仿生多胞薄壁管耐撞性分析及优化

牛枞 黄晗 向枳昕 闫庆昊 陈金宝 许述财

牛枞, 黄晗, 向枳昕, 闫庆昊, 陈金宝, 许述财. 仿生多胞薄壁管耐撞性分析及优化[J]. 爆炸与冲击, 2022, 42(10): 105901. doi: 10.11883/bzycj-2021-0527
引用本文: 牛枞, 黄晗, 向枳昕, 闫庆昊, 陈金宝, 许述财. 仿生多胞薄壁管耐撞性分析及优化[J]. 爆炸与冲击, 2022, 42(10): 105901. doi: 10.11883/bzycj-2021-0527
NIU Cong, HUANG Han, XIANG Zhixin, YAN Qinghao, CHEN Jinbao, XU Shucai. Crashworthiness analysis and optimization on bio-inspired multi-cell thin-walled tubes[J]. Explosion And Shock Waves, 2022, 42(10): 105901. doi: 10.11883/bzycj-2021-0527
Citation: NIU Cong, HUANG Han, XIANG Zhixin, YAN Qinghao, CHEN Jinbao, XU Shucai. Crashworthiness analysis and optimization on bio-inspired multi-cell thin-walled tubes[J]. Explosion And Shock Waves, 2022, 42(10): 105901. doi: 10.11883/bzycj-2021-0527

仿生多胞薄壁管耐撞性分析及优化

doi: 10.11883/bzycj-2021-0527
基金项目: 国家自然科学基金(11902157);南京航空航天大学校人才科研启动基金(1011-YAH20001)
详细信息
    作者简介:

    牛 枞(1992- ),男,博士,cong.niu@strath.ac.uk

    通讯作者:

    黄 晗(1989- ),男,博士,副研究员,huanghan@nuaa.edu.cn

  • 中图分类号: O383

Crashworthiness analysis and optimization on bio-inspired multi-cell thin-walled tubes

  • 摘要: 为提高薄壁管结构耐撞性,以雀尾螳螂虾螯为仿生原型,结合仿生学设计方法,设计一种含正弦胞元的多胞薄壁管结构。以初始峰值载荷、比吸能和碰撞力效率为耐撞性指标,通过有限元数值模拟分析了不同碰撞角度(0º、10º、20º和30º)条件下,仿生胞元数对薄壁管耐撞性的影响,通过多目标的复杂比例评估法获取仿生薄壁管的最优胞元数。基于不同碰撞角度权重因子组合,设置了4种单一角度工况和3种多角度工况,采用多目标粒子群优化方法获取了不同工况下薄壁管结构最优胞元高宽比和壁厚。复杂比例评估结果表明,胞元数为4的薄壁管为最优晶胞数仿生薄壁管。优化结果表明,单一角度工况下,最优结构参数高宽比的范围为0.88~1.50,壁厚的范围为0.36~0.60 mm,碰撞角度为0º和10º的最优高宽比明显小于碰撞角度为20º和30º的;多角度工况下,最优高宽比范围为1.01~1.10,壁厚范围为0.49~0.57 mm。
  • 图  1  虾螯宏微观结构[19]及仿生多胞管设计

    Figure  1.  Macro-micro structure of shrimp chela[19] and bionic design for multi-cell tube

    图  2  不同胞元数目的仿生管截面

    Figure  2.  Sections of bionic tubes with different cell numbers

    图  3  仿生薄壁管(BST)的有限元模型

    Figure  3.  A finite element model for bio-inspired sinusoidal cell tubes (BSTs)

    图  4  不同网格尺寸下的碰撞力随位移变化曲线

    Figure  4.  Crushing force varying with displacement under different mesh size cases

    图  5  试验设备和样件

    Figure  5.  Testing equipment and specimen

    图  6  碰撞力随时间的变化

    Figure  6.  Crushing force varying with time

    图  7  不同碰撞角度下薄壁管变形

    Figure  7.  Deformation of BSTs at different impact angles

    图  8  不同碰撞角度下薄壁管耐撞性指标结果随晶胞数的变化

    Figure  8.  Crashworthiness indexes of BSTs varying with cell number at different impact angles

    图  9  不同工况下模型预测的耐撞性指标

    Figure  9.  Predicted crashworthiness indexes under different cases

    图  10  不同工况下优化结果粒子群边界

    Figure  10.  Particle swarm boundaries of optimization results under different design cases

    表  1  复杂比例评价法计算结果

    Table  1.   Results calculated by the complex proportional assessment method

    NS+iSiQi排序
    10.01460.00610.02555
    20.01650.00640.02692
    30.01640.00690.02603
    40.01900.00750.02781
    50.01770.00820.02594
    60.01710.00820.02526
    70.01770.00880.02527
    80.01670.00960.02378
    90.01610.01020.02279
    100.01510.01110.021110
    下载: 导出CSV

