Theoretical study of the influence of empty-hole on both the blasting parameters and the blasting effect of straight-hole cutting
-
摘要: 为解决含空孔直眼掏槽中炮孔间距、炮孔与空孔距离的确定问题,首先,从爆生气体膨胀做功致裂岩体和空孔效应入手,推导了爆生裂纹的长度计算公式,确定了掏槽炮孔间距a和炮孔与空孔距离L的计算公式,得到了大空孔直眼掏槽空孔处片裂区长度公式,确立了应力集中作用下空孔迎爆侧径向裂纹产生的判据;然后,以灰岩(硬岩)和泥岩(软岩)对比分析了不同设计思想下的爆破参数和掏槽效果;最后,结合工程实践验证了理论分析的可靠性。结果表明:不同设计思想下,含空孔直眼掏槽的爆破破岩机理不同,以a为主时,相邻炮孔间裂纹的贯通是形成槽腔的关键,而以L为主且考虑空孔效应时,炮孔与空孔优先贯通形成槽腔。硬、软岩中应力波(动作用)与爆生气体(静作用)对爆生裂纹长度的贡献率约为4∶1和9∶1,空孔效应导致的软岩的片裂区大于硬岩的,爆破参数设计时应重点考虑;而空孔处产生径向裂纹的临界距离均小于炮孔爆生裂纹长度与空孔半径之和,因此不会产生径向裂纹,爆破参数设计时可不予考虑。以上结果说明,不同设计思想对槽腔掏槽爆破参数和槽腔爆破效果影响较大,基于爆生气体致裂的爆生裂纹长度计算模型可为爆破参数设计提供参考。Abstract: The paper is aimed to determine the distance between blast holes (a) and the distance between boreholes and the empty holes (L) in the straight-hole cutting with empty holes. Firstly, by considering the crack mainly being fractured during the quasi-static expansion of explosion gas and the effect of empty hole, the calculation formula of the crack length is derived; and then, the calculation formulas of the distance between boreholes and the distance between blast holes and the empty hole are determined. Moreover, the formula of the length of the crack zone around the empty hole in the straight-hole cutting with large empty holes is obtained, and the criterion of the radial crack at the blasting side of the empty hole is established based on the effect of stress concentration around empty hole. Secondly, by considering two different design ideas, the blasting parameters and cut blasting effect are compared and analyzed for the blasting in both limestone (hard rock) and mudstone (soft rock),while the reliability of the theoretical analysis is verified by engineering practice. The results show that the rock breaking mechanism of straight-hole cut blasting with empty hole is different under the two design ideas. Namely, if a is taken as the main factor, then the coalescence of cracks between adjacent boreholes is the key factor to the formation of the cavity, whilst if L is taken as the main factor, the bore holes and empty holes are preferentially penetrated to form the cavity based on the empty hole effect. In addition, the contributions of stress wave (dynamic action) and detonation gas (static action) to the crack length in both hard rock and soft rock are about 4∶1 and 9∶1, respectively. Considering the empty hole effect, the flake fracture zone in soft rock is larger than that in hard rock, to which more attention should be paid in the design of blasting parameters. Whereas, the critical length of radial crack initiated from the empty hole is less than the sum of the blasting crack length from cutting hole and the radius of empty hole, so that the radial cracks initiated from the empty hole will not be generated, which can be ignored in the blasting parameter design. The results indicate that the two different design ideas have great influence on cutting blasting parameters and blasting effect, and the calculation model of blasting crack length based on the driven of detonation gas can provide a good reference for the design of blasting parameters.
