Experiments on the effects of venting and nitrogen inerting on hydrogen-air explosions
-
摘要: 为了解受限空间内不同氮气体积分数φ对氢-空气泄爆的影响,在高1 m的顶部开口容器中进行了实验。结果表明:当φ≤40%时,容器内部的最大压力峰值由外部爆炸造成;而当φ>40%时,内部最大压力峰值则由泄爆膜破裂引起;在所有实验中,都观察到内部压力的亥姆霍兹振荡,其振荡频率随φ的增加而降低;声学振荡仅出现在φ=25%, 30%时;容器内3个不同压力监测点(靠近泄爆口、容器中心和接近容器底端)的最大爆炸超压pmax都随着φ的增加而降低,且整体上最大的pmax始终在爆炸容器底部附近出现。但当φ>40%时,3个监测点间pmax的差异可忽略不计;外部最大爆炸超压也随φ的增加而减小,且不论其大小如何,均对内部压力曲线有显著影响。Abstract: Explosion venting and inerting are two commonly used explosion protective measures in hydrogen-based industries, both of them are effective in reducing the maximum explosion overpressure when used alone. However, the coupling effects of venting and inerting on hydrogen deflagrations have not been well understood. To this end, experiments were carried out in a 1 m high top-vented vessel with a cross-section area of 0.3 m×0.3 m to investigate the effects of nitrogen volume fraction (φ) in the range of 0 to 50% by volume on vented hydrogen-air explosions with a fixed equivalence ratio. The premixed hydrogen-nitrogen-air mixtures obtained according to Dolton’s law of partial pressure were ignited in the center of the vented container by an electric spark with an energy of about 500 mJ. A 0.75-m long transparent window was installed in the center of the vented container, through which the flame images in the container were recorded by a high-speed camera at 2 000 frames per second. The pressure-time histories within and outside the vented container were measured by four piezoresistive pressure sensors with a measuring range of 0–150 kPa. The experimental results reveal that φ significantly affects the vented deflagration of hydrogen-air mixtures. The pressure peak owing to the external explosion dominates the internal pressure-time histories when φ≤40% and that resulting from the rupture of vent cover becomes dominant for higher values of φ. Under the current experimental conditions, Helmholtz-type oscillations with a frequency decreasing with φ are always observed, and acoustic oscillations appear in the tests only for φ=25%, 30%. The maximum internal explosion overpressures (pmax) near the vent, at the center of the vessel, and near the bottom of the vessel decrease with increasing φ. Moreover, the highest overall pmax is obtained always near the bottom of the vessel. However, the difference of pmax between the three measuring points is negligible when φ is larger than 40%. The maximum external explosion overpressure decreases with increasing φ. In addition, significant effects of the external explosion on the internal pressure-time histories are observed in all tests, regardless of its explosion overpressure.
-
Key words:
- hydrogen /
- explosion venting /
- nitrogen inerting /
- overpressure /
- flame
-