    表  2  不同工况的角度权重因子值

    Table  2.   The values of angle weight for different design cases

    工况wα1wα2wα3wα4
    1 (α=0º)1.00000.00000.00000.0000
    2 (α=10º)0.00001.00000.00000.0000
    3 (α=20º)0.00000.00001.00000.0000
    4 (α=30º)0.00000.00000.00001.0000
    50.46680.27760.16030.0953
    60.25000.25000.25000.2500
    70.09530.16030.27760.4668
    下载: 导出CSV

    表  3  模型误差分析

    Table  3.   Error analysis of model

    α/(º)Fp Es Cf
    $ \delta $/%Rm/kN$ \delta $/%Rm/(kJ·kg−1)$ \delta $/%Rm
    00.140.016 0.770.068 0.780.003
    105.560.379 1.350.11 4.830.07
    205.850.1785.750.4313.360.034
    309.980.3394.960.2768.150.067
    下载: 导出CSV

    表  4  单一角度工况下的最优结果

    Table  4.   The optimal results for single-angle cases

    工况α/(º)ηt /mmFp /kNEs /(kJ·kg−1)Cf
    100.880.6014.789.030.43
    2100.710.566.558.300.82
    3201.230.556.747.280.79
    4301.500.362.814.350.72
    下载: 导出CSV

    表  5  多角度工况下的最优结果

    Table  5.   The optimal results for multi-angle cases

    工况α/(º)ηt /mmFp /kNEs /(kJ·kg−1)Cf$ {F'_{\text{p}}} $/kN$ {E'_{\text{s}}} $/(kJ·kg−1)$ {C'_{\text{f}}} $
    501.010.5714.048.780.4210.248.040.61
    107.058.410.81
    206.897.480.77
    306.494.270.72
    601.090.5413.328.530.418.037.020.68
    106.578.080.81
    206.397.230.78
    305.844.240.72
    701.100.4912.098.140.395.965.880.72
    105.717.720.81
    205.556.800.77
    305.044.230.72
    下载: 导出CSV
  • [1] 黄晗, 许述财, 陈姮. 仿生波纹夹层结构耐撞性分析及优化 [J]. 爆炸与冲击, 2021, 41(8): 083102. DOI: 10.11883/bzycj-2020-0275.

    HUANG H, XU S C, CHEN H. Crashworthiness analysis and optimization of bionic corrugated sandwich structures [J]. Explosion and Shock Waves, 2021, 41(8): 083102. DOI: 10.11883/bzycj-2020-0275.
    [2] YIN H F, XIAO Y Y, WEN G L, et al. Crushing analysis and multi-objective optimization design for bionic thin-walled structure [J]. Materials and Design, 2015, 87: 825–834. DOI: 10.1016/j.matdes.2015.08.095.
    [3] 于鹏山, 刘志芳, 李世强. 新型仿竹薄壁圆管的设计与吸能特性分析 [J]. 高压物理学报, 2021, 35(5): 054205. DOI: 10.11858/gywlxb.20210710.

    YU P S, LIU Z F, LI S Q. Design and energy absorption characteristic analysis of a new bio-bamboo thin-walled circular tube [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054205. DOI: 10.11858/gywlxb.20210710.
    [4] SONG J F, XU S C, WANG H X, et al. Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures [J]. Thin-Walled Structures, 2018, 125: 76–88. DOI: 10.1016/j.tws.2018.01.010.
    [5] 许述财, 邹猛, 魏灿刚, 等. 仿竹结构薄壁管的轴向耐撞性分析及优化 [J]. 清华大学学报(自然科学版), 2014, 54(3): 299–304. DOI: 10.16511/j.cnki.qhdxxb.2014.03.007.

    XU S C, ZOU M, WEI C G, et al. Axial crashworthiness analysis and optimization of a bionic thin-walled tube based on bamboo structure [J]. Journal of Tsinghua University (Science and Technology), 2014, 54(3): 299–304. DOI: 10.16511/j.cnki.qhdxxb.2014.03.007.
    [6] XU T, LIU N, YU Z L, et al. Crashworthiness design for bionic bumper structures inspired by cattail and bamboo [J]. Applied Bionics and Biomechanics, 2017, 2017: 5894938. DOI: 10.1155/2017/5894938.
    [7] LIU S T, TONG Z Q, TANG Z L, et al. Bionic design modification of non-convex multi-corner thin-walled columns for improving energy absorption through adding bulkheads [J]. Thin-Walled Structures, 2015, 88: 70–81. DOI: 10.1016/j.tws.2014.11.006.
    [8] 陈晓薇, 马彬, 陈勇. 仿方竹电池箱体薄壁管结构优化及耐撞性分析 [J]. 机械设计, 2021, 38(1): 78–84. DOI: 10.13841/j.cnki.jxsj.2021.01.012.