-
直眼掏槽是岩石井巷和隧道工程爆破常用技术之一[1],直眼掏槽的掏槽孔相互平行,形成的槽腔形状规整,破碎后块度均匀,矸石抛掷距离短,施工简单。为取得较好的爆破效果,一般需要在掏槽孔附近布置空(炮)孔为掏槽孔爆破提供有利条件,由此带来的问题是掏槽区炮孔数量较多,但形成的掏槽槽腔小。为此,一些学者提出采用大直径空孔代替不装药普通炮孔,并对相关的破岩机理进行了研究[2-4],形成了大直径空孔直眼掏槽技术。
爆生裂纹长度是确定爆破参数(尤其是炮孔间距)的关键依据之一,直眼掏槽爆破参数的设计,同样是基于爆生裂纹长度的计算结果。关于爆生裂纹长度计算及掏槽爆破参数研究,相关学者已经做了较多的研究工作,如刘圣贤等[5]从强度理论和脆断理论入手,得到了爆生裂纹长度的计算方法,但缺少实践检验。宗琦[6]在分析爆生气体膨胀规律的基础上,给出了爆生裂纹扩展长度的理论计算公式。赵新涛等[7]采用BCM(biot-consistent macroscopic model)模型得到了岩体裂纹扩展判据。杨小林等[8]基于损伤断裂理论,建立了裂纹尖端的损伤局部化模型,用来描述爆生气体作用下裂纹的扩展情况。严成增等[9]将有限元和离散元方法相结合,模拟了爆生气体作用下岩体的破裂过程,但并未给出相应的计算公式。戴俊等[10]提出了楔形掏槽爆破参数的计算方法,为楔形掏槽炮孔间距设计提供了参考。单仁亮等[11]、张召冉等[12]基于经典岩土力学理论,分析了准楔形掏槽和二阶二段掏槽成腔机制。费鸿禄等[13]从理论上得到了不耦合装药条件下裂隙区范围的计算方法,该方法需要实际工程检验验证。
可见,虽然学者们从不同角度对爆生裂纹长度的计算进行了研究,但并未形成一个统一且简洁的计算公式。同时,含空孔的直眼掏槽中由于存在大直径空孔,应力集中、自由面及碎胀空间等效应[5-7]使炮孔参数的确定变得更复杂,在参数设计时是否考虑空孔效应,以及空孔效应对爆破参数的选取有何影响,也未见相关报道。本文中在进行爆生裂纹长度计算推导的基础上,讨论含空孔直眼掏槽爆破参数的确定及其对爆破效果的影响,并结合工程实践检验其有效性。
1. 含空孔直眼掏槽参数
a 和L 含空孔的直眼掏槽,一般是以空孔为中心,在其周围对称布置数对掏槽孔,以4个掏槽孔为例(见图1),炮孔0为空孔,炮孔1~4为同深掏槽孔,空孔、掏槽孔均垂直于自由面。除空孔0外,掏槽孔1~4同时起爆后爆破成腔。在爆破破岩时,炮孔间距是决定破岩效果的关键。如图1所示,含大空孔的直眼掏槽不仅存在确定炮孔间距a的问题,还存在确定掏槽孔与空孔之间距离L的问题。由于空孔效应的存在,掏槽区内岩体的破坏表现为两个方面:一是相邻炮孔之间裂隙区的相互贯通,二是炮孔产生的裂隙区与空孔贯通。两种不同贯通破坏形式的岩体破坏机理存在差异,掏槽效果也不尽相同。为便于理论分析,先假定炮孔内的装药量能满足破岩要求,然后分析a和L的理论计算值,及不同设计理念下a和L取值对破岩效果的影响。
1.1 炮孔间距
a 的确定(1)爆炸应力波作用下a的确定。
岩石井巷爆破中装药结构一般为不耦合装药,炸药在岩体中爆炸,对炮孔壁施加强冲击荷载
p0 ,其表达式参见文献[14];岩石为脆性材料,抗拉强度为抗压强度的约1/10,根据Mises准则,当岩体受到爆炸荷载的强压缩作用后产生的切向应力大于岩石的动态抗拉强度σtd 时,则在岩体中形成拉裂区。应力波作用下裂纹扩展长度R2的表达式可参见文献[15]。在工程爆破参数设计中,常常采用R2作为炮孔间距确定的依据。由以上分析可知,掏槽炮孔之间岩石的破坏,需要爆生裂纹之间相互贯通,因此,当只考虑应力波作用时,a的取值为:R2≤a≤2R2 (1) (2)应力波和爆生气体共同作用下爆生裂纹的扩展长度。
应力波与爆生气体共同作用理论认为,爆炸冲击波首先形成初始粉碎区,衰减后的冲击波(应力波)开始作用,裂隙持续扩展,最后爆生气体传播至裂隙尖端,促使裂隙进行二次扩展。由于应力波作用时间极短且难以准确分析,而爆生气体作用时间相对较长,因此假设应力波动作用与爆生气体的准静态作用相对独立,以爆生气体为主要对象分析爆生裂纹的扩展。
炸药爆炸冲击波作用完成以后,爆生气体首先充满装药段,此时,对于爆生气体的初始压力
p1 ,根据阿贝尔方程,其表达式为[13]:p1=pVT273(v−τ) (2) 式中:p为标准大气压力,MPa;V为爆容,L/kg;T为爆温,K;
v 为炸药比容, m³/kg;τ 为炸药余容,L/kg;爆生气体充满装药段后,按照等熵绝热状态在炮孔及爆生裂纹中膨胀[6]。由于炮孔中堵塞炮泥,在压力作用下炮泥的运动及应力波产生的裂纹共同对爆生气体压力造成影响[16]。则某时刻炮孔内爆生气体压力应满足条件:
p1Vγ1=pxVγx (3) 式中:初始体积V1为冲击波作用后炮孔的体积:
V1=1/4(πD2Lp) (4) 炮泥运动后某时刻,体积Vx变为冲击波作用后炮孔体积、爆生裂纹的空间体积、炮泥运动后增加体积三者之和:
Vx=(14πD2+na0y)Lp+14πd2x (5) 将式(4)~(5)代入(3),则炮泥在炮孔中运动后某一时刻炮孔内的压力为:
px=p1(1+4na0yLp+πd2xπD2Lp)−γ (6) 式中:
px 为炮泥运动时某一时点的压力;D为冲击波作用后炮孔的直径,不耦合装药时取d(炮孔直径),耦合装药时取破碎区直径;Lp 为装药长度;n为应力波作用后炮孔周围主裂纹数目;a0 为爆生裂纹宽度;x为炮泥在炮孔内运动的距离;y为爆生裂纹长度,其中y=R2+R3 ;R3为爆生气体作用下裂纹扩展长度;γ 为等熵指数,一般为3。显然,到达裂纹尖端的爆生气体压力
px 越大,且大于等于岩石的动态抗拉强度σtd 时裂纹再次扩展。由此,根据式(6),可得爆生气体作用致裂裂纹的扩展长度y为:y=14a0n{πD2[(p1σtd)1/γ−1]−πd2xLp} (7) 从式(7)可以看出,当
a0、n 一定时,爆生裂纹扩展长度与炮泥的运动距离x有关。显然,当炮泥不运动时(即x=0时),爆生气体驱动裂纹扩展长度存在极大值ymax :ymax=14a0n{πD2[(p1σtd)1/γ−1]} (8) 同理,炮泥正好全部抛出时(即
x=Lb−Lp 时,其中Lb 为炮孔长度),爆生气体驱动裂纹扩展长度存在极小值ymin :ymin=14a0n{πD2[(p1σtd)1/γ−1]−πd2(Lb−Lp)Lp} (9) 而在实际爆破中,炮泥的运动是常态[17],较难存在式(8)~(9)的极限状态。因此,在计算爆生气体驱动裂纹扩展长度时,可取算术平均值作为爆生裂纹长度估算值,即:
ˉy=14a0n{πD2[(p1σtd)1/γ−1]−πd2(Lb−Lp)2Lp} (10) 由式(8)~(10)可知,炮孔中炮泥堵塞与否及堵塞质量直接影响爆生裂纹的扩展长度和爆生裂纹是否能够贯通,进而影响到破岩质量,可以看出理论分析结果与生产经验相符。
综上,考虑应力波与爆生气体共同作用时,炮孔间距a的取值为:
ˉy≤a≤2ˉy (11) (3)掏槽孔与空孔间距L的确定。
