二级高压驱动阵列弹珠同步弹射微型爆源的研制

郭纬 徐小辉 李干 李杰 蒋海明 李志浩

郭纬, 徐小辉, 李干, 李杰, 蒋海明, 李志浩. 二级高压驱动阵列弹珠同步弹射微型爆源的研制[J]. 爆炸与冲击, 2022, 42(8): 084101. doi: 10.11883/bzycj-2021-0343
引用本文: 郭纬, 徐小辉, 李干, 李杰, 蒋海明, 李志浩. 二级高压驱动阵列弹珠同步弹射微型爆源的研制[J]. 爆炸与冲击, 2022, 42(8): 084101. doi: 10.11883/bzycj-2021-0343
GUO Wei, XU Xiaohui, LI Gan, LI Jie, JIANG Haiming, LI Zhihao. Development of a miniature explosion device initiated by a synchronous launcher of marbles driven by two-stage high-pressure gas[J]. Explosion And Shock Waves, 2022, 42(8): 084101. doi: 10.11883/bzycj-2021-0343
Citation: GUO Wei, XU Xiaohui, LI Gan, LI Jie, JIANG Haiming, LI Zhihao. Development of a miniature explosion device initiated by a synchronous launcher of marbles driven by two-stage high-pressure gas[J]. Explosion And Shock Waves, 2022, 42(8): 084101. doi: 10.11883/bzycj-2021-0343

二级高压驱动阵列弹珠同步弹射微型爆源的研制

doi: 10.11883/bzycj-2021-0343
基金项目: 国家自然科学基金(12072371)
详细信息
    作者简介:

    郭 纬(1998- ),男,硕士研究生, guo15965317797@163.com

    通讯作者:

    徐小辉(1983- ),男,博士,副教授, xuxiaohui168@126.com

  • 中图分类号: O383; O389

Development of a miniature explosion device initiated by a synchronous launcher of marbles driven by two-stage high-pressure gas

  • 摘要: 针对当前大当量地下爆炸真空室模拟试验中爆源起爆方式高度依赖火药制品等问题,基于地下爆炸相似理论和二级气炮原理,自主研制了二级高压驱动阵列弹珠同步弹射微型爆源装置。装置利用二级高压气体驱动弹珠同步击碎玻璃球壳,释放球内高压气体,以模拟真实爆炸气体生成物的推出。整套爆源装置的发射参数:高压气室充气压力4 MPa,玻璃球壳内残余稳态气体压力约为3 kPa,能够用于0~20 kt当量地下爆炸成坑效应的真空室模拟。爆源适用性试验验证表明,该爆源装置的爆破机制和爆破效果满足大当量地下抛掷爆炸真空室模拟试验的功能需求,且具有较高的安全性、可控性和可操作性,为开展相关模拟试验提供了新的技术方法。
  • 图  1  微型爆源装置

    Figure  1.  Miniature explosion device

    图  2  微型爆源装置设计原理

    Figure  2.  Schematic of the micro explosion device

    图  3  二级高压驱动阵列弹珠同步弹射装置设计原理

    Figure  3.  Principle of marble synchronous launcher driven by two-stage high-pressure gas

    图  4  炮管顶部发射弹头设计及实物

    Figure  4.  Schematic diagram and photo of the barrel end

    图  5  活塞及破膜

    Figure  5.  Piston and ruptured diaphragms

    图  6  玻璃球内稳态压力测试

    Figure  6.  Tests of the steady-state pressure in the glass shell

    图  7  空气中爆破球形度测试

    Figure  7.  Blasting sphericity tests in the air

    图  8  空气中玻璃球壳(内外无压差)爆破高速分幅摄影图像(试验S1)

    Figure  8.  High-speed split photos of a glass shell (without pressure difference inside and outside) blasting in air (test S1)

    图  9  空气中玻璃球壳(内外压差80 kPa)爆破高速分幅摄影图像(试验S2)

    Figure  9.  High-speed split photos of a glass shell (with an internal and external pressure difference of 80 kPa) blasting in air (test S2)

    图  10  玻璃球壳水中爆炸高速分幅镜头(试验S3)

    Figure  10.  High-speed split photos of a glass shell blasting in water (test S3)

    图  11  水中玻璃球壳爆炸与水面相互作用

    Figure  11.  Interaction of the glass shell in water with the water surface

    表  1  地下爆炸空腔气体势能计算表达式[10]

    Table  1.   Formulas for the potential energy of the cavity gas in underground explosions[10]

    岩石特性空腔气体势能
    不含气体岩石$ A = {{0.49q}/ {\bar r_{\text{n}}^{0.84}}} $
    仅含自由水的硅酸盐类岩石
    (适用于花岗岩、凝灰岩、冲积层等岩石)
    $A = \dfrac{{0.49q}}{{\bar r_{\text{n}}^{0.84}}}\left( {1 + 5.8\eta _{\text{w}}^{0.7}} \right)$
    仅含碳酸气的碳酸盐类岩石
    (适用于硬石膏、方解石、石灰岩等岩石)
    $A = \dfrac{{0.49q}}{{\bar r_{\text{n}}^{0.84}}}\left( {1 + 1.96\eta _{{\text{c}}{{\text{o}}_{\text{2}}}}^{0.7}} \right)$
    混合含气岩石$A = \dfrac{{0.49q}}{{\bar r_{\text{n}}^{0.84}}}\left( {1 + 5.8\eta _{{\varepsilon }}^{0.7}} \right)$
    下载: 导出CSV