压电材料可以制造成执行器或传感器等智能元件,广泛应用于国防工业与实际生活中。由于压电材料中力学与电学性质相互耦合,在SH波作用下压电材料中夹杂或圆孔等缺陷处的动应力集中及电场强度集中问题也比一般材料更复杂。近年来,许多学者对缺陷问题进行了研究,并取得了丰富的成果[1-12]。X.F.Li等[1]基于电磁材料弹性理论研究了径向非均匀性的压电压磁球壳的静态响应问题;时朋朋等[2]利用分离变量法和Hilbert核奇异积分方程理论研究了功能梯度压电压磁双材料的周期界面裂纹问题;靳静等[3]利用积分变换法和奇异积分方程技术研究了压电压磁双材料界面裂纹的二维断裂问;舒小平[4-5]基于等效单层理论的位移场和电势场求解了正交压电复合材料层板在各类边界条件下的解析解;宋天舒等[6-7]研究了双相压电介质中圆孔与界面裂纹相互作用的动力学问题。但是,以上工作中大部分是关于径向非均匀介质的静态响应问题的求解,对含圆孔的压电介质在SH波作用下的动态响应问题,目前仍未见报道。
1. 控制方程
含圆孔的全空间非均匀压电介质如图 1所示,已知其密度ρ(r)=ρ1β2r2(β-1),其中ρ1为常数,β为幂次。弹性常数、压电常数、介电常数分别为c44、e15、κ11;圆孔内部可以形成电场,其压电常数为e15c,介电常数为κ11c。在直角坐标系中:r2=x2+y2,ρ(x, y)=ρ1β2(x2+y2)(β-1)。满足控制方程:
{c44∇2w+e15∇2φ+ρ(x,y)ω2w=0e15∇2w−κ11∇2φ=0 (1) 式中:w和φ分别为压电材料的位移和电势,ω为SH波的圆频率。令φ=e15(w+f)/κ11,对式(1)化简得:
{∇2w+k20β2(x2+y2)(β−1)w=0∇2f=0 (2) 波数满足:
k2=ρw2/c∗=k20β2(x2+y2)(β−1) (3) 式中:k为波数;k02=ρ1ω2/c*,c*为压电介质的剪切波速,且c*=c44+e152/κ11。
利用复变函数法,令z=x+iy, z=x-iy,在复平面(η, η)中控制方程可化为:
{∂2w∂z∂ˉz+14β2(zˉz)β−1k20w=0∂2f∂z∂ˉz=0 (4) 引入变量ζ=zβ,ζ=zβ,控制方程可进一步转化为:
∂2w∂ζ∂ˉζ+14k20w=0 (5) 本构方程为:
{τrz=(c44+e215κ11)(∂w∂zeiθ+∂w∂ˉze−iθ)+e215κ11(∂f∂zeiθ+∂f∂ˉze−iθ)τθz=i(c44+e215κ11)(∂w∂zeiθ−∂w∂ˉze−iθ)+ie215κ11(∂f∂zeiθ−∂f∂ˉze−iθ)Dr=−e15(∂f∂zeiθ+∂f∂ˉze−iθ)Dθ=−ie15(∂f∂zeiθ−∂f∂ˉze−iθ) (6) 式中:τrz和τθz分别为非均匀压电介质的径向应力和切向应力,Dr和Dθ分别为圆孔中电场的径向电位移和切向电位移。
2. 介质中的位移场
SH波散射过程中,入射波引起的压电材料位移win表达式为:
win=w0exp[ik2(ζe−iα0+ˉζeiα0)] (7) 散射波引起的压电材料位移ws表达式为:
ws=i2c44(1+λ)+∞∑n=−∞AnH(1)n(k|ζ|)(ζ|ζ|)n (8) 式中:Hn(1)(k|ζ|)为n阶第一类Hankel函数,λ=e152/(c44κ11),An为系数。
φ=e15κ11(win+ws+fs) (9) 散射波引起的电场附加函数fs表达式为:
fs=+∞∑n=1Bnz−n+Cnˉz−n (10) 式中:Bn和Cn为系数。由此得到:
{τinrz=ik2(c44+e215κ11)βw0(zβ−1ei(θ−α0)+ˉzβ−1e−i(θ−α0))exp[ik2(ζe−α0+ˉζeiα0)]τsrz=iβk4+∞∑n=−∞An[H(1)n−1(k|ζ|)(ζ|ζ|)n−1zβ−1eiθ−H(1)n+1(k|ζ|)(ζ|ζ|)n+1ˉzβ−1e−iθ]−e215κ11n(+∞∑n=1Bnz−n−1eiθ++∞∑n=1Cnˉz−n−1e−iθ)Dsr=e15n(+∞∑n=1Bnz−n−1eiθ++∞∑n=1Cnˉz−n−1e−iθ) (11) 式中:上标“in”、“s”分别表示物理量与入射波、反射波相关。圆孔内部存在电场,满足方程:
∂2fc∂z∂ˉz=0 (12) 式中:fc为圆孔内部的电场附加函数。求解式(12)可得:
fc=+∞∑n=0Dnzn++∞∑n=1Enˉzn (13) 式中:Dn和En为系数。由此可得:
{τcrz=0φc=ec15κc11fcDcr=−ec15n(+∞∑n=0Dnzn−1eiθ++∞∑n=1Enˉzn−1e−iθ) (14) 式中:上标“c”表示物理量与圆孔中空气形成的电场相关。
3. 边界条件与定解方程
圆孔处的边界条件为:
τrz=τinrz+τsrz=τcrz=0φ=φcDsr=Dcr (15) 利用以上边界条件式(15)建立关于An、Bn、Cn、Dn、En的方程组:
ξ(1)=+∞∑n=−∞Anξ(11)n++∞∑n=1Bnξ(12)n++∞∑n=1Cnξ(13)nξ(2)=+∞∑n=−∞Anξ(21)n++∞∑n=1Bnξ(22)n++∞∑n=1Cnξ(23)n++∞∑n=0Dnξ(24)n++∞∑n=1Enξ(25)nξ(3)=+∞∑n=1Bnξ(32)n++∞∑n=1Cnξ(33)n++∞∑n=0Dnξ(34)n++∞∑n=1Enξ(35)n (16) 式中:
{ξ(11)n=iβk4[H(1)n−1(k|ζ|)(ζ|ζ|)n−1zβ−1eiθ−H(1)n+1(k|ζ|)(ζ|ζ|)n+1ˉzβ−1e−iθ]ξ(12)n=−e215κ11nz−n−1eiθξ(13)n=−e215κ11nˉz−n−1e−iθξ(21)n=ie152c44κ11(1+λ)H(1)n(k|ζ|)(ζ|ζ|)nξ(22)n=e15κ11z−nξ(23)n=e15κ11ˉz−nξ(24)n=−ec15κc11zn xi(25)n=−ec15κc11ˉznξ(32)n=e15nz−n−1eiθξ(33)n=e15nˉz−n−1e−iθξ(34)n=ec15nzn−1eiθξ(35)n=ec15nˉz−n−1e−iθξ(1)=−ik2(c44+e215κ11)βw0(zβ−1ei(θ−α0)+ˉzβ−1e−i(θ−α0))exp[ik2(ζe−iα0+ˉζeiα0)]ξ(2)=−e15κ11w0exp[ik2(ζe−iα0+ˉζeiα0)]ξ(3)=0 (17) 将式(16)取有限截断项,等式两边同时乘以e-imθ(m=0, ±1, ±2, ±3, …),从(-π, π)进行积分得到多元一次方程组,从而求解出未知系数An、Bn、Cn、Dn、En。