综上,由式(11)确定a后,则L的取值应为:
L=√2a/2 (12) 1.2 炮孔到空孔距离
L 的确定爆炸荷载在岩体中加载后,由于空孔的存在,在空孔处产生应力集中和自由面效应[3],这两种效应改变了空孔附近岩体的受力状态,影响掏槽区岩体的破坏(破坏范围设为z),因此,掏槽爆破参数的确定需要充分考虑两种效应的影响。
(1)仅考虑空孔处迎爆侧片裂区时L的确定。
由于大直径空孔孔壁的自由面效应,反射的应力波在孔壁附近形成拉伸应力场,且在炮孔与空孔中心连线处存在最大拉伸应力,而连线两侧拉伸应力逐渐减小。由于岩石的抗拉强度较小,当拉伸应力大于岩石的抗拉强度时,必然形成沿炮孔与空孔连心线对称分布的凹状“片裂区”。连心线处存在拉伸破坏范围(宽度),设为z1。如图2所示。
由上述分析可知,空孔迎爆侧产生片裂拉伸的条件为:
σz=p0(r2y+2z1)α≥σtd (13) 式中:
α 为应力波衰减系数。显然,在炮孔与空孔连心线处存在
z1max :z1max=12(r2a√p0σtd−y) (14) 当仅考虑片裂区时,确定的炮孔与空孔距离L为:
L=y+z1max+r1 (15) 式中:r1为空孔半径, r2为炮孔半径。
(2)仅考虑应力集中时L的确定。
当应力集中区某计算单元的切向应力大于岩石的抗拉强度
σtd时 ,产生径向裂纹,同时在空孔与炮孔连心线处存在最大切向应力[3],也就是说空孔在此方向若不产生径向裂纹,空孔迎爆侧其他方向也不会产生径向裂纹(单炮孔与空孔作用时)。空孔迎爆侧产生径向裂纹的条件为[3]:(1−3λd)p0(r2L2−r1)α≥σtd (16) 式中:L2为考虑应力集中时炮孔与空孔的距离,
λd 为动态侧压力系数。显然,理论上存在一个
L2max ,使得产生的切向应力正好达到岩石的抗拉强度,即空孔的应力集中效应产生径向裂纹存在一个临界距离:L2max=r2[p0(1−3λd)σtd]α+r1 (17) 由式(20)可知,
L2max 为空孔迎爆侧是否产生径向裂纹的临界值,当炮孔与空孔距离L≤L2max时 ,产生径向裂纹(设为z2),如图2所示,径向裂纹长度的最大值z2max=L−L2max ,若L>L2max ,则空孔迎爆侧不产生径向裂纹。(3)同时考虑空孔径向裂纹和片裂区范围时L的确定
如图2所示,根据式(15),L的取值为爆生裂纹长度、片裂区(或径向裂纹)长度和空孔半径之和。在计算爆破参数时,首先计算得到爆生裂纹长度y,然后判断空孔产生径向裂纹的条件
L2max 与y+r1 的大小,若L2max<y+r1 则不考虑空孔处的径向裂纹。若L≥y 且L≤L2max ,则空孔处既存在径向裂纹,又存在片裂区,爆生裂纹与它们贯通的先后顺序决定了L的取值:当
z2max>z1max 时,有:L=(L2max+y+r1)/2 (18) 当
z2max≤z1max 时,有:L=y+z1max+r1 (19) (4)由L确定a的取值
由式(15)、(18)~(19)确定L后,则a的取值应为:
a=√2L (20) 1.3 不同设计思想下的掏槽参数
综上所述,根据理论分析,由于空孔与炮孔的相对位置关系,在含大空孔直眼掏槽参数设计中,对于掏槽区岩体破坏与否存在两种判据,即相邻炮孔间裂隙贯通和炮孔与空孔贯通。两种设计思想得到的爆破参数如表1所示。
表 1 掏槽爆破参数Table 1. Parameters of cut blasting掏槽区岩体破坏判据 a/mm L/mm 相邻炮孔间裂隙贯通 ˉy≤a≤2ˉy L=√2a/2 炮孔与空孔贯通 a=√2L L=(L2max+y+r1)/2或L=y+z1max+r1 2. 相同岩性时掏槽效果分析
为便于更好地分析a和L对掏槽效果的影响,假设在同一岩石中爆破,采用炸药类型、药量、空孔半径相同,则单炮孔产生的爆生裂纹长度相同。在此条件下分别讨论以a和L为主进行设计时爆破效果的异同。
2.1 以
a 为主时爆破效果分析如前所述,a的取值可根据应力波作用下裂纹长度考虑,也可根据应力波与爆生气体共同作用理论考虑。由于第2种情况更符合实际情况,因此下述讨论均基于第2种情况。
当空孔半径相同时,掏槽区岩体的破坏存在两种情况:一是优先保证炮孔之间裂隙区的贯通(见图3(a)),二是保证炮孔产生的裂隙区与空孔贯通(见图3(b))。整体上看,由于炮孔周围的裂隙区均匀分布在炮孔周围,且掏槽区内炸药爆炸产生的裂隙区(图中红色阴影部分)是有限的,无论采用何种布置方式,掏槽区内始终存在一部分岩体处于破坏范围以外(图中黑色阴影部分),未爆破岩体的体积决定了爆破效果的差异。
(1)掏槽槽腔形状分析。
爆生裂隙区的范围与炸药的种类有关,如图3(a)所示,当炸药威力较小时,爆生裂隙区范围一定且较小,为追求炮孔间裂隙区的贯通,则必然导致炮孔之间距离a变小。当中心空孔半径较大时,爆生裂纹区与空孔部分重合,也就是说部分炸药能量产生浪费;若要求中心空孔半径与爆生裂纹区正好贯通,充分利用爆炸能量,则要减小中心空孔半径,而此又带来另两个问题:一是空孔碎涨空间变小使得破岩效率受到影响,二是空孔变小后,掏槽区内间接破坏区域变大,增大了掏槽区内岩体整体的破坏难度。由图3(a)可以看出,炮孔之间的裂隙区相互贯通,且空孔与裂隙部分重合或正好贯通,则掏槽区内未破坏部分(黑色阴影部分)在掏槽内部已与周围岩体分离,在破碎岩体的挤压作用下形成间接破坏。由于相邻掏槽炮孔之间贯通,中间未破坏部分与周围岩体分离,则理论上形成的槽腔形状类似于口字型。
如图3(b)所示,当炸药威力较小且空孔直径与图3(a)相同时,增大炮孔间距,会导致掏槽区内未破坏区域增大,掏槽阻力增大。为提高掏槽效率,只有加大炮孔裂隙区半径,即加大炸药威力,形成的裂隙区才能既满足炮孔间裂隙区贯通,又满足裂隙区与空孔的贯通(图3(c),图3(c)与图3(a)~(b)空孔直径相同),此时形成的槽腔类似于采用小威力炸药的情形(空孔直径减小后与裂隙区正好贯通),形成的槽腔形状类似于口字型。
(2)掏槽槽腔体积分析。
假设中心空孔半径、炮孔半径、爆破后形成的槽腔深度相同。当采用小威力炸药时,形成的裂隙区半径为
y1 ,当采用大威力炸药时形成的裂隙区半径为y2 。则在图3(a)所示的情形下,槽腔体积Va=4Lby21 ;在图3(b)所示的情形下,槽腔体积Vb=4Lby22 ,显然,Vb>Va 。基于掏槽形状和掏槽体积的分析可知,空孔直径相同时,采用小威力装药,要么形成的槽腔体积较小,要么造成炸药能量浪费。而采用大威力炸药,既能形成大槽腔,又能充分利用炸药能量。因此,当采用以炮孔间距a作为直眼掏槽参数设计依据时,要尽量采用大威力炸药,当只有小威力炸药时,应优先满足炮孔之间裂隙区贯通。
2.2 以
L 为主时爆破效果分析以L为主的爆破参数的设计,主要考虑炮孔产生的裂隙区与空孔贯通。基于不同设计思想,贯通可以分为两种情况:(1)直接贯通,即不考虑空孔效应对裂纹长度的影响,炮孔裂隙半径与空孔半径
r1 之和等于L;(2)间接贯通。即考虑空孔效应,空孔半径与炮孔裂隙区半径、空孔片裂区(或径向裂隙区)之和等于L。2.2.1 掏槽槽腔形状分析
(1)仅考虑爆生裂纹长度时。
