城市地下浅埋管沟可燃气体爆炸的灾害效应 (Ⅰ):冲击波在地面的传播

杨石刚 蔡炯炜 杨亚 孙文盛 门敬敏

杨石刚, 蔡炯炜, 杨亚, 孙文盛, 门敬敏. 城市地下浅埋管沟可燃气体爆炸的灾害效应 (Ⅰ):冲击波在地面的传播[J]. 爆炸与冲击, 2022, 42(10): 105101. doi: 10.11883/bzycj-2021-0502
引用本文: 杨石刚, 蔡炯炜, 杨亚, 孙文盛, 门敬敏. 城市地下浅埋管沟可燃气体爆炸的灾害效应 (Ⅰ):冲击波在地面的传播[J]. 爆炸与冲击, 2022, 42(10): 105101. doi: 10.11883/bzycj-2021-0502
YANG Shigang, CAI Jiongwei, YANG Ya, SUN Wensheng, MEN Jingmin. Disaster effects of combustible gas explosion in an urban shallow-buried pipe trench (Ⅰ): shock wave propagation on the ground[J]. Explosion And Shock Waves, 2022, 42(10): 105101. doi: 10.11883/bzycj-2021-0502
Citation: YANG Shigang, CAI Jiongwei, YANG Ya, SUN Wensheng, MEN Jingmin. Disaster effects of combustible gas explosion in an urban shallow-buried pipe trench (Ⅰ): shock wave propagation on the ground[J]. Explosion And Shock Waves, 2022, 42(10): 105101. doi: 10.11883/bzycj-2021-0502

城市地下浅埋管沟可燃气体爆炸的灾害效应 (Ⅰ):冲击波在地面的传播

doi: 10.11883/bzycj-2021-0502
基金项目: 国家重点研发计划(2020YFB2103300);江苏省自然科学基金(BK20180081)
详细信息
    作者简介:

    杨石刚(1985- ),男,博士,副教授,youngshg@126.com

    通讯作者:

    蔡炯炜(1994- ),男,硕士,1348230496@qq.com

  • 中图分类号: O382

Disaster effects of combustible gas explosion in an urban shallow-buried pipe trench (Ⅰ): shock wave propagation on the ground

  • 摘要: 城市地下浅埋管沟燃气爆炸事故会造成严重的灾害后果,然而目前针对长直空间内的爆炸荷载通过泄爆口向外传播规律的研究较少。以此类事故为基础,基于前期进行的长直泄爆空间可燃气体爆炸试验,利用FLACS软件,对城市地下浅埋管沟内可燃气体爆炸冲击波超压通过泄爆口到达地面后的分布进行了数值模拟,揭示了管沟内燃气爆炸冲击波在地面的传播规律。结果表明:传播到地面的爆炸冲击波会产生2个特征超压峰值Δp1和Δp2;Δp1较小,主要由压缩波引起,Δp2为最大超压峰值,主要由火焰波引起;Δp2随着与泄爆口之间的距离d的增大而逐渐减小,且各方向上数值的差异性较大,其中在沿管沟截面的短边方向上,呈对称衰减的趋势;Δp2d大致满足指数函数关系,且拟合度均高于98.8%。
  • 图  1  管沟试验装置

    Figure  1.  Pipe trench test device

    图  2  管沟内测点的分布

    Figure  2.  Distribution of measuring points in the pipe trench

    图  3  网格敏感性测试结果

    Figure  3.  Grid sensitivity test results

    图  4  浅埋管沟数值模型

    Figure  4.  The numerical model of the shallow-buried pipe trench

    图  5  浅埋管沟数值模型的网格分布

    Figure  5.  Grid distribution of a numerical model for the shallowly-buried pipe trench

    图  6  测点的布置

    Figure  6.  Layout of measuring points

    图  7  超压时程曲线的阶段划分

    Figure  7.  Stage division of overpressure time-history curves

    图  8  超压二维分布

    Figure  8.  Two-dimensional distribution of overpressure

    图  9  燃料与燃烧产物的体积分数二维分布

    Figure  9.  Two-dimensional distribution of fuel and combustion product

    图  10  阶段Ⅱ流场速度矢量

    Figure  10.  Velocity vectors in the flow field in phase Ⅱ

    图  11  温度二维分布

    Figure  11.  Two-dimensional distribution of temperature

    图  12  密度二维分布

    Figure  12.  Two-dimensional distribution of density

    图  13  阶段Ⅲ流场速度矢量

    Figure  13.  Velocity vectors in the flow field in phase Ⅲ

    图  14  Δp2的三维分布俯视图

    Figure  14.  Vertical view of three-dimensional distribution of Δp2

    图  15  超压时程曲线

    Figure  15.  Overpressure-time history curves

    图  16  超压峰值Δp1和Δp2XYZ方向的分布

    Figure  16.  Distribution of 0verpressure peaks Δp1 and Δp2 in the X, Y and Z directions