4. 动应力集中系数与电场强度系数
根据文献[11]可知,动应力集中系数τθz*(dynamic stress concentration factor, DSCF)和电场强度集中系数Eθ*(electric field intensity concentration factor, EFICF)表达式分别为:
τ∗θz=|τθz/τ0|E∗θ=|Eθ/E0| (18) 式中:
τ0=ik(c44+e215κ11)w0E0=ke15w0κ11Eθ=−i(∂φ∂ηeiθ−∂φ∂ˉηe−iθ) 5. 算例分析
当β=1时,本文模型退化为均匀压电介质模型。为对本文方法进行验证,采用与文献[7]中相同的参数,求解得到动应力系数τθz*沿圆孔周边的分布情况,如图 2所示。可以看出,计算结果与文献[7]中结果吻合较好,说明本文方法精确可行。以下取κ11/κ11c=1000进行建模,分析各参数对动应力集中系数及电场强度系数的影响。
图 3给出了SH波以不同角度(α0)入射时圆孔周围动应力系数的变化情况。由图 3可知:SH波垂直入射时,τθz*达到最大值3.8;SH波水平入射时,τθz*最大值约为均匀压电介质的2~3倍。由此可见,入射角度α0对非均匀介质具有一定的影响。
图 4给出了SH波水平入射时圆孔周边动应力集中系数随波数ka的变化情况。图 4显示:τθz*随波数ka的增大而减小,SH波低频入射时,τθz*的最大值约为高频入射时的2倍。
图 5给出了SH波垂直入射时圆孔周边动应力集中系数随波数ka的变化情况。图 5显示:τθz*随波数ka增大而减小,与图 4中规律相同,但图 5中τθz*的最大值比图 4中约大18%。由图 3~5可知,SH波低频垂直入射对径向非均匀压电介质破坏较大,在工程中应该对这种情况引起注意。
图 6给出了SH波水平入射时圆孔周边动应力集中系数随λ的变化情况。图 6显示:压电参数λ对τθz*几乎没有影响。图 7给出了SH波水平入射时圆孔周边动应力集中系数随β的变化情况。由图 7可知,τθz*随幂次β的增大而增大,当β=4时,τθz*达到最大值3.2,约为均匀压电材料τθz*最大值的2倍,因此工程中应该合理调整参数,避免幂次β过大。
图 8给出了SH波水平入射时圆孔θ=π/2处动应力集中系数随波数ka的变化情况。图 8显示:τθz*随ka值的增大而减小,下降率约为1.1%。不同压电参数λ条件下得到的τθz*曲线几乎完全重合,说明λ对τθz*几乎没有影响,与图 6中的结论一致。
图 9给出了SH波高频入射时圆孔周边电场强度系数随SH波入射角度的变化情况。由图 9可知:入射角度对Eθ*最大值的影响不大;斜入射时,Eθ*达到最大值3.1。
图 10给出了SH波水平入射时圆孔周边电场强度系数随λ的变化情况。由图 10可知,Eθ*随压电参数λ的增大而减小,当λ=0.2时,Eθ*达到最大值6.2,因此工程中需要注意λ取值较小的情况。
图 11给出了SH波水平入射时圆孔周边电场强度系数随β的变化情况。由图 11可知,Eθ*随幂次β增大而增大,与图 7中τθz*变化规律一致。当β=4时,Eθ*达到最大值3.1。
图 12给出了SH波水平入射时圆孔θ=π/2处电场强度系数随波数ka的变化情况。由图 12可知:当ka < 0.2时,Eθ*无明确的变化规律;当ka>0.2时,Eθ*随ka的增大而减小。
6. 结论
利用复变函数理论,对径向非均匀压电介质中圆孔对SH波的散射问题进行了研究。结果表明,SH波低频垂直入射对径向非均匀压电介质破坏较大;高频入射时,压电参数λ对τθz*几乎没影响,但Eθ*随λ的减小而增大,τθz*与Eθ*均随幂次β的增大而增大。另外,SH波水平入射时,τθz*随ka的减小而增大,当ka>0.2时,Eθ*也随ka的减小而增大。在实际工程中应该对这些规律引起注意,以避免非均匀压电介质发生破坏。
-
-
[1] 郑远攀, 景国勋, 张亚丽. CH4/CO2混合气体爆燃特性研究进展 [J]. 爆炸与冲击, 2012, 32(2): 203–210. DOI: 10.11883/1001-1455(2012)02-0203-08.ZHENG Y P, JING G X, ZHANG Y L. A review of explosion characteristics of methane and carbon dioxide gas mixtures [J]. Explosion and Shock Waves, 2012, 32(2): 203–210. DOI: 10.11883/1001-1455(2012)02-0203-08. [2] 崔益虎, 蒋军成, 喻源, 等. 受限空间内气体爆炸惰化泄爆实验研究 [J]. 中国矿业大学学报, 2014, 43(3): 421–425. DOI: 10.13247/j.cnki.jcumt.000127.CUI Y H, JIANG J C, YU Y, et al. Experimental study of the influence of inert gas addition on gas explosion release in confined space [J]. Journal of China University of Mining & Technology, 2014, 43(3): 421–425. DOI: 10.13247/j.cnki.jcumt.000127. [3] CHOW S K, CLEAVER R P, FAIRWEATHER M, et al. An experimental study of vented explosions in a 3∶ 1 aspect ratio cylindrical vessel [J]. Process Safety and Environmental Protection, 2000, 78(6): 425–433. DOI: 10.1205/095758200530970. [4] FERRARA G, DI BENEDETTO A, SALZANO E, et al. CFD analysis of gas explosions vented through relief pipes [J]. Journal of Hazardous Materials, 2006, 