Phase-field simulation of microstructural dynamics in NiTi shape memory alloys and their intrinsic strain rate sensitivities
-
摘要: 基于Ginzburg-Landau动力学控制方程建立了NiTi形状记忆合金非等温相场模型,实现了对NiTi合金内应力诱导马氏体相变的数值模拟。同时将晶界能密度引入系统局部自由能密度,从而考虑多晶系统中晶界的重要作用。数值计算了单晶和多晶NiTi形状记忆合金在单轴机械载荷作用下微结构的动态演化过程和宏观力学行为,并重点研究了晶粒尺寸为60 nm的NiTi纳米多晶在低应变率下(0.0005~15 s−1)力学行为的本征应变率敏感性。研究结果表明,单晶NiTi合金系统高温拉伸-卸载过程中马氏体相变均匀发生,未形成奥氏体-马氏体界面。而纳米多晶系统在加载阶段出现了马氏体带的形成-扩展现象,在卸载阶段出现了马氏体带的收缩-消失现象。相同外载作用过程中,NiTi单晶系统的宏观应力-应变曲线具有更大的滞回环面积,拥有更优的超弹性变形能力。计算结果显示,在中低应变率下纳米晶NiTi形状记忆合金应力-应变关系表现出较明显的应变率相关性,应变率升高导致材料相变应力提升。这一应变率相关性主要源于相场模型中外加载荷速率与马氏体空间演化速度的相互竞争关系。Abstract: NiTi shape memory alloy, a typical smart and functional material, has been widely applied in various engineering fields due to its excellent superelasticity and shape memory effect originated from reversible thermo-elastic martensite transformation. The phase-field method is a powerful computational approach for modeling and predicting the mesoscale morphology and microstructural evolution of materials. It is employed to describe the microstructural evolution via a set of order parameters that are continuous in both time and space. In this study, a new non-isothermal phase-field model was established based on the time-dependent Ginzburg-Landau kinetic equation. In particular, an additional grain boundary energy term was introduced into the local free energy density to consider the contribution from the grain boundary of a polycrystalline NiTi shape memory alloy system. In order to understand the underlying microscopic mechanisms for the superelastic deformation, the microstructural evolution and the overall mechanical behavior of both single-crystalline and polycrystalline NiTi shape memory alloys were numerically investigated under tensile loading and unloading at 290 K. After that, the intrinsic strain-rate sensitivity of nanocrystalline NiTi shape memory alloy was studied with the grain size of 60 nm at low strain rates (0.0005−15 s−1). The results show that the martensitic transformation in the single crystalline NiTi shape memory alloy is uniform. No austenite-martensite interface was formed during the computation. Superelastic deformation was simulated by a nanocrystalline NiTi phase-field model. Such behavior is achieved through the nucleation and expansion of martensite bands during uniaxial tensile loading as well as the disappearance of martensite bands during unloading. In comparison, the single-crystalline NiTi shape memory alloy processes larger hysteresis area and better superelastic deformation ability than the polycrystalline NiTi shape memory alloy under the same external loading condition. Noticeable strain-rate sensitivity was exhibited in stress-strain relation of the nanocrystalline NiTi shape memory alloys under low-to-medium strain-rate loadings. The phase-transformation stress increases with the rise of implemented strain rate. Such strain-rate dependence is a result of the competition in the phase-field model between the speed of martensitic domain evolution and the speed of external loading.