如图4(a)所示,当考虑以掏槽区内炮孔裂隙区与空孔贯通为掏槽区破坏条件时,炮孔裂隙区与空孔之间的岩石的破坏起主要作用的是炮孔产生的裂隙区,但是炮孔和炮孔之间裂隙区并不能形成贯通,掏槽区内部分岩体未被破坏(图4(a)中黑色阴影部分)。实际爆破中,由于空孔的碎胀空间效应,炮孔与空孔之间破碎的岩石在爆炸荷载的作用下,优先向空孔方向移动,形成岩石运动的通道(图4(b)中淡蓝色虚线包围区域),同时,“通道”内破碎矸石的相互挤压及碎胀导致靠近空孔部分未破坏岩体发生二次破碎(图4(b)中淡蓝色虚线包围区域与未破坏区域重合部分),而剩余部分未破坏岩体由于整体性较好,即使炮孔附近已经形成裂隙区,相邻炮孔之间还有部分未破坏区域(图4(b)中深蓝色阴影区域),最终形成的槽腔形状类似于十字形槽腔。
(2)考虑爆生裂纹长度和空孔效应时。
如前所述,由于空孔效应使得爆炸荷载在空孔处产生片裂区和空孔径向裂纹区,该区域的存在(图4(c)所示绿色区域)能够造成炮孔裂隙区与空孔提前贯通,而不必满足炮孔裂隙区与空孔的贯通或重合(图4(a)所示情况)。显然,当考虑片裂区和空孔径向裂纹区时,炮孔之间的距离a要大于图4(a)所示的情况。那必然导致炮孔之间(如炮孔1和2)未破坏区域增大(图4(c)中黑色阴影部分),虽然炮孔附近已在红色区域内(图4(c))形成裂隙区,但由于没有贯通,且未破坏区较大,导致此部分岩石不会移动。而炮孔与空孔切线围成的区域,炮孔裂隙区与片裂区或空孔径向裂隙区贯通,在爆生气体作用下向空孔中心方向移动形成槽腔,槽腔的形状近似为十字形。
2.2.2 掏槽槽腔体积分析
如前所述,当主要考虑L时,形成的槽腔形状为十字形,就槽腔体积来讲,如图4(b)所示的情形,掏槽槽腔体积为
Vb=Lb[(r2+r1)(y+r1)/2−πr12] ;则如图4(c)所示的情形,掏槽槽腔体积为Vc=Lb[(r2+r1)(z+y+r1)/2−πr12] ,显然,当考虑片裂区和空孔径向裂纹区时,体积增大了zLb(r2+r1) 。3. 不同岩性时掏槽参数分析
为更好地分析不同岩性、不同设计思想下,大直径掏槽爆破参数的差异,以灰岩、泥岩为例,研究不同岩性条件下掏槽参数的差异。两种岩石的物理力学参数如表2所示,假设空孔半径相同,即
r1=50mm ,炮孔半径r2=21mm ,炮孔深度均为2.5 m。炸药类型为二级煤矿许用乳化炸药,炸药参数如表3所示,炸药规格为32 mm×200 mm(200 g/卷)。表 2 岩体物理力学参数Table 2. Physical and mechanical parameters of rock岩性 密度/(kg·m−3) 静态泊松比 动态泊松比 动态抗压强度/MPa 动态抗拉强度/MPa 灰岩 3 000 0.24 0.192 120.2 13.0 泥岩 2 430 0.26 0.208 50.8 6.1 表 3 炸药参数Table 3. Explosive parameters密度/(kg·m−3) 直径/mm 长度/mm 每卷质量/kg 爆容/(m3·kg−1) 爆温/K 余容/(m3·kg−1) 爆速/(m·s−1) 1000 32 200 0.2 0.8 2300 6×10−4 3200 由于采用的炸药相同,则根据式(2),
p=1.01×105Pa≈0.1MPa ,则爆生气体初始压力p1 =1 684 MPa。主裂纹条数n=8 [18],爆生裂纹宽度一般为1~2 mm[19],取a=1.5 mm,不耦合装药时D=d,d=42 mm,等熵膨胀系数γ =3。L的大小由应力波(或应力波和爆生气体共同作用)产生的裂纹扩展长度y、片裂区范围
z1max 和、空孔半径r1 、和空孔处径向裂纹长度z2max 共同决定。a的大小由炮孔的裂隙圈半径决定。3.1 灰岩的掏槽参数
L 和a 3.1.1 以L为首要考虑对象时L和a的取值
(1)应力波和爆生气体共同作用且考虑空孔效应时。
① 应力波与爆生气体共同作用时爆生裂纹长度。根据式(10),
Lp =1.4 m,经计算可得爆生裂纹半径y=R2+R3 =0.429 m。② 片裂区长度。根据文献[14]提供的压力计算方法,炸药密度、爆速取值见表3,
γ =3,炸药半径rc =16 mm,炮孔半径r2 =21 mm,则计算可得p0 =3 293 MPa;根据式(14),可得z1max =0.029 m。③ L的确定。根据式(15),可得L=0.429+0.029+0.05=0.508 m。根据式(17),侧应力系数λd=0.24,
α =1.76,则L2max =0.413 m。由于L>L2max ,则L=0.508 m。④ a的确定。炮孔均匀分布在空孔周围,此情况下相邻炮孔间距a受到炮孔几何关系的制约,根据式(20),可得a=0.718 m。
(2)应力波和爆生气体共同作用且不考虑空孔效应时。
当仅考虑破岩半径y时, L的取值为裂隙区半径与空孔半径之和,已知y=0.429 m,则L=y+0.05=0.479 m。
同理,此时a=0.677 m。
(3)仅考虑应力波单独作用时。
根据文献[15],λd=0.24,A=1.719,则应力波作用下裂纹长度R2=0.355 m, L=R2+r1=0.405 m,a=0.573 m。
(4)应力波单独作用且考虑空孔效应时。
由R2=0.355 m,根据式(14),可得
z1max =0.029 m,则L=(0.355+0.029+0.05) m=0.434 m。由于L2max<L,空孔处不产生径向裂纹,因此L=0.434 m,此时a=0.614 m。3.1.2 以a为首要考虑对象时L和a的取值
(1)考虑应力波和爆生气体共同作用时。
如前所述,爆生裂纹的半径y=0.429 m,由式(11)可得,0.429≤a≤0.858,取a=0.644 m。此时,根据几何关系得L=0.455 m。
(2)仅考虑应力波作用时。
仅考虑应力波作用时,a的取值只与应力波作用下爆生裂纹的长度有关。根据文献[15],侧应力系数λd=0.24,A=1.719,则应力波作用下裂纹长度R2=0.355 m。根据式(1),可得a的取值范围为0.355≤a≤0.71,取a=0.533 m,则L=0.376 m。
3.1.3 不同设计思想下灰岩掏槽孔布置
综上所述,当同为灰岩时,出现6种不同的掏槽爆破参数,如图5和表4所示。
表 4 灰岩不同设计思想下a 与L Table 4. a and L of limestoneunder different design ideas序号 取值依据 L/mm a/mm 爆生裂纹半径/mm 裂隙与空孔关系 掏槽孔之间关系 1 以L为主 508 718 429 贯通 贯通 2 479 677 429 贯通 贯通 3 405 573 355 贯通 贯通 4 434 614 355 贯通 贯通 5 以a为主 455 644 429 贯通 贯通 6 376 533 355 贯通 贯通 从表4可以看出,不管采用应力波与爆生气体共同作用,还是仅考虑应力波作用形成的爆生裂纹长度,均满足相邻掏槽孔爆生裂纹半径之和(即炮孔爆生裂纹的2倍)大于等于a的条件,因此,掏槽孔之间形成的爆生裂纹实现贯通,而爆生裂纹与空孔也能实现贯通,因此,在此种条件下,掏槽区岩石爆破较为均匀,形成的槽腔形状为口字状。