    图  17  到泄爆口不同距离处的超压峰值

    Figure  17.  Peak overpressures at measuring points with different distances away from the vent

    表  1  管沟可燃气体爆炸工况记录

    Table  1.   Working condition record of combustible gas explosion in pipe trench

    工况泄爆口位置顶部泄爆口数目甲烷体积分数/%
    1-A尾部+顶部37.5
    1-B尾部+顶部38.5
    1-C尾部+顶部39.5
    1-D尾部+顶部310.5
    1-E尾部+顶部311.5
    2-C密闭,无泄爆口09.5
    3-C尾部09.5
    下载: 导出CSV

    表  2  测点的坐标

    Table  2.   Coordinates of measuring points

    X 轴方向Y 轴方向Z 轴方向
    测点坐标/m测点坐标/m测点坐标/m
    X1(25,0,1)Y1(44.5,−10,1)Z1(44.5,0,1)
    X2(30,0,1)Y2(44.5,−7,1)Z2(44.5,0,2)
    X3(35,0,1)Y3(44.5,−5,1)Z3(44.5,0,3)
    X4(40,0,1)Y4(44.5,−4,1)Z4(44.5,0,4)
    X5(41,0,1)Y5(44.5,−3,1)Z5(44.5,0,5)
    X6(42,0,1)Y6(44.5,−2,1)Z6(44.5,0,6)
    X7(43,0,1)Y7(44.5,−1,1)Z7(44.5,0,7)
    X8(46,0,1)Y8(44.5,1,1)Z8(44.5,0,8)
    X9(47,0,1)Y9(44.5,2,1)Z9(44.5,0,9)
    X10(48,0,1)Y10(44.5,3,1)Z10(44.5,0,10)
    X11(49,0,1)Y11(44.5,4,1)Z11(44.5,0,11)
    X12(54,0,1)Y12(44.5,5,1)Z12(44.5,0,13)
    X13(59,0,1)Y12(44.5,7,1)Z12(44.5,0,16)
    X14(64,0,1)Y12(44.5,10,1)Z12(44.5,0,20)
    下载: 导出CSV
  • [1] 中华人民共和国住房和城乡建设部. 2019年城市建设统计年鉴 [EB/OL]. (2020-12-31)[2021-10-08]. https://www.mohurd.gov.cn/file/old/2020/20201231/w02020123122485271423125000.xls.
    [2] ZHU Y, QIAN X M, LIU Z Y, et al. Analysis and assessment of the Qingdao crude oil vapor explosion accident: Lessons learnt [J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 289–303. DOI: 10.1016/j.jlp.2015.01.004.
    [3] YANG H N, CHEN J H, CHIU H J, et al. Confined vapor explosion in Kaohsiung City: a detailed analysis of the tragedy in the Harbor City [J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 107–120. DOI: 10.1016/j.jlp.2016.03.017.
    [4] 王东武, 杜春志. 巷道瓦斯爆炸传播规律的试验研究 [J]. 采矿与安全工程学报, 2009, 26(4): 475–480, 485. DOI: 10.3969/j.issn.1673-3363.2009.04.017.

    WANG D W, DU C Z. Experimental study on gas explosion and propagation in a test gallery [J]. Journal of Mining and Safety Engineering, 2009, 26(4): 475–480, 485. DOI: 10.3969/j.issn.1673-3363.2009.04.017.
    [5] 司荣军. 管道内瓦斯爆炸传播试验研究 [J]. 煤炭科学技术, 2009, 37(2): 47–49; 123. DOI: 10.13199/j.cst.2009.02.52.sirj.022.

    SI R J. Test and research on gas explosion transmission in pipeline [J]. Coal Science and Technology, 2009, 37(2): 47–49; 123. DOI: 10.13199/j.cst.2009.02.52.sirj.022.
    [6] MA H Y, ZHONG M S, LI X H, et al. Experimental and numerical simulation study on the shock and vibration effect of OD1422-X80 mainline natural gas pipeline explosion [J]. Shock and Vibration, 2019, 2019: 6824819. DOI: 10.1155/2019/6824819.
    [7] CICCARELLI G, JOHANSEN C T, PARRAVANI M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel [J]. Combustion and Flame, 2010, 157(11): 2125–2136. DOI: 10.1016/j.combustflame.2010.05.003.
    [8] NA’INNA A M, PHYLAKTOU H N, ANDREWS G E. Explosion flame acceleration over obstacles: effects of separation distance for a range of scales [J]. Process Safety and Environmental Protection, 2017, 107: 309–316. DOI: 10.1016/j.psep.2017.01.019.
    [9] 孙庆文. 城市综合管廊内天然气爆炸荷载特性研究 [D]. 北京: 北京工业大学, 2018: 15–33.