-
-
[1] BIL C, MASSEY K, ABDULLAH E J. Wing morphing control with shape memory alloy actuators [J]. Journal of Intelligent Material Systems and Structures, 2013, 24(7): 879–898. DOI: 10.1177/1045389X12471866. [2] HARTL D J, LAGOUDAS D C. Aerospace applications of shape memory alloys [J]. Proceedings of the Institution of Mechanical Engineers: Journal of Aerospace Engineering, 2007, 221(4): 535–552. DOI: 10.1243/09544100JAERO211. [3] KAHN H, HUFF M A, HEUER A H. The TiNi shape-memory alloy and its applications for MEMS [J]. Journal of Micromechanics and Microengineering, 1998, 8(3): 213–221. DOI: 10.1088/0960-1317/8/3/007. [4] PETRINI L, MIGLIAVACCA F. Biomedical applications of shape memory alloys [J]. Journal of Metallurgy, 2011, 2011: 501483. DOI: 10.1155/2011/501483. [5] MACHADO L G, SAVI M A. Medical applications of shape memory alloys [J]. Brazilian Journal of Medical and Biological Research, 2003, 36(6): 683–691. DOI: 10.1590/s0100-879x2003000600001. [6] STOECKEL D, YU W. Superelastic Ni-Ti wire [J]. Wire Journal International, 1991, 24(3): 45–50. [7] CHEN W W, WU Q P, KANG J H, et al. Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001–750 s−1 [J]. International Journal of Solids and Structures, 2001, 38(50/51): 8989–8998. DOI: 10.1016/S0020-7683(01)00165-2. [8] DAYANANDA G N, RAO M S. Effect of strain rate on properties of superelastic NiTi thin wires [J]. Materials Science and Engineering: A, 2008, 486(1/2): 96–103. DOI: 10.1016/j.msea.2007.09.006. [9] AHADI A, SUN Q P. Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi [J]. Acta Materialia, 2014, 76: 186–197. DOI: 10.1016/j.actamat.2014.05.007. [10] KIM S, CHO M. A strain rate effect of Ni-Ti shape memory alloy wire [J]. Japanese Journal of Applied Physics, 2010, 49(11R): 115801. DOI: 10.1143/JJAP.49.115801. [11] 王礼立. 高应变率下材料动态力学性能 [J]. 力学与实践, 1982, 4(1): 9–19, 26. DOI: 10.6052/1000-0879-1982-002.WANG L L. Dynamic mechanical properties of materials at high strain rates [J]. Mechanics in Engineering, 1982, 4(1): 9–19, 26. DOI: 10.6052/1000-0879-1982-002. [12] YANG Z L, WANG H, HUANG Y L, et al. Strain rate dependent mechanical response for monoclinic NiTi shape memory alloy: micromechanical decomposition and model validation via neutron diffraction [J]. Materials & Design, 2020, 191: 108656. DOI: 10.1016/j.matdes.2020.108656. [13] LIU S, LIN Y, HAN L Y, et al. Atomistic simulation of microstructure evolution of NiTi single crystals in bending deformation [J]. Computational Materials Science, 2021, 199: 110733. DOI: 10.1016/j.commatsci.2021.110733. [14] SUN Y Z, LUO J, ZHU J M. Phase field study of the microstructure evolution and thermomechanical properties of polycrystalline shape memory alloys: grain size effect and rate effect [J]. Computational Materials Science, 2018, 145: 252–262. DOI: 10.1016/j.commatsci.2018.01.014. [15] NEMAT-NASSER S, CHOI J Y, GUO W G, et al. High strain-rate, small strain response of a NiTi shape-memory alloy [J]. Journal of Engineering Materials and Technology, 2005, 127(1): 83–89. DOI: 10.1115/1.1839215. [16] JIANG D J, XIAO Y. Modelling on grain size dependent thermomechanical response of superelastic NiTi shape memory alloy [J]. International Journal of Solids and Structures, 2021, 210/211: 170–182. DOI: 10.1016/j.ijsolstr.2020.11.036. [17] AHLUWALIA R, QUEK S S, WU D T. Simulation of grain size effects in nanocrystalline shape