137(2): 654–665. DOI: 10.1016/j.jhazmat.2006.03.037. [5] BAUWENS C R, CHAFFEE J, DOROFEEV S. Effect of ignition location, vent size, and obstacles on vented explosion overpressures in propane-air mixtures [J]. Combustion Science and Technology, 2010, 182(11/12): 1915–1932. DOI: 10.1080/00102202.2010.497415. [6] GUO J, SUN X X, RUI S C, et al. Effect of ignition position on vented hydrogen-air explosions [J]. International Journal of Hydrogen Energy, 2015, 40(45): 15780–15788. DOI: 10.1016/j.ijhydene.2015.09.038. [7] 曹勇, 郭进, 胡坤伦, 等. 点火位置对氢气-空气预混气体泄爆过程的影响 [J]. 爆炸与冲击, 2016, 36(6): 847–852. DOI: 10.11883/1001-1455(2016)06-0847-06.CAO Y, GUO J, HU K L, et al. Effect of ignition locations on vented explosion of premixed hydrogen-air mixtures [J]. Explosion and Shock Waves, 2016, 36(6): 847–852. DOI: 10.11883/1001-1455(2016)06-0847-06. [8] MCCANN D P J, THOMAS G O, EDWARDS D H. Gasdynamics of vented explosions (Ⅰ): experimental studies [J]. Combustion and Flame, 1985, 59(3): 233–250. DOI: 10.1016/0010-2180(85)90128-2. [9] COOPER M G, FAIRWEATHER M, TITE J P. On the mechanisms of pressure generation in vented explosions [J]. Combustion and Flame, 1986, 65(1): 1–14. DOI: 10.1016/0010-2180(86)90067-2. [10] JIANG X H, FAN B C, YE J F, et al. Experimental investigations on the external pressure during venting [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(1): 21–26. DOI: 10.1016/j.jlp.2004.09.002. [11] PROUST C, LEPRETTE E. The dynamics of vented gas explosions [J]. Process Safety Progress, 2010, 29(3): 231–235. DOI: 10.1002/prs.10368. [12] 钱海林, 王志荣, 蒋军成. N2/CO2混合气体对甲烷爆炸的影响 [J]. 爆炸与冲击, 2012, 32(4): 445–448. DOI: 10.11883/1001-1455(2012)04-0445-04.QIAN H L, WANG Z R, JIANG J C. Influence of N2/CO2 mixture on methane explosion [J]. Explosion and Shock Waves, 2012, 32(4): 445–448. DOI: 10.11883/1001-1455(2012)04-0445-04. [13] SHEN X B, ZHANG N N, SHI X M, et al. Experimental studies on pressure dynamics of C2H4/N2O mixtures explosion with dilution [J]. Applied Thermal Engineering, 2019, 147: 74–80. DOI: 10.1016/j.applthermaleng.2018.10.053. [14] WEI H Q, XU Z L, ZHOU L, et al. Effect of hydrogen-air mixture diluted with argon/nitrogen/carbon dioxide on combustion processes in confined space [J]. International Journal of Hydrogen Energy, 2018, 43(31): 14798–14805. DOI: 10.1016/j.ijhydene.2018.06.038. [15] ZHANG Q W, YU Y, LI Y H, et al. Coupling effects of venting and inerting on explosions in interconnected vessels [J]. Journal of Loss Prevention in the Process Industries, 2020, 65: 104132. DOI: 10.1016/j.jlp.2020.104132. [16] HOLBORN P G, BATTERSBY P, INGRAM J M, et al. Modelling the mitigation of lean hydrogen deflagrations in a vented cylindrical rig with water fog [J]. International Journal of Hydrogen Energy, 2012, 