    SUN Q W. Study on the characteristics of gas explosion load in urban utility tunnel [D]. Beijing, China: Beijing University of Technology, 2018: 15–33.
    [10] HOU L F, LI Y Z, QIAN X M, et al. Large-scale experimental investigation of the effects of gas explosions in underdrains [J]. Journal of Safety Science and Resilience, 2021, 2(2): 90–99. DOI: 10.1016/j.jnlssr.2021.03.001.
    [11] 宫广东, 刘庆明, 白春华. 管道中瓦斯爆炸特性的数值模拟 [J]. 兵工学报, 2010, 31(S1): 17–21.

    GONG G D, LIU Q M, BAI C H. Numerical simulation for gas explosion in tubes [J]. Acta Armamentarii, 2010, 31(S1): 17–21.
    [12] 龚燚. 燃气管线入综合管廊的抗爆防护技术研究 [D]. 南京: 南京理工大学, 2018: 17–36.

    GONG Y. Research on anti-explosion protection technology of gas pipeline entering the comprehensive pipe gallery [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology, 2018: 17–36.
    [13] 董浩宇. 地下综合管廊燃气爆炸灾害效应时空演化规律及防控策略 [D]. 广州: 华南理工大学, 2020: 25–35. DOI: 10.27151/d.cnki.ghnlu.2020.004461.

    DONG H Y. Law of temporal and spatial evolution of gas explosion hazard and prevention and controlling in utility tunnel [D]. Guangzhou, Guangdong, China: South China University of Technology, 2020: 25–35. DOI: 10.27151/d.cnki.ghnlu.2020.004461.
    [14] 刘洋, 李展, 方秦, 等. 惰性气体和水蒸气对长直空间燃气爆炸超压及其振荡的抑制作用 [J]. 高压物理学报, 2021, 35(5): 055201. DOI: 10.11858/gywlxb.20200654.

    LIU Y, LI Z, FANG Q, et al. Inert gas and water vapor suppressing overpressure and its oscillation of gas explosion in long straight space [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055201. DOI: 10.11858/gywlxb.20200654.
    [15] 陈晓坤, 郭丽萍, 程方明, 等. 独头巷道瓦斯爆炸的数值模拟 [J]. 煤矿安全, 2012, 43(7): 20–22. DOI: 10.13347/j.cnki.mkaq.2012.07.058.

    CHEN X K, GUO L P, CHENG F M, et al. Numerical simulation of gas explosion in heading face [J]. Safety in Coal Mines, 2012, 43(7): 20–22. DOI: 10.13347/j.cnki.mkaq.2012.07.058.
    [16] 王涛. 管道内甲烷爆炸特性及CO2抑爆的实验与数值模拟研究 [D]. 西安: 西安科技大学, 2014: 25–49.

    WANG T. Experimental and numerical studies on methane explosion and the suppression effect of CO2 in vessel [D]. Xi’an, Shaanxi, China: Xi’an University of Science and Technology, 2014: 25–49.
    [17] HISKEN H, ENSTAD G A, MIDDHA P, et al. Investigation of concentration effects on the flame acceleration in vented channels [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 447–459. DOI: 10.1016/j.jlp.2015.04.005.
    [18] ZHANG S H, MA H T, HUANG X M, et al. Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel [J]. Process Safety and Environmental Protection, 2020, 140: 100–110. DOI: 10.1016/j.psep.2020.04.025.
    [19] YANG Y, YANG S G, FANG Q, et al. Large-scale experimental and simulation study on gas explosion venting load characteristics of urban shallow buried pipe trenches [J]. Tunnelling and Underground Space Technology, 2022, 123: 104409. DOI: 10.1016/j.tust.2022.104409.
    [20] 中国建筑标准设计研究院. 市政排水管道工程及附属设施: 06MS201 [S]. 北京: 中国计划出版社, 2007.

    China Building Standard Design and Research Institute. Municipal drainage pipeline engineering and ancillary facilities: 06MS201 [S]. Beijing: China Planning Press, 2007.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  405
  • HTML全文浏览量:  100
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 修回日期:  2022-05-24
  • 网络出版日期:  2022-07-04
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回