侵彻过程中弹引螺纹连接结构振动特性研究

张冬梅 高世桥

张冬梅, 高世桥. 侵彻过程中弹引螺纹连接结构振动特性研究[J]. 爆炸与冲击, 2022, 42(3): 033302. doi: 10.11883/bzycj-2021-0448
引用本文: 张冬梅, 高世桥. 侵彻过程中弹引螺纹连接结构振动特性研究[J]. 爆炸与冲击, 2022, 42(3): 033302. doi: 10.11883/bzycj-2021-0448
ZHANG Dongmei, GAO Shiqiao. Vibration characteristics of the threaded connection between a projectile and a fuze during penetration[J]. Explosion And Shock Waves, 2022, 42(3): 033302. doi: 10.11883/bzycj-2021-0448
Citation: ZHANG Dongmei, GAO Shiqiao. Vibration characteristics of the threaded connection between a projectile and a fuze during penetration[J]. Explosion And Shock Waves, 2022, 42(3): 033302. doi: 10.11883/bzycj-2021-0448

侵彻过程中弹引螺纹连接结构振动特性研究

doi: 10.11883/bzycj-2021-0448
基金项目: 山西省青年基金(201901D211229)
详细信息
    作者简介:

    张冬梅(1984- ),女,博士,副教授,dongmei_zhang@163.com

  • 中图分类号: O327

Vibration characteristics of the threaded connection between a projectile and a fuze during penetration

  • 摘要: 针对侵彻过程中的弹引系统,对弹引螺纹连接结构振动特性进行了研究,建立了弹引螺纹连接结构弹性模型。在模型中,充分考虑了螺纹载荷分布不均匀的特性,不但给出了螺纹载荷分布规律,还给出了螺纹连接结构的等效刚度和振动频率;同时,为了验证模型的正确性,对弹引螺纹连接结构的拉伸和冲击过程进行了有限元仿真和试验,分别通过对弹引系统各结构振动特性的计算和对实测过载信号进行时频分析得到了系统的频率特性;将弹引系统的振动频率与实测过载信号的时频分析结果进行了对比。分析计算和试验结果发现:与静载荷时相比,冲击载荷作用下第一扣螺纹承受的载荷更大;螺纹连接结构的刚度明显小于固连结构;增加螺纹材料刚度、增加螺纹旋合长度、减小螺距能够有效增加螺纹连接结构固有频率;在侵彻过载测试信号的时频分析结果中明显存在与螺纹连接结构的振动频率一致的振动信号,并且该频率成分的信号幅值很高,对过载信号影响很大。
  • 图  1  螺纹旋合部分受力示意图

    Figure  1.  Schematic of the force on the screw

    图  2  弯曲引起的变形或剪切引起的变形

    Figure  2.  Deformation caused by bending or shear

    图  3  螺纹结构有限元模型

    Figure  3.  Finite element model of screw thread structure

    图  4  弹体侵彻混凝土靶的数值模型

    Figure  4.  The simulation model of a projectile penetrating a concrete target

    图  5  螺纹拉伸试验图

    Figure  5.  Thread tensile test

    图  6  试验整体方案

    Figure  6.  Overall layout of the test

    图  7  弹引结构简化模型示意图

    Figure  7.  The simplified model of the projectile-fuze structure

    图  8  过载信号6层小波分解及其幅频特性

    Figure  8.  Six level wavelet decomposition and amplitude frequency characteristics of overload signal

    图  9  螺纹牙应力分布

    Figure  9.  Von Mises stress distribution of screw thread

    图  10  不同方法计算出的每扣螺纹承载率

    Figure  10.  Bearing ratio of screw thread calculated by different methods

    图  11  螺纹连接结构拉力-变形曲线

    Figure  11.  Tension force-deformation curve of threaded connection structures

    图  12  刚度变化规律

    Figure  12.  Variation of stiffness

    图  13  过载时程曲线

    Figure  13.  Overload-time curves

    表  1  弹体和引信体一~六阶振动频率

    Table  1.   The first to sixth order vibration frequencies of the projectile and fuze

    阶次振动频率/kHz
    弹体轴向引信体轴向弹体横向引信体横向
    13.2314.352.2828.93
    29.6943.0614.29181.35
    316.1571.7740.0350.77
    422.10100.4978.4599.50
    529.07129.20109.66139.09
    635.68164.09146.00185.18
    下载: 导出CSV