3.2 泥岩的掏槽参数
L 和a 3.2.1 以L为首要考虑对象时L和a的取值
(1)应力波和爆生气体共同作用且考虑空孔效应时。
① 应力波与爆生气体共同作用时爆生裂纹长度。根据式(10),Lp=1.0 m,则爆生裂纹半径y=0.549 m。
② 片裂区区域长度。根据文献[14],炸药密度、爆速取值见表3,
γ =3,炸药半径rc =16 mm,炮孔半径r2 =21 mm,则计算可得p0 =3 293 MPa;根据式(14),则z1max=0.232 m。③ L的确定。根据式(15),得到L=(0.549+0.232+0.05) m=0.831 m。根据式(17),
λd =0.26,α =1.74,得到L2max=0.527 m。由于L>L2max,取L=0.831 m。④ a的确定。炮孔均匀分布在空孔周围,此情况下相邻炮孔间距a受到炮孔几何关系的制约,根据式(20),可得a=1.175 m。
(2)应力波和爆生气体共同作用且不考虑空孔效应时。
当仅考虑裂隙圈半径时,则L的取值为裂隙区半径和空孔半径之和,即:L=y+0.05=0.599 m。同理可得a=0.847 m。
(3)应力波单独作用且不考虑空孔效应时。
根据文献[15],侧应力系数λ=0.26,A=1.74,则应力波作用下裂纹长度R2=0.493 m,取L=R2+r1=0.543 m,得到a=0.768 m。
(4)应力波单独作用且考虑空孔效应时。
由R2=0.493 m,根据式(14),
z1max =0.232 m,则L=(0.493+0.232+0.05) m=0.775 m。由于L>L2max,空孔处不产生径向裂纹,得到L=0.775 m,此时a=1.096 m。3.2.2 当以a为主时泥岩掏槽参数L和a的计算
(1)考虑应力波和爆生气体共同作用时。如前所述,此时爆生裂纹的半径y=0.549 m,由式(11)可得,0.549≤a≤1.098,取a=0.824 m。此时,L=0.582 m。
(2)仅考虑应力波作用时。仅考虑应力波作用时,R2=0.493 m,由式(11)可得,0.493≤a≤0.986,取a=0.740 m。此时,L=0.523 m。
3.2.3 不同设计思想下泥岩掏槽孔布置
综上所述,对于泥岩,根据不同的掏槽参数设计思想也得到6种不同的掏槽爆破参数,如图6和表5所示。
表 5 不同设计思想下泥岩的掏槽爆破参数Table 5. Cut blasting parameters of mudstone under different design ideas序号 取值依据 L/mm a/mm 爆生裂纹半径/mm 裂隙与空孔关系 掏槽孔之间关系 1 以L为主 831 1175 549 贯通 未贯通 2 599 847 549 贯通 贯通 3 543 768 493 贯通 贯通 4 775 1096 493 贯通 未贯通 5 以a为主 582 824 549 贯通 贯通 6 523 740 493 贯通 贯通 从表5可以看出,针对泥岩形成的6组掏槽爆破参数中,第1、4组掏槽孔之间未形成贯通,但掏槽孔与空孔贯通,因此形成的槽腔为十字型。而其他组掏槽孔之间及掏槽孔与空孔之间均贯通,形成的槽腔为口字型。其中,第1、4组,当考虑空孔效应时,无论按照应力波与爆生气体共同作用还是应力波单独作用计算,均不满足2y≥a的条件,因此,掏槽孔之间形成的爆生裂纹无法实现贯通,而爆生裂纹与空孔能实现贯通,形成十字型槽腔;当不考虑空孔效应时,满足2y≥a的条件,此时,L的取值均能够直接与空孔贯通,所以爆破后形成的槽腔形状为口字型。
对比表4还可以看出,相同炸药不同岩性形成的槽腔形状不同。当主要考虑a因素时,灰岩和泥岩的掏槽孔之间及掏槽孔与空孔之间均能实现贯通。当主要考虑L因素时,由于灰岩的片裂区长度很小,可忽略不计,而泥岩的片裂区范围较大,导致掏槽孔爆生裂纹与空孔实现贯通,而掏槽孔之间没有贯通,因此槽腔形状及掏槽效果有所不同。
3.3 不同岩性条件下掏槽爆破后参数对比
(1)应力波(动作用)与爆生气体(静作用)对裂纹扩展长度的贡献。
如前所述,在相同炸药条件下,灰岩和泥岩形成的爆破参数不同,如表6所示。可以看出,在爆生裂纹方面,虽然泥岩的爆生裂纹长度比灰岩的长,但在爆生气体对爆生裂纹扩展长度的贡献方面,泥岩却小于灰岩。硬岩(灰岩)中,爆生裂纹理论总长度为429 mm,而动作用导致裂纹扩展理论值为355 mm,占比约83%,静作用导致的裂纹扩展理论值为74 mm,即静作用对爆生裂纹扩展长度的贡献率为17%。即对于硬岩而言,仅就对裂纹扩展长度的贡献而言,动作用与静作用之比约为4∶1;软岩(泥岩)中,爆生裂纹理论总长度为549 mm,而动作用导致裂纹扩展理论值为493 mm,占比约89%,静作用导致的裂纹扩展理论值为56 mm,即静作用对爆生裂纹扩展长度的贡献率为11%。即对于软岩而言,仅就对裂纹扩展长度的贡献而言,动作用与静作用之比约为9:1。
表 6 不同岩性下爆破后参数Table 6. Parameters after blasting in different rocks指标 应力波与爆生气体共同
作用爆生裂纹半径/mm应力波单独作用爆生
裂纹半径/mm爆生气体作用爆生
裂纹扩展长度/mm爆生气体对爆生裂纹
长度贡献率/%片裂区范围/
mm空孔处径向裂纹产生
条件L2max/mm灰岩 429 355 74 17 29 423 泥岩 549 493 56 11 232 527 从以上分析可以看出,软、硬岩中,动、静作用在爆生裂纹长度中的贡献是有不同的,原因在于,炸药在灰岩中爆破后,应力波先作用于灰岩岩体,虽然岩体中产生了裂纹,但岩体仍较为完整,灰岩中的爆生气体容易沿着裂纹到达裂纹尖端,且在爆生气体扩展过程中,压力损失较小。而泥岩抗压强度较低,炸药爆炸后,受到强冲击作用后产生大量的裂纹,且岩体较为破碎,爆生气体在经过这些“通道”过程中,压力损失严重。所以在灰岩中爆破时爆生气体对爆生裂纹扩展长度的贡献大于在泥岩中爆破时。
(2)大直径空孔效应对爆破参数的影响。
从表6可以看出,片裂区及空孔处径向裂纹方面,灰岩片裂区长度仅为29 mm,而泥岩片裂区长度达到232 mm。由于硬岩片裂区很小,设计参数时可以不考虑,但需对软岩进行重点考虑。空孔处产生径向裂纹存在临界距离,由计算可知,灰岩的掏槽孔距离空孔不能大于423 mm,泥岩的不大于527 mm。而按照应力波与爆生气体共同作用计算得到的爆生裂纹长度分别为429、549 mm,均不满足空孔处产生径向裂纹的临界距离要求,按照上述距离进行炮孔布置时,空孔处不产生径向裂纹,仅掏槽孔产生的爆生裂纹就能够实现炮孔与空孔的贯通。综上所述,无论是软岩还是硬岩,在设计大直径空孔直眼掏槽爆破参数时,可以不考虑空孔处径向裂纹,也就是说空孔的应力集中效应仅对爆生裂纹扩展起导向作用,对掏槽孔与空孔之间裂纹长度的贡献不大。而对于片裂区,由于硬岩时产生的片裂区范围太小,可以忽略不计,而软岩时则需要考虑对掏槽区爆破效果的贡献。
4. 现场应用研究
4.1 工程概况
以文献[20]所述益新矿四水平皮带大巷为例,掘进范围内围岩主要为砂岩,岩石的抗压强度较大,普氏系数f ≈ 9,巷道断面为5 100 mm×4 170 mm,直墙半圆拱形巷道,墙高1.5 m,掘进断面面积19.14