memory alloys [J]. Journal of Applied Physics, 2015, 117(24): 244305. DOI: 10.1063/1.4923044. [18] XU B, KANG G Z, KAN Q H, et al. Phase field simulation on the cyclic degeneration of one-way shape memory effect of NiTi shape memory alloy single crystal [J]. International Journal of Mechanical Sciences, 2020, 168: 105303. DOI: 10.1016/j.ijmecsci.2019.105303. [19] CISSÉ C, ZAEEM M A. A phase-field model for non-isothermal phase transformation and plasticity in polycrystalline yttria-stabilized tetragonal zirconia [J]. Acta Materialia, 2020, 191: 111–123. DOI: 10.1016/j.actamat.2020.03.025. [20] ARTEMEV A, JIN Y, KHACHATURYAN A G. Three-dimensional phase field model of proper martensitic transformation [J]. Acta Materialia, 2001, 49(7): 1165–1177. DOI: 10.1016/S1359-6454(01)00021-0. [21] WANG Y U, JIN Y M, KHACHATURYAN A G. The effects of free surfaces on martensite microstructures: 3D phase field microelasticity simulation study [J]. Acta Materialia, 2004, 52(4): 1039–1050. DOI: 10.1016/j.actamat.2003.10.037. [22] ZHONG Y, ZHU T. Phase-field modeling of martensitic microstructure in NiTi shape memory alloys [J]. Acta Materialia, 2014, 75: 337–347. DOI: 10.1016/j.actamat.2014.04.013. [23] YEDDU H K, MALIK A, ÅGREN J, et al. Three-dimensional phase-field modeling of martensitic microstructure evolution in steels [J]. Acta Materialia, 2012, 60(4): 1538–1547. DOI: 10.1016/j.actamat.2011.11.039. [24] CUI S S, WAN J F, RONG Y H, et al. Phase-field simulations of thermomechanical behavior of MnNi shape memory alloys using finite element method [J]. Computational Materials Science, 2017, 139: 285–294. DOI: 10.1016/j.commatsci.2017.08.010. [25] CUI S S, WAN J F, ZUO X W, et al. Three-dimensional, non-isothermal phase-field modeling of thermally and stress-induced martensitic transformations in shape memory alloys [J]. International Journal of Solids and Structures, 2017, 109: 1–11. DOI: 10.1016/j.ijsolstr.2017.01.001. [26] MALIK A, YEDDU H K, AMBERG G, et al. Three dimensional elasto-plastic phase field simulation of martensitic transformation in polycrystal [J]. Materials Science and Engineering: A, 2012, 556: 221–232. DOI: 10.1016/j.msea.2012.06.080. [27] MIKULA J, QUEK S S, JOSHI S P, et al. The role of bimodal grain size distribution in nanocrystalline shape memory alloys [J]. Smart Materials and Structures, 2018, 27(10): 105004. DOI: 10.1088/1361-665X/aada30. [28] ZHANG W, JIN Y M, KHACHATURYAN A G. Phase field microelasticity modeling of heterogeneous nucleation and growth in martensitic alloys [J]. Acta Materialia, 2007, 55(2): 565–574. DOI: 10.1016/j.actamat.2006.08.050. [29] ZHU J M, LUO J, SUN Y Z. Phase field study of the grain size and temperature dependent mechanical responses of tetragonal zirconia polycrystals: a discussion of tension-compression asymmetry [J]. Computational Materials Science, 2020, 172: 109326. DOI: 10.1016/j.commatsci.2019.109326. [30] HEO T W, CHEN L Q. Phase-field modeling of displacive phase transformations in elastically anisotropic and inhomogeneous polycrystals [J]. Acta Materialia, 2014, 76: 68–81. DOI: 10.1016/j.actamat.2014.05.014. [31] CHEN L Q, WANG Y Z. The continuum field approach to modeling microstructural evolution [J]. JOM, 1996, 48(12): 13–18. DOI: 10.1007/BF03223259. [32] JIN Y M, ARTEMEV A, KHACHATURYAN A G. Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of ζ′2 martensite in AuCd alloys [J]. Acta Materialia, 2001, 49(12): 2309–2320. DOI: 10.1016/S1359-6454(01)00108-2. [33] YAMANAKA A, TAKAKI T, TOMITA Y. Elastoplastic phase-field simulation of martensitic transformation with plastic deformation in polycrystal [J]. International Journal of Mechanical Sciences, 2010, 52(2): 245–250. DOI: 10.1016/j.ijmecsci.2009.09.020. [34] MAMIVAND M, ZAEEM M A, EL KADIRI H. Shape memory effect and pseudoelasticity behavior in tetragonal zirconia polycrystals: a phase field study [J]. International Journal of Plasticity, 2014, 60: 71–86. DOI: 10.1016/j.ijplas.2014.03.018. [35] THAMBURAJA P, ANAND L. Polycrystalline shape-memory materials: effect of crystallographic texture [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(4): 709–737. DOI: 10.1016/S0022-5096(00)00061-2. [36] HATCHER N, KONTSEVOI O Y, FREEMAN A J. Role of elastic and shear stabilities in the martensitic transformation path of NiTi [J]. Physical Review B, 2009, 80(14): 144203. DOI: 10.1103/PhysRevB.80.144203. [37] XIE X, KANG G Z, KAN Q H, et al. Phase field modeling for cyclic phase transition of NiTi shape memory alloy single crystal with super-elasticity [J]. Computational Materials Science, 2018, 143: 212–224. DOI: 10.1016/j.commatsci.2017.11.017. [38] XI S B, SU Y. Phase field study of the microstructural dynamic evolution and mechanical response of NiTi shape memory alloy under mechanical loading [J]. Materials, 2021, 14(1): 183. DOI: 10.3390/MA14010183. [39] LIU Y, LI Y L, RAMESH K T, et al. High strain rate deformation of martensitic NiTi shape memory alloy [J]. Scripta Materialia, 1999, 41(1): 89–95. DOI: 10.1016/S1359-6462(99)00058-5. [40] ELIBOL C, WAGNER M F X. Strain rate effects on the localization of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression-shear [J]. Materials Science and Engineering: A, 2015, 643: 194–202. DOI: 10.1016/j.msea.2015.07.039. [41] XIAO Y, ZENG P, LEI L P, et al. Experimental investigation on rate dependence of thermomechanical response in superelastic NiTi shape memory alloy [J]. Journal of Materials Engineering and Performance, 2015, 24(10): 3755–3760. DOI: 10.1007/s11665-015-1688-6. 期刊类型引用(6)
1. 娄文忠,李诗怡,吕斯宁,范晨阳,冯恒振,朱豪坤. 基于故障模式影响及危害性分析的引信可靠性分析方法. 探测与控制学报. 2025(01): 49-56+79 . 百度学术
2. 甄国涌,陈晓锦,李祎,王淑琴. 开关脉冲式自毁指令的可靠传输设计. 电子器件. 2021(05): 1047-1052 . 百度学术
3. 程颖,张晓兵. 基于直列式引信的水雷独立自毁装置设计. 舰船电子工程. 2020(07): 178-180 . 百度学术
4. 秦栋泽,何光林. 结合MIL-STD-1316F探讨子弹药引信安全性设计中的若干问题. 弹箭与制导学报. 2019(06): 71-74+82 . 百度学术
5. 于录,宋贵宝,林木. 弹道反舰导弹靶场飞行试验安全分析. 海军航空工程学院学报. 2018(01): 163-167 . 百度学术
6. 吴奇,李晓晨,柳海斌. 基于电荷平衡原理的引信模拟自毁电路. 兵器装备工程学报. 2016(03): 102-105+120 . 百度学术
其他类型引用(2)
-
推荐阅读
露天矿富水裂隙岩体台阶爆破的殉爆机理和防殉爆研究
费鸿禄 等, 爆炸与冲击, 2025
受冲击荷载后未失效电池力学性能和电性能的劣化
魏和光 等, 爆炸与冲击, 2025
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
基于多矩形饼切函数的弹药毁伤效能评估方法
代权 等, 爆炸与冲击, 2024
抗肿瘤药物安全管理系统的建立与运行效果分析
孙雯娟 等, 协和医学杂志, 2022
单向单线电能传输系统的电磁安全性
李阳 等, 天津工业大学学报, 2024
移液器全自动校准装置研制
陈锦光 等, 中国测试, 2025
Quality and accuracy of online nutrition-related information: a systematic review of content analysis studies
Denniss, Emily et al., PUBLIC HEALTH NUTRITION, 2023
Impact resistence mechanism and deflection prediction of steel-concrete composite wall under fire exposure
YANG Yaotang et al., EXPLOSION AND SHOCK WAVES, 2024
Experimental study on influences of copper foam on explosive characteristics of syngas in a closed pipe
ZHENG Kai et al., EXPLOSION AND SHOCK WAVES, 2024