钢靶的侵彻过程

    Figure  16.  Penetration process of the projectile with refined mesh into the ultra-high strength steel target

    图  17  模拟结果与相关实验结果的对比

    Figure  17.  Comparison between the simulation and the related experimental results

    图  18  改进网格形式的三维子弹模型的改进网格形式

    Figure  18.  The improved mesh forms of the three-dimensional projectile model

    图  19  改进网格模型的弹靶侵彻过程模拟结果

    Figure  19.  Projectile-into-target penetration processes simulated by the improved mesh model

    图  20  子弹内部单元和外部单元的等效塑性应变时间历程

    Figure  20.  Effective plastic strain-time curves of the inside and outside elements of the projectiles

    表  1  12.7 mm穿甲弹弹芯和靶板的材料参数

    Table  1.   The material parameters for the 12.7-mm-diameter armor-piercing projectiles and targets

    材料A/MPaB/MPanCm${\dot \varepsilon _0}$/s−1
    弹芯[6]158029050.1170.00751.171
    603钢105012750.4220.05211842
    超高强钢[5]2850500010.0512000
    下载: 导出CSV

    表  2  本文与文献[8]的弹靶比较

    Table  2.   Comparison of the projectile and target used in this study with those used in Reference [8]

    来源曲率半径/mm弹径/mm弹长/mm子弹质量/g子弹材料靶板材料
    文献[8]37.8612.647.735硬38CrSiGY4装甲钢
    本文36.810.851.628硬质合金钢超高强钢
    下载: 导出CSV
  • [1] DEY S, BØRVIK T, TENG X, et al. On the ballistic resistance of double-layered steel plates: an experimental and numerical investigation [J]. International Journal of Solids and Structures, 2007, 44(20): 6701–6723. DOI: 10.1016/j.ijsolstr.2007.03.005.
    [2] FLORES-JOHNSON E A, SALEH M, EDWARDS L. Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile [J]. International Journal of Impact Engineering, 2011, 38(12): 1022–1032. DOI: 10.1016/j.ijimpeng.2011.08.005.
    [3] GAO G H, ZHANG H, GUI X L, et al. Enhanced ductility and toughness in an ultrahigh-strength Mn–Si–Cr–C steel: the great potential of ultrafine filmy retained austenite [J]. Acta Materialia, 2014, 76: 425–433. DOI: 10.1016/j.actamat.2014.05.055.
    [4] CHANG Z Y, LI Y J, WU D. Enhanced ductility and toughness in 2000 MPa grade press hardening steels by auto-tempering [J]. Materials Science and Engineering: A, 2020, 784: 139342. DOI: 10.1016/j.msea.2020.139342.
    [5] SOURMAIL T, CABALLERO F G, GARCIA-MATEO C, et al. Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications [J]. Materials Science and Technology, 2013, 29(10): 1166–1173. DOI: 10.1179/1743284713Y.0000000242.
    [6] FRAS T, MURZYN A, PAWLOWSKI P. Defeat mechanisms provided by slotted add-on bainitic plates against small-calibre 7.62mm×51 AP projectiles [J]. International Journal of Impact Engineering, 2017, 103: 241–253. DOI: 10.1016/j.ijimpeng.2017.01.015.
    [7] KILIC N, BEDIR S, ERDIK A, et al. Ballistic behavior of high hardness perforated armor plates against 7.62-mm armor piercing projectile [J]. Materials and Design, 2014, 63: 427–438. DOI: 10.1016/j.matdes.2014.06.030.
    [8] 魏刚. 金属动能弹变形与断裂特性及其机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014: 142–146. DOI: 10.7666/d.D593970.

    WEI Gang. Investigation of deformation and fracture behavior associated mechanisms of the metal kinetic energy projeciles [D]. Harbin, Heilongjiang, China: Harbin Institute of Technology, 2014: 142–146. DOI: 10.7666/d.D593970.
    [9] 赵太勇, 王维占, 赵军强, 等. 12.7 mm动能弹侵彻装甲钢板的结构响应特性研究 [J]. 兵器装备工程学报, 2020, 41(10): 146–149. DOI: 10.11809/bqzbgcxb2020.10.026.

    ZHAO T Y, WANG W Z, ZHAO J Q, et al. Study on structural response characteristics of 12.7 mm kinetic energy projectile penetrating armor plate [J]. Journal of Ordnance Equipment Engineering, 2020, 41(10): 146–149. DOI: 10.11809/bqzbgcxb2020.10.026.
    [10] CHEN X W, CHEN G, ZHANG F J. Deformation and failure modes of soft steel projectiles impacting harder steel targets at increasing velocity [J]. Experimental Mechanics, 2008, 48(3): 335–354. DOI: 10.1007/s11340-007-9110-4.
    [11] 陈刚, 陈小伟, 陈忠富, 等. A3钢钝头弹撞击45钢板破坏模式的数值分析 [J]. 爆炸与冲击, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.

    CHEN G, CHEN X W, CHEN Z F, et al. Simulations of A3 steel blunt projectiles impacting onto 45 steel plates [J]. Explosion and Shock Waves, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.
    [12] CHEN X W, ZHANG F J, LIANG B, et al. Three modes of penetration mechanisms of A3 steel cylindrical projectiles impact onto 45 steel plates [J]. Key Engineering Materials, 2007, 340/341: 295–300. DOI: 10.4028/www.scientific.net/KEM.340-341.295.
    [13] PARIS V, WEISS A, VIZEL A, et al. Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates [C]//EPJ Web of Conferences, 2012, 26: 04032. DOI: 10.1051/epjconf/20122604032.
    [14] 石益建, 杜忠华, 高光发, 等. 异形B4C/Al复合靶板抗侵彻数值模拟分析 [J]. 弹箭与制导学报, 2020, 40(2): 67–71. DOI: 10.15892/j.cnki.djzdxb.2020.02.017.

    SHI Y J, DU Z H, GAO G F, et al. Numerical simulation and analysis of abnormal B4C/Al composite target [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(2): 67–71. DOI: 10.15892/j.cnki.djzdxb.2020.02.017.
    [15] WOODWARD R L, O'DONNELL R G, FLOCKHART C J. Failure mechanisms in impacting penetrators [J]. Journal of Materials Science, 1992, 27(23): 6411–6416. DOI: 10.1007/BF00576292.
    [16] 谢恒, 吕振华. 钢芯弹冲击高强度钢过程的数值模拟分析 [J]. 高压物理学报, 2012, 26(3): 259–265. DOI: 10.11858/gywlxb.2012.03.003.

    XIE H, LÜ Z H. Perforation simulations of high-strength steel by steel core bullets [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 259–265. DOI: 10.11858/gywlxb.2012.03.003.
    [17] BØRVIK T, DEY S, CLAUSEN A H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles [J]. International Journal of Impact Engineering, 2009, 36(7): 948–964. DOI: 10.1016/j.ijimpeng.2008.12.003.
    [18] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541–548.
    [19] IQBAL M A, SENTHIL K, MADHU V, et al. Oblique impact on single, layered and spaced mild steel targets by 7.62 AP projectiles [J]. International Journal of Impact Engineering, 2017, 110: 26–38. DOI: 10.1016/j.ijimpeng.2017.04.011.
    [20] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [21] XIAO X K, ZHANG W, WEI G, et al. Experimental and numerical investigation on the deformation and failure behavior in the Taylor test [J]. Materials and Design, 2011, 32(5): 2663–2674. DOI: 10.1016/j.matdes.2011.01.016.
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  147
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-08
  • 修回日期:  2022-03-24
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回