m2 。原爆破方案采用楔形掏槽,采用二级煤矿许用乳化炸药(参数见表3),炮孔直径42 mm,单循环进尺仅1.5 m左右,月进尺不超过60 m。为实现大断面硬岩巷道快速掘进,采用CMS1-6 000/55型煤矿用掏槽孔钻车进行中心孔的施工,其余爆破参数按照大空孔直眼掏槽理论设计。4.2 爆破参数及爆破效果
如前所述,当主要考虑因素a时,形成的槽腔为口字型,槽腔面积较大,即以炮孔间爆生裂纹的贯通为首要条件时,也能保证掏槽孔爆生裂纹与空孔的贯通。以上设计思想既能保证巷道掘进的正规循环率,减少炮孔数量,节约钻孔时间,又能获得较好的炮孔利用率和较大的掏槽空间。
为此,掏槽区炮孔采用大直径药卷(35 mm),在大空孔周边布置4个掏槽孔,同时布置4个辅助掏槽孔。由于钻孔机械后退距离有限,同时为充分利用炸药能量,减少矸石抛掷,采用爆生裂纹计算式(2)~(12)求得a和L。
根据式(2),p ≈ 0.1 MPa,炸药爆容0.8 m³/kg,矿用炸药爆温在2 000~2 500 ℃之间,则取爆温T=2 300 K,气体产物余容与密度有关,
τ =6×10−4m³/kg,则爆生气体初始压力p1 =1 684 MPa。根据式(10),主裂纹条数n=8,爆生裂纹平均宽度a0 =1.5 mm,D=45 mm。Lp的选取与装药量有关,本试验装药系数为0.7,则Lp=2.0 m,岩石动态抗拉强度σtd =11.0 MPa,γ =3,计算得y=0.473 m。由式(11)可得,0.473≤a≤0.946,取a=0.636 m。此时,根据几何关系得到L=0.45 m。辅助掏槽孔起爆时间落后于掏槽孔,可以充分利用掏槽孔提供的有利条件,因此辅助掏槽孔间距b可适当放大,但也应满足式(11)的要求,则取b=1.018 m,L=0.72 m。具体爆破布置如图7所示,图8为现场钻孔后炮孔的实际位置,爆破参数如表7所示。表 7 爆破参数Table 7. Parameters of blasting炮孔名称 深度/m a/mm L/mm 装药量/kg 雷管段别 掏槽孔 3.0 636 450 2.0 Ⅰ 辅助掏槽孔 3.0 1 018 720 1.8 Ⅱ 掏槽爆破效果如图9所示,爆破后掏槽深度达到2.9 m,炮孔利用率达到97%以上,现场试验结果与理论分析结果吻合较好,证明基于爆生气体理论的推导得到的爆生裂纹计算公式可靠性较好。
5. 结 论
在爆生裂纹扩展长度理论计算的基础上,分析了大直径空孔直眼掏槽爆破参数及不同参数设计思想下的爆破效果,并结合工程实际案例进行验证,得到如下结论。
(1)含大空孔直眼掏槽破岩的效果是炮孔的裂隙区与空孔片裂区共同影响的结果。爆生裂纹长度的计算及考虑片裂区范围大小对大空孔直眼掏槽参数确定具有重要影响,导致了不同的槽腔破裂形态。
(2)通过对比分析软、硬岩中爆生裂纹长度,理论计算应力波与爆生气体对裂纹扩展长度的贡献比例,可以发现,应力波在爆生裂纹扩展中占主导地位,约占80%~90%,爆生气体对爆生裂纹长度的贡献率约为10%~20%。
(3)空孔处径向裂纹产生的临界距离较小,即爆生裂纹长度与空孔半径之和始终大于空孔处产生径向裂纹需要的临界距离,空孔处不会产生因应力集中导致的径向裂纹;而空孔处片裂区的范围与岩性密切相关,硬岩时片裂区很小,可不考虑,软岩时片裂区较大,需要重点考虑。
-
表 1 掏槽爆破参数
Table 1. Parameters of cut blasting
掏槽区岩体破坏判据 a/mm L/mm 相邻炮孔间裂隙贯通 ˉy≤a≤2ˉy L=√2a/2 炮孔与空孔贯通 a=√2L L=(L2max+y+r1)/2或L=y+z1max+r1 表 2 岩体物理力学参数
Table 2. Physical and mechanical parameters of rock
岩性 密度/(kg·m−3) 静态泊松比 动态泊松比 动态抗压强度/MPa 动态抗拉强度/MPa 灰岩 3 000 0.24 0.192 120.2 13.0 泥岩 2 430 0.26 0.208 50.8 6.1 表 3 炸药参数
Table 3. Explosive parameters
密度/(kg·m−3) 直径/mm 长度/mm 每卷质量/kg 爆容/(m3·kg−1) 爆温/K 余容/(m3·kg−1) 爆速/(m·s−1) 1000 32 200 0.2 0.8 2300 6×10−4 3200 表 4 灰岩不同设计思想下
a 与L Table 4. a and L of limestoneunder different design ideas
序号 取值依据 L/mm a/mm 爆生裂纹半径/mm 裂隙与空孔关系 掏槽孔之间关系 1 以L为主 508 718 429 贯通 贯通 2 479 677 429 贯通 贯通 3 405 573 355 贯通 贯通 4 434 614 355 贯通 贯通 5 以a为主 455 644 429 贯通 贯通 6 376 533 355 贯通 贯通 表 5 不同设计思想下泥岩的掏槽爆破参数
Table 5. Cut blasting parameters of mudstone under different design ideas
序号 取值依据 L/mm a/mm 爆生裂纹半径/mm 裂隙与空孔关系 掏槽孔之间关系 1 以L为主 831 1175 549 贯通 未贯通 2 599 847 549 贯通 贯通 3 543 768 493 贯通 贯通 4 775 1096 493 贯通 未贯通 5 以a为主 582 824 549 贯通 贯通 6 523 740 493 贯通 贯通 表 6 不同岩性下爆破后参数
Table 6. Parameters after blasting in different rocks
指标 应力波与爆生气体共同
作用爆生裂纹半径/mm应力波单独作用爆生
裂纹半径/mm爆生气体作用爆生
裂纹扩展长度/mm爆生气体对爆生裂纹
长度贡献率/%片裂区范围/
mm空孔处径向裂纹产生
条件L2max/mm灰岩 429 355 74 17 29 423 泥岩 549 493 56 11 232 527 表 7 爆破参数
Table 7. Parameters of blasting
炮孔名称 深度/m a/mm L/mm 装药量/kg 雷管段别 掏槽孔 3.0 636 450 2.0 Ⅰ 辅助掏槽孔 3.0 1 018 720 1.8 Ⅱ -