    表  2  弹珠弹射装置适用性测试试验部分结果

    Table  2.   Partial test results of the applicability of the marble launcher

    试验序号高压气室压力/MPa玻璃球壳直径/cm玻璃球壳稳态压力/kPa试验情况
    1-11100.7活塞未发射
    1-21.1
    2-12103.4活塞正常发射,膜片破裂,活塞与炮管锥段齐平,入锥不充分
    2-23.6
    2-31.8
    4-14102.9活塞正常发射,膜片破裂,入锥充分,玻璃球壳稳态压力波动较小
    4-23.0
    4-32.7
    5-15103.6活塞正常发射,膜片破裂,入锥充分,玻璃球壳稳态压力偏高。
    5-27.7
    5-36.9
    下载: 导出CSV

    表  3  不同规模大当量地下爆炸真空室模拟试验主要参数

    Table  3.   Key parameters for the vacuum chamber simulation tests of large-scale underground explosions

    爆炸代号等效TNT
    当量/kt[10]
    真实爆炸空腔
    半径/m[10]
    模拟玻璃球壳
    半径/cm
    玻璃球壳
    气压/kPa
    局部二级高压气体
    稳态压力/kPa
    驱动气体体积在
    球内占比/%
    Neptun0.1157.305.001353.002.20
    1003竖井1.1013.35.0087.03.003.40
    Palanquin4.3017.95.0084.33.003.60
    125竖井19.026.75.0060.43.004.96
    Schooner31.047.15.0015.93.0018.9
    Sedan10069.65.0012.83.0023.4
    下载: 导出CSV

    表  4  爆源球形度试验

    Table  4.   Sphericity test for the explosion device

    试验介质球壳中绝对气压/kPa玻璃球壳埋深/cm拍摄频率/kHz高压气室压力/MPa
    S1空气10054
    S2空气18054
    S31802534
    下载: 导出CSV
  • [1] ADUSHKIN V V, KHRISTOFOROV B D. Craters of large-scale surface explosions [J]. Combustion, Explosion, and Shock Waves, 2004, 40(6): 674–678. DOI: 10.1023/B:CESW.0000048270.62239.01.
    [2] SADOVSKII M A, ADUSHKIN V V, RODIONOV V N, et al. A method of modeling large cratering explosions [J]. Combustion, Explosion, and Shock Waves, 1969, 3(1): 73–79. DOI: 10.1007/BF00741616.
    [3] ADUSHKIN V V, PERNIK L M. Design of linear charges for caving a slope by a large-scale explosion [J]. Soviet Mining, 1989, 25(6): 505–509. DOI: 10.1007/BF02528298.
    [4] ADUSHKIN V V, KAMALYAN R Z, KOROLEV K D. Character of the interaction of concentrated excavation charges detonated at different times [J]. Combustion, Explosion, and Shock Waves, 1989, 25(6): 782–785. DOI: 10.1007/BF00758751.
    [5] BLINOV I M, VAKHRAMEEV Y S. The method for modelling large-scale outburst explosions by microexplosions of explosive charges [J]. Fizika Goreniya I Vzryva, 1995, 31(2): 102–109.
    [6] VAKHRAMEEV Y S. Physical foundations for approximately modeling explosions with ejecta [J]. Combustion, Explosion, and Shock Waves, 1995, 31(1): 120–125. DOI: 10.1007/BF00755969.
    [7] 徐小辉, 邱艳宇, 王明洋, 等. 大当量浅埋地下爆炸抛掷成坑效应的缩比模拟实验装置 [J]. 爆炸与冲击, 2018, 38(6): 1333–1343. DOI: 10.11883/bzycj-2017-0144.

    XU X H, QIU Y Y, WANG M Y, et al. Development of the testing apparatus for modeling large equivalent underground cratering explosions [J]. Explosion and Shock Waves, 2018, 38(6): 1333–1343. DOI: 10.11883/bzycj-2017-0144.
    [8] 徐小辉, 邱艳宇, 王明洋, 等. 大当量地下浅埋爆炸真空室模拟相似材料研究 [J]. 岩石力学与工程学报, 2018, 37(S1): 3550–3556. DOI: 10.13722/j.cnki.jrme.2016.1539.

    XU X H, QIU Y Y, WANG M Y, et al. Similar materials for vacuum chamber model test under large scale throw blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3550–3556. DOI: 10.13722/j.cnki.jrme.2016.1539.
    [9] 王明洋, 徐小辉, 邱艳宇, 等. 一种用于模拟爆炸效应的爆源装置: CN201710295250.6 [P]. 2018-11-13.
    [10] ADUSHKIN V V, SPIVAK A. Underground explosions: WGC-2015-03 [R]. Lexington: Weston Geophysical Corp, 2015.
    [11] 冯建宁, 彭炎午, 林俊德. 新型非火药驱动二级轻气炮内弹道诸问题的研究 [J]. 西北工业大学学报, 1994(3): 477–481.

    FENG J N, PENG Y W, LIN J D. On some problems of interior ballistics in a new type two-stage light gas gun with non-powder projection [J]. Journal of Northwestern Polytechnical University, 1994(3): 477–481.
    [12] TANG W Q, WANG Q, WEI B C, et al. Performance and modeling of a two-stage light gas gun driven by gaseous detonation [J]. Applied Sciences, 2020, 10(12): 4383. DOI: 10.3390/app10124383.
    [13] RINGROSE T J, DOYLE H W, FOSTER P S, et al. A hypervelocity impact facility optimised for the dynamic study of high pressure shock compression [J]. Procedia Engineering, 2017, 204: 344–351. DOI: 10.1016/j.proeng.2017.09.756.
    [14] 徐坤博, 龚自正. 超高速发射技术研究进展 [C] // 中国数学力学物理学高新技术交叉研究学会第十三届学术年会. 敦煌: 中国数学力学物理学高新技术交叉研究学会, 2010.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  112
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-16
  • 修回日期:  2021-10-22
  • 网络出版日期:  2022-08-01
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回