37(20): 15406–15422. DOI: 10.1016/j.ijhydene.2012.07.131. [17] HOLBORN P G, BATTERSBY P N, INGRAM J M, et al. Modelling the mitigation of a hydrogen deflagration in a nuclear waste silo ullage with water fog [J]. Process Safety and Environmental Protection, 2013, 91(6): 476–482. DOI: 10.1016/j.psep.2012.11.001. [18] BATTERSBY P N, AVERILL A F, INGRAM J M, et al. Suppression of hydrogen-oxygen-nitrogen explosions by fine water mist (2): mitigation of vented deflagrations [J]. International Journal of Hydrogen Energy, 2012, 37(24): 19258–19267. DOI: 10.1016/j.ijhydene.2012.10.029. [19] HOLBORN P G, BATTERSBY P, INGRAM J M, et al. Modelling the mitigation of hydrogen deflagrations in a vented cylindrical rig with water fog and nitrogen dilution [J]. International Journal of Hydrogen Energy, 2013, 38(8): 3471–3487. DOI: 10.1016/j.ijhydene.2012.12.134. [20] WEN X P, WANG M M, SU T F, et al. Suppression effects of ultrafine water mist on hydrogen/methane mixture explosion in an obstructed chamber [J]. International Journal of Hydrogen Energy, 2019, 44(60): 32332–32342. DOI: 10.1016/j.ijhydene.2019.10.110. [21] PEI B, YU M G, CHEN L W, et al. Experimental study on the synergistic inhibition effect of nitrogen and ultrafine water mist on gas explosion in a vented duct [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 546–553. DOI: 10.1016/j.jlp.2016.02.005. [22] INGRAM J M, AVERILL A F, BATTERSBY P N, et al. Suppression of hydrogen-oxygen-nitrogen explosions by fine water mist (1): burning velocity [J]. International Journal of Hydrogen Energy, 2012, 37(24): 19250–19257. DOI: 10.1016/j.ijhydene.2012.09.092. [23] 刘洋, 李展, 方秦, 等. 惰性气体和水蒸气对长直空间燃气爆炸超压及其振荡的抑制作用 [J]. 高压物理学报, 2021, 35(5): 055201. DOI: 10.11858/gywlxb.20200654.LIU Y, LI Z, FANG Q, et al. Inert gas and water vapor suppressing overpressure and its oscillation of gas explosion in long straight space [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055201. DOI: 10.11858/gywlxb.20200654. [24] 张迎新, 吴强, 刘传海, 等. 惰性气体N2/CO2抑制瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.ZHANG Y X, WU Q, LIU C H, et al. Experimental study on coal mine gas explosion suppression with inert gas N2/CO2 [J]. Explosion and Shock Waves, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07. [25] LU C, WANG H B, PAN R K, et al. Preventing the propagation of gas explosion in ducts using spurted nitrogen [J]. Process Safety and Environmental Protection, 2019, 123: 11–23. DOI: 10.1016/j.psep.2018.12.028. [26] LI G C, WANG X S, XU H L, et al. Experimental study on explosion characteristics of ethanol gasoline-air mixture and its mitigation using heptafluoropropane [J]. Journal of Hazardous Materials, 2019, 378: 120711. DOI: 10.1016/j.jhazmat.2019.05.104. [27] ZHENG L G, LI G, WANG Y L, et al. Effect of blockage ratios on the characteristics of methane/air explosion suppressed by BC powder [J]. Journal of Hazardous Materials, 2018, 355: 25–33. DOI: 10.1016/j.jhazmat.2018.04.070. [28] 郑立刚, 王亚磊, 于水军, 等. NaHCO3抑制瓦斯爆炸火焰与压力的耦合分析 [J]. 