不同迎爆面结构的泡沫金属对甲烷气体爆炸传播阻隔性能的实验研究

张保勇 崔嘉瑞 陶金 王亚军 秦艺峰 魏春荣 张迎新

张保勇, 崔嘉瑞, 陶金, 王亚军, 秦艺峰, 魏春荣, 张迎新. 不同迎爆面结构的泡沫金属对甲烷气体爆炸传播阻隔性能的实验研究[J]. 爆炸与冲击, 2023, 43(2): 025402. doi: 10.11883/bzycj-2021-0531
引用本文: 张保勇, 崔嘉瑞, 陶金, 王亚军, 秦艺峰, 魏春荣, 张迎新. 不同迎爆面结构的泡沫金属对甲烷气体爆炸传播阻隔性能的实验研究[J]. 爆炸与冲击, 2023, 43(2): 025402. doi: 10.11883/bzycj-2021-0531
ZHANG Baoyong, CUI Jiarui, TAO Jin, WANG Yajun, QIN Yifeng, WEI Chunrong, ZHANG Yingxin. Experimental study on barrier performances of foamed metals with different blast front structures to prevent methane explosion propagation[J]. Explosion And Shock Waves, 2023, 43(2): 025402. doi: 10.11883/bzycj-2021-0531
Citation: ZHANG Baoyong, CUI Jiarui, TAO Jin, WANG Yajun, QIN Yifeng, WEI Chunrong, ZHANG Yingxin. Experimental study on barrier performances of foamed metals with different blast front structures to prevent methane explosion propagation[J]. Explosion And Shock Waves, 2023, 43(2): 025402. doi: 10.11883/bzycj-2021-0531

不同迎爆面结构的泡沫金属对甲烷气体爆炸传播阻隔性能的实验研究

doi: 10.11883/bzycj-2021-0531
基金项目: 黑龙江省重点研发计划(GA21C023)
详细信息
    作者简介:

    张保勇(1982- ),男,博士,教授,byzhang1982@163.com

  • 中图分类号: O381;X932

Experimental study on barrier performances of foamed metals with different blast front structures to prevent methane explosion propagation

  • 摘要: 通过自行设计的爆炸管网设备进行实验,提出通过改变泡沫金属迎爆面的结构来增大与爆炸火焰的接触面积,结合爆炸超压、火焰传播速度和火焰温度等参数来评价不同迎爆面设计结构的泡沫金属的阻隔爆性能。结果表明,在相同厚度的前提下,在材料迎爆面增加一定的锯齿形波纹会使整体的阻隔爆性能有所提升,爆炸超压、火焰传播速度和火焰温度的衰减率随着迎爆面锯齿角度的减小而增大。当泡沫金属迎爆面锯齿角度为30°时,爆炸超压、火焰传播速度和火焰温度的衰减率分别为74.0%、76.18%和91.93%,爆炸超压下降速率为30.76 MPa/s,材料后端熄爆参数为17.68 MPa·℃,阻隔爆效果较好。
  • 图  1  实验材料

    Figure  1.  Experimental materials

    图  2  实验设备

    Figure  2.  Experimental equipment

    图  3  爆炸超压随传播距离的变化

    Figure  3.  Explosive overpressure varied with propagation distance

    图  4  不同锯齿角度对爆炸超压的影响

    Figure  4.  Effect of different zigzag angles on explosion overpressure

    图  5  火焰传播速度与传播距离的关系

    Figure  5.  Relation of flame propagation velocitywith propagation distance

    图  6  火焰传播速度抑制效果

    Figure  6.  Flame velocity suppression effect

    图  7  火焰温度随火焰传播距离的变化

    Figure  7.  Relation of flame temperaturewith flame propagation distance

    图  8  熄爆参数

    Figure  8.  Quenching parameters

    图  9  不同迎爆面的阻隔爆效果

    Figure  9.  Effect of blocking explosion of different surfaces

    表  1  实验材料迎爆面设计参数

    Table  1.   Design parameters of the blast front for the experimental material

    实验材料体密度/(g·cm−3)锯齿角度/(°)锯齿厚度/mm材料厚度/mm被破坏
    1泡沫铁镍0.5 0015
    230515+5
    360515+5
    490515+5
    下载: 导出CSV
  • [1] 汪腾蛟, 周西华, 白刚, 等. 煤矿火灾诱发瓦斯爆炸危险性预测 [J]. 煤炭学报, 2020, 45(12): 4104–4110. DOI: 10.13225/j.cnki.jccs.2019.1389.

    WANG T J, ZHOU X H, BAI G, et al. Hazard prediction of gas explosion induced by coal mine fire [J]. Journal of China Coal Society, 2020, 45(12): 4104–4110. DOI: 10.13225/j.cnki.jccs.2019.1389.
    [2] 王秋红, 王二飞, 陈晓坤, 等. 管道内瓦斯爆炸火焰传播压力与温度特性 [J]. 中南大学学报(自然科学版), 2020, 51(1): 239–247. DOI: 10.11817/j.issn.1672-7207.2020.01.027.

    WANG Q H, WANG E F, CHEN X K, et al. Pressure and temperature characteristics of flame propagation of gas explosion in pipeline [J]. Journal of Central South University (Science and Technology), 2020, 51(1): 239–247. DOI: 10.11817/j.issn.1672-7207.2020.01.027.
    [3] 李润之. 瓦斯煤尘共存条件下的煤尘云爆炸下限 [J]. 爆炸与冲击, 2018, 38(4): 913–917. DOI: 10.11883/bzycj-2016-0331.