    表  2  小波分解信号的频率范围

    Table  2.   Frequency range of wavelet decomposition signals

    分解层数n频率范围/kHz
    近似信号a细节信号d
    10~62.562.5~125
    20~31.2531.25~62.5
    30~15.62515.625~31.25
    40~7.81257.8125~15.625
    50~0.3906253.90625~7.8125
    60~1.953125251.95312525~3.90625
    下载: 导出CSV

    表  3  计算结果对照

    Table  3.   Comparison of calculation results

    螺纹型号材料强度极限/MPa 螺纹刚度/(GN·m−1
    材料螺纹试验数值模拟本文模型Yamamoto模型
    M52×2−2645钢845236 5.31045.55275.68358.0321
    下载: 导出CSV
  • [1] DEN HARTOG J P. The mechanics of plate rotors for turbo-generators [J]. IEEE/ASME Transactions on Mechatronics, 1929, 51: 1–10.
    [2] SOPWITH D G. The distribution of load in screw threads [J]. Proceedings of the Institution of Mechanical Engineers, 1948, 159: 373–383. DOI: 10.1243/PIME_PROC_1948_159_030_02.
    [3] YAMATOTO A. The theory and computation of threads connection [M]. Tokoy: Yokendo, 1980.
    [4] ERAMO M D, CAPPA P. An experimental validation of load distribution in screw threads [J]. Experimental Mechanics, 1991, 31(1): 70–75. DOI: 10.1007/bf02325727.
    [5] ZHAO H. A numerical method for load distribution in threaded connections [J]. Journal of Mechanical Design, 1996, 118(2): 274–279. DOI: 10.1115/1.2826880.
    [6] CHAABAN A, JUTRAS M. Static analysis of buttress threads using the finite element method [J]. Journal of Pressure Vessel Technology, 1990, 114: 209–212. DOI: 10.1115/1.2929031.
    [7] DRAGONI E. Effect of nut compliance on screw thread load distribution [J]. The Journal of Strain Analysis for Engineering Design, 1990, 25(3): 147–150. DOI: 10.1243/03093247v253147.
    [8] KENNY B, PATTERSON E A. Load and stress distribution in screw threads [J]. Experimental Mechanics, 1985, 51: 1–10. DOI: 10.1007/BF02325089.
    [9] MILLER D L, MARSHEK K M, NAJI M R. Determination of load distribution in a threaded connection [J]. Mechanism & Machine Theory, 1983, 18(6): 421–430. DOI: 10.1016/0094-114X(83)90057-5.
    [10] CHEN J J, SHIH Y S. A study of the helical effect on the thread connection by three dimensional finite element analysis [J]. Nuclear Engineering and Design, 1999, 191(2): 109–116. DOI: 10.1016/S0029-5493(99)00134-X.
    [11] SUN F. Analysis of the screw thread connection strength based on nonlinear finite element method [J]. Applied Mechanics and Materials, 2013, 301–403: 55–58.DOI. DOI: 10.4028/www.scientific.net/AMM.401-403.55.
    [12] CHAABAN A, MUZZO U. Finite element analysis of residual stresses in threaded end closures [J]. Journal of pressure vessel technology, 1991, 113(3): 398–401. DOI: 10.1115/1.2928773.
    [13] BRETI J L, COOK R D. Modeling the load transfer in threaded connections by the finite element method [J]. International Journal for Numerical Methods in Engineering, 1979, 14(9): l359–1377. DOI: 10.1002/nme.1620140909.
    [14] 张冬梅, 高世桥, 牛少华. 侵彻过程中螺纹连接结构的应力传递仿真分析 [J]. 兵工学报, 2014, 36: 284–288.

    ZHANG D M, GAO S Q, NIU S H. Simulation analysis of stress transmission of screw joint structures during projectile penetration [J]. Acta Armamentarii, 2014, 36: 284–288.
    [15] ZHANG D M, GAO S Q, XU X. A new computational method for bolted-joint stiffness [J]. Advances in Mechanical Engineering, 2016, 8(11): 1–9. DOI: 10.1177/1687814016682653.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  216
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-04
  • 修回日期:  2021-07-14
  • 网络出版日期:  2022-01-08
  • 刊出日期:  2022-04-07

目录

    /

    返回文章
    返回