化工学报, 2018, 69(9): 4129–4136. DOI: 10.11949/j.issn.0438-1157.20180433.ZHENG L G, WANG Y L, YU S J, et al. Coupled relationship between flame and overpressure of gas explosion inhibited by NaHCO3 [J]. CIESC Journal, 2018, 69(9): 4129–4136. DOI: 10.11949/j.issn.0438-1157.20180433. [29] GUO J, WANG C J, LIU X Y. Experimental study on duct-vented explosion of hydrogen-air mixtures in a wide range of equivalence ratio [J]. Industrial & Engineering Chemistry Research, 2016, 55(35): 9518–9523. DOI: 10.1021/acs.iecr.6b02029. [30] LI J L, WANG X B, GUO J, et al. Effect of concentration and ignition position on vented methane-air explosions [J]. Journal of Loss Prevention in the Process Industries, 2020, 68: 104334. DOI: 10.1016/j.jlp.2020.104334. [31] SOLBERG D M, PAPPAS J A, SKRAMSTAD E. Observations of flame instabilities in large scale vented gas explosions [J]. Symposium (International) on Combustion, 1981, 18(1): 1607–1614. DOI: 10.1016/S0082-0784(81)80164-6. [32] LI Q Q, HU E J, CHENG Y, et al. Measurements of laminar flame speeds and flame instability analysis of 2-methyl-1-butanol-air mixtures [J]. Fuel, 2013, 112: 263–271. DOI: 10.1016/j.fuel.2013.05.039. [33] ZENG W, LIU J, MA H A, et al. Experimental study on the flame propagation and laminar combustion characteristics of landfill gas [J]. Energy, 2018, 158: 437–448. DOI: 10.1016/j.energy.2018.06.062. [34] 郑立刚, 朱小超, 于水军, 等. 浓度和点火位置对氢气-空气预混气爆燃特性影响 [J]. 化工学报, 2019, 70(1): 408–416. DOI: 10.11949/j.issn.0438-1157.20180726.ZHENG L G, ZHU X C, YU S J, et al. Effect of concentration and ignition position on characteristics of premixed hydrogen-air deflagration [J]. CIESC Journal, 2019, 70(1): 408–416. DOI: 10.11949/j.issn.0438-1157.20180726. [35] YANG J, GUO J, WANG C H, et al. Effect of equivalence ratio on hydrogen–methane–air deflagration in a duct with an open end [J]. Fuel, 2020, 280: 118694. DOI: 10.1016/j.fuel.2020.118694. [36] BAO Q, FANG Q, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures [J]. Fuel, 2016, 175: 40–48. DOI: 10.1016/j.fuel.2016.01.084. [37] ZHANG C, WEN J, SHEN X B, et al. Experimental study of hydrogen/air premixed flame propagation in a closed channel with inhibitions for safety consideration [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22654–22660. DOI: 10.1016/j.ijhydene.2019.04.032. [38] KUZNETSOV M, FRIEDRICH A, STERN G, et al. Medium-scale experiments on vented hydrogen deflagration [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 416–428. DOI: 10.1016/j.jlp.2015.04.013. -