    CHEN X W, MA B, CHEN Y. Crashworthiness analysis and structural optimization of the bionic square-bamboo battery box’s thin-walled tube [J]. Journal of Machine Design, 2021, 38(1): 78–84. DOI: 10.13841/j.cnki.jxsj.2021.01.012.
    [9] 邹猛, 于用军, 张荣荣, 等. 仿牛角结构薄壁管吸能特性仿真分析 [J]. 吉林大学学报(工学版), 2015, 45(6): 1863–1868. DOI: 10.13229/j.cnki.jdxbgxb201506020.

    ZOU M, YU Y J, ZHANG R R, et al. Simulation analysis of energy-absorption properties of thin-wall tube based on horn structure [J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(6): 1863–1868. DOI: 10.13229/j.cnki.jdxbgxb201506020.
    [10] LIU S F, XU S C, SONG J F, et al. Mechanical properties and failure deformation mechanisms of yak horn under quasi-static compression and dynamic impact [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 107: 103753. DOI: 10.1016/j.jmbbm.2020.103753.
    [11] 霍鹏, 许述财, 范晓文, 等. 鹿角骨单位仿生薄壁管斜向冲击耐撞性研究 [J]. 爆炸与冲击, 2020, 40(11): 113102. DOI: 10.11883/bzycj-2020-0035.

    HUO P, XU S C, FAN X W, et al. Oblique impact resistance of a bionic thin-walled tube based on antles osteon [J]. Explosion and Shock Waves, 2020, 40(11): 113102. DOI: 10.11883/bzycj-2020-0035.
    [12] PALOMBINI F L, MARIATH J E D A, OLIVEIRA B F D. Bionic design of thin-walled structure based on the geometry of the vascular bundles of bamboo [J]. Thin-Walled Structures, 2020, 155: 106936. DOI: 10.1016/j.tws.2020.106936.
    [13] 杨欣, 范晓文, 许述财, 等. 仿虾螯结构薄壁管设计及耐撞性分析 [J]. 爆炸与冲击, 2020, 40(4): 043301. DOI: 10.11883/bzycj-2019-0280.

    YANG X, FAN X W, XU S C, et al. Design and crashworthiness analysis of thin-walled tubes based on a shrimp chela structure [J]. Explosion and Shock Waves, 2020, 40(4): 043301. DOI: 10.11883/bzycj-2019-0280.
    [14] HUANG H, XU S C. Crashworthiness analysis and bionic design of multi-cell tubes under axial and oblique impact loads [J]. Thin-Walled Structures, 2019, 144: 106333. DOI: 10.1016/j.tws.2019.106333.
    [15] PATEK S N, KORFF W L, CALDWELL R L. Deadly strike mechanism of a mantis shrimp [J]. Nature, 2004, 428(6985): 819–820. DOI: 10.1038/428819a.
    [16] PATEK S N, CALDWELL R L. Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus [J]. Journal of Experimental Biology, 2005, 208(19): 3655–3664. DOI: 10.1242/jeb.01831.
    [17] WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer [J]. Science, 2012, 336(6086): 1275–1280. DOI: 10.1126/science.1218764.
    [18] CLAVERIE T, CHAN E, PATEK S N. Modularity and scaling in fast movements: power amplification in mantis shrimp [J]. Evolution:International Journal of Organic Evolution, 2011, 65(2): 443–461. DOI: 10.1111/j.1558-5646.2010.01133.x.
    [19] YARAGHI N A, GUARÍN-ZAPATA N, GRUNENFELDER L K, et al. A sinusoidally architected helicoidal biocomposite [J]. Advanced Materials, 2016, 28(32): 6835–6844. DOI: 10.1002/adma.201600786.
    [20] 黄晗, 闫庆昊, 向枳昕, 等. 基于虾螯的仿生多胞薄壁管耐撞性分析及优化 [J]. 吉林大学学报(工学版), 2022, 52(3): 716–724. DOI: 10.13229/j.cnki.jdxbgxb20200838.

    HUANG H, YAN Q H, XIANG Z X, et al. Crashworthiness investigation and optimization of bionic multi-cell tube based on shrimp chela [J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(3): 716–724. DOI: 10.13229/j.cnki.jdxbgxb20200838.
    [21] YANG X F, MA J X, SHI Y L, et al. Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load [J]. Materials and Design, 2017, 135: 275–290. DOI: 10.1016/j.matdes.2017.09.040.
    [22] QIU N, GAO Y K, FANG J G, et al. Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases [J]. Finite Elements in Analysis and Design, 2015, 104: 89–101. DOI: 10.1016/j.finel.2015.06.004.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  151
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 修回日期:  2022-06-29
  • 网络出版日期:  2022-08-11
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回