[1] 戴俊, 杨永琦. 三角柱直眼掏槽爆破参数研究 [J]. 爆炸与冲击, 2000, 20(4): 364–368.DAI J, YANG Y Q. Researches on blasting parameters of triangle burn cut [J]. Explosion and Shock Waves, 2000, 20(4): 364–368. [2] 周少颖, 汪海波, 宗琦. 直眼掏槽爆破中大直径中空孔作用机理研究 [J]. 煤矿爆破, 2014(1): 23–25. DOI: 10.3969/j.issn.1674-3970.2014.01.007.ZHOU S Y, WANG H B, ZONG Q. Mechanism research of the effects of empty hole in parallel cut blasting [J]. Coal Mine Blasting, 2014(1): 23–25. DOI: 10.3969/j.issn.1674-3970.2014.01.007. [3] 林大能. 平巷掏槽爆破空孔尺寸效应及围岩频繁震动损伤累积特性研究 [D]. 长沙: 中南大学, 2006: 21–38. DOI: 10.7666/d.y1190361.LIN D N. Research on size effect of empty hole in horizontal roadway cut blasting & accumulating characteristic of surrounding rock damage caused by frequently blasting vibration [D]. Changsha: Central South University, 2006: 21–38. DOI: 10.7666/d.y1190361. [4] 王从银. 直眼掏槽的破岩机理及掏槽设计 [J]. 爆破, 1995(2): 51–55.WANG C Y. Rock-breaking mechanism and cutting design of straight-hole cutting [J]. Blasting, 1995(2): 51–55. [5] 刘圣贤, 胡清祥, 张勇. 爆生裂缝扩展长度的理论研究 [J]. 煤矿爆破, 1998(2): 17–19.LIU S X, HU Q X, ZHANG Y. Theoretical study on the propagation length of blasting cracks [J]. Coal Mine Blasting, 1998(2): 17–19. [6] 宗琦. 爆生气体的准静态破岩特性 [J]. 岩土力学, 1997, 18(2): 73–78. DOI: 10.16285/j.rsm.1997.02.014.ZONG Q. Investigation on features of rock quasi-static fragmentation by gaseous explosion product [J]. Rock and Soil Mechanics, 1997, 18(2): 73–78. DOI: 10.16285/j.rsm.1997.02.014. [7] 赵新涛, 刘东燕, 程贵海, 等. 爆生气体作用机理及岩体裂纹扩展分析 [J]. 重庆大学学报, 2011, 34(6): 75–80. DOI: 10.11835/j.issn.1000-582x.2011.06.014.ZHAO X T, LIU D Y, CHENG G H, et al. Analysis of blasting gas mechanism and rock crack growth [J]. Journal of Chongqing University, 2011, 34(6): 75–80. DOI: 10.11835/j.issn.1000-582x.2011.06.014. [8] 杨小林, 王梦恕. 爆生气体作用下岩石裂纹的扩展机理 [J]. 爆炸与冲击, 2001, 21(2): 111–116. DOI: 10.3321/j.issn:1001-1455.2001.02.005.YANG X L, WANG M S. Mechanism of rock crack growth under detonation gas loading [J]. Explosion and Shock Waves, 2001, 21(2): 111–116. DOI: 10.3321/j.issn:1001-1455.2001.02.005. [9] 严成增, 孙冠华, 郑宏, 等. 爆炸气体驱动下岩体破裂的有限元-离散元模拟 [J]. 岩土力学, 2015, 36(8): 2419–2425. DOI: 10.16285/j.rsm.2015.08.039.YAN C Z, SUN G H, ZHENG H, et al. Simulation of explosive gas-driven rock fracture by FEM/DEM [J]. Rock and Soil Mechanics, 2015, 36(8): 2419–2425. DOI: 10.16285/j.rsm.2015.08.039. [10] 戴俊, 杜晓丽. 岩石巷道楔形掏槽爆破参数研究 [J]. 矿业研究与开发, 2011, 31(2): 90–93,104. DOI: 10.13827/j.cnki.kyyk.2011.02.009.DAI J, DU X L. Research on blasting parameters of wedge-shaped cutting for rock tunnel driving [J]. Mining Research and Development, 2011, 31(2): 90–93,104. DOI: 10.13827/j.cnki.kyyk.2011.02.009. [11] 单仁亮, 黄宝龙, 高文蛟, 等. 岩巷掘进准直眼掏槽爆破新技术应用实例分析 [J]. 岩石力学与工程学报, 2011, 30(2): 224–232.SHAN R L, HUANG B L, GAO W J, et al. Case studies of new technology application of quasi-parallel cut blasting in rock roadway drivage [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 224–232. [12] 张召冉, 杨仁树. 岩石巷道“多阶段”掏槽技术及应用研究 [J]. 岩石力学与工程学报, 2019, 38(3): 551–559. DOI: 10.13722/j.cnki.jrme.2018.0460.ZHANG Z R, YANG R S. Multi-step cutting technology and its application in rock roadways [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 551–559. DOI: 10.13722/j.cnki.jrme.2018.0460. [13] 费鸿禄, 洪陈超. 应力波和爆生气体共同作用下裂隙区范围研究 [J]. 爆破, 2017, 34(1): 33–36,107. DOI: 10.3963/j.issn.1001-487X.2017.01.006.FEI H L, HONG C C. Study on crushed and fracture zone range under combined action of stress and detonation gas [J]. Blasting, 2017, 34(1): 33–36,107. DOI: 10.3963/j.issn.1001-487X.2017.01.006. [14] 王文龙. 钻眼爆破 [M]. 北京: 煤炭工业出版社, 1984: 92–93. [15] 戴俊. 岩石动力学特性与爆破理论 [M]. 2版. 北京: 冶金工业出版社, 2013: 234–238. [16] 张召冉, 陈华义, 矫伟刚, 等. 含空孔直眼掏槽空孔效应及爆破参数研究 [J]. 煤炭学报, 2020, 45(S2): 791–800. DOI: 10.13225/j.cnki.jccs.2019.1591.ZHANG Z R, CHEN H Y, JIAO W G, et al. Rock breaking mechanism and blasting parameters of straight hole cutting with empty-hole [J]. Journal of China Coal Society, 2020, 45(S2): 791–800. DOI: 10.13225/j.cnki.jccs.2019.1591. [17] 梁瑞, 吕亚茹, 周文海, 等. 地下采场爆破炮孔堵塞效应及长度研究 [J]. 地下空间与工程学报, 2020, 16(5): 1546–1554.LIANG R, LV Y R, ZHOU W H, et al. Study on blockage effect and the stem length in underground stope blasting [J]. Chinese Journal of Underground Space and Engineering, 2020, 16(5): 1546–1554. [18] 肖思友, 姜元俊, 刘志祥, 等. 高地应力下硬岩爆破破岩特性及能量分布研究 [J]. 振动与冲击, 2018, 37(15): 143–149. DOI: 10.13465/j.cnki.jvs.2018.15.020.XIAO S Y, JIANG Y J, LIU Z X, et al. Hard rock blasting energy distribution and fragmentation characteristics under high earth stress [J]. Journal of Vibration and Shock, 2018, 37(15): 143–149. DOI: 10.13465/j.cnki.jvs.2018.15.020. [19] 孙可明, 王金彧, 辛利伟. 不同应力差条件下超临界CO2气爆煤岩体气楔作用次生裂纹扩展规律研究 [J]. 应用力学学报, 2019, 36(2): 466–472. DOI: 10.11776/cjam.36.02.B130.SUN K M, WANG J Y, XIN L W. Research on the law of secondary cracks propagation in coal and rock caused by gas wedging during supercritical CO2 explosion under different stress differences [J]. Chinese Journal of Applied Mechanics, 2019, 36(2): 466–472. DOI: 10.11776/cjam.36.02.B130. [20] 郭东明, 李旭鹏, 王汉军, 等. 益新煤矿中心大空孔掏槽爆破现场试验研究 [J]. 中国矿业, 2016, 25(4): 82–86. DOI: 10.3969/j.issn.1004-4051.2016.04.017.GUO D M, LI X P, WANG H J, et al. Field test on center big empty hole in cut blasting in Yixin coal mine [J]. China Mining Magazine, 2016, 25(4): 82–86. DOI: 10.3969/j.issn.1004-4051.2016.04.017. 期刊类型引用(14)
1. 冯婷,夏治园,杨帆,陈欢,罗国安,杨士昌,鲁海生. 孔内多分段掏槽爆破数值模拟及实验研究. 火工品. 2025(01): 83-88 . 百度学术
2. 杨成杰,张智宇,孟佳乐,曾晓昌. 基于762 mm直径空孔直眼掏槽爆破参数优化研究. 有色金属(中英文). 2025(01): 116-128 . 百度学术
3. 缪广红,孙文翔,张旭,孙伟波. 两孔间导向孔对爆炸裂纹扩展方向控制的数值模拟. 黄金科学技术. 2025(01): 139-148 . 百度学术
4. 王勉,王建国,马军,李进华,雷露刚,张伟. 小断面巷道精确延时逐孔起爆技术. 兵工学报. 2025(03): 245-256 . 百度学术
5. 李锦航,宋战平,杨棚涛,潘红伟,田小旭. 隧道光面爆破炮孔优化及控制技术研究进展与展望. 现代隧道技术. 2024(01): 36-47 . 百度学术
6. 余绍山,王薇,李姚伟奇. 周边眼偏位空孔爆破设计优化研究与应用. 铁道科学与工程学报. 2024(04): 1509-1520 . 百度学术
7. 左俊,张茂晨,路世伟,周彩贵,朱金财. 抽水蓄能电站勘探平洞掏槽爆破方法研究. 西北水电. 2024(02): 26-32 . 百度学术
8. 张西良,李龙福,崔正荣,汪禹,王春. 某矿井下多工作面协同爆破智能管控体系研究. 有色金属工程. 2024(06): 108-115 . 百度学术
9. 郝明铧,张昌锁,王凯飞. 综采工作面含煤线硬岩弱化技术研究. 煤炭技术. 2024(07): 63-68 . 百度学术
10. 田国宾,戴俊,高萌. 周边空孔与炮孔间距对爆破时围岩断裂损伤的影响. 爆破器材. 2024(04): 58-64 . 百度学术
11. 丁晨曦,梁欣桐,杨仁树,郭啸,杨阳,周俊,朱心广. 高地应力巷道掏槽爆破的应力演化与损伤破裂研究. 煤炭科学技术. 2024(07): 79-88 . 百度学术
12. 陶子豪,李祥龙,胡启文,王建国. 掏槽爆破成腔空孔效应数值模拟研究与分析. 兵工学报. 2024(12): 4246-4258 . 百度学术
13. 刘树新,庄宇,戴谦君,安帅,曹飞. 盲天井中深孔掏槽爆破布孔优化及围岩损伤数值分析. 金属矿山. 2024(12): 44-51 . 百度学术
14. 黄强. 地应力作用下不同掏槽孔角度爆破效果分析. 建筑安全. 2023(05): 45-50 . 百度学术
其他类型引用(7)
-