    LI R Z. Minimum explosive concentration of coal dust cloud in the coexistence of gas and coal dust [J]. Explosion and Shock Waves, 2018, 38(4): 913–917. DOI: 10.11883/bzycj-2016-0331.
    [4] 余明高, 阳旭峰, 郑凯, 等. 障碍物对甲烷/氢气爆炸特性的影响 [J]. 爆炸与冲击, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.

    YU M G, YANG X F, ZHENG K, et al. Effect of obstacles on explosion characteristics of methane/hydrogen [J]. Explosion and Shock Waves, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.
    [5] 秦毅, 陈小伟, 黄维. 密闭空间可燃气体爆炸超压预测 [J]. 爆炸与冲击, 2020, 40(3): 032202. DOI: 10.11883/bzycj-2019-0175.

    QIN Y, CHEN X W, HUANG W. Overpressure prediction of combustible gas explosion in confined space [J]. Explosion and Shock Waves, 2020, 40(3): 032202. DOI: 10.11883/bzycj-2019-0175.
    [6] 时本军, 穆朝民, 马海峰, 等. 腔体影响全巷道甲烷爆炸冲击波传播的特性 [J]. 煤炭学报, 2020, 45(S2): 841–849. DOI: 10.13225/j.cnki.jccs.2020.0791.

    SHI B J, MU C M, MA H F, et al. Cavity effect on the characteristics of methane blast wave propagation in the whole roadway [J]. Journal of China Coal Society, 2020, 45(S2): 841–849. DOI: 10.13225/j.cnki.jccs.2020.0791.
    [7] 薛少谦, 黄子超, 杜宇婷, 等. 基于爆炸强度与隔爆屏障作用技术的巷道隔爆实验 [J]. 煤炭学报, 2021, 46(6): 1791–1798. DOI: 10.13225/j.cnki.jccs.HZ21.0438.

    XUE S Q, HUANG Z C, DU Y T, et al. Roadway explosion isolation technology based on explosion intensity and flame-proof barrier [J]. Journal of China Coal Society, 2021, 46(6): 1791–1798. DOI: 10.13225/j.cnki.jccs.HZ21.0438.
    [8] 尹德军, 郑坚, 熊超, 等. 基于弹丸爆炸毁伤效应的复合材料与结构研究进展 [J]. 材料导报, 2018, 32(5): 815–821,827. DOI: 10.11896/j.issn.1005-023X.2018.05.018.

    YIN D J, ZHENG J, XIONG C, et al. Research progress on composite materials and structures used for protection against damage effect of projectile explosion [J]. Materials Review, 2018, 32(5): 815–821,827. DOI: 10.11896/j.issn.1005-023X.2018.05.018.
    [9] 张博一, 高金涛, 王理, 等. 粉煤灰空心球/Al复合泡沫材料准静态力学性能及本构模型 [J]. 复合材料学报, 2021, 38(8): 2655–2665. DOI: 10.13801/j.cnki.fhclxb.20201116.003.

    ZHANG B Y, GAO J T, WANG L, et al. Quasi-static mechanical properties and constitutive model of fly ash cenosphere/aluminum syntactic foam [J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2655–2665. DOI: 10.13801/j.cnki.fhclxb.20201116.003.
    [10] 王建忠, 许忠国, 敖庆波, 等. 金属纤维多孔材料力学性能研究现状 [J]. 稀有金属材料与工程, 2016, 45(6): 1636–1640.

    WANG J Z, XU Z G, AO Q B, et al. Status quo of mechanical properties of porous metal fibrous materials [J]. Rare Metal Materials and Engineering, 2016, 45(6): 1636–1640.
    [11] 贾海林, 项海军, 李第辉, 等. 含NaCl超细水雾对不同阻塞率管道内爆炸的抑制 [J]. 爆炸与冲击, 2020, 40(4): 042201. DOI: 10.11883/bzycj-2019-0268.

    JIA H L, XIANG H J, LI D H, et al. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride [J]. Explosion and Shock Waves, 2020, 40(4): 042201. DOI: 10.11883/bzycj-2019-0268.
    [12] NIE B S, HU S T, YANG L L, et al. Characteristics of flame velocity of gas explosion with obstruction in pipeline [J]. Perspectives in Science, 2016, 7: 277–281. DOI: 10.1016/j.pisc.2015.12.003.
    [13] 程方明, 常助川, 史合, 等. 多孔障碍物对预混火焰传播的影响 [J]. 爆炸与冲击, 2020, 40(8): 082103. DOI: 10.11883/bzycj-2019-0480.

    CHENG F M, CHANG Z C, SHI H, et al. Multi-hole obstacles’ effects on premixed flame’s propagation [J]. Explosion and Shock Waves, 2020, 40(8): 082103. DOI: 10.11883/bzycj-2019-0480.
    [14] DUAN Y L, WANG S, YANG Y L, et al. Experimental study on methane explosion characteristics with different types of porous media [J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104370. DOI: 10.1016/j.jlp.2020.104370.
    [15] BIVOL G, GOLOVASTOV S. Effects of polyurethane foam on the detonation propagation in stoichiometric hydrogen-air mixture [J]. Process Safety and Environmental Protection, 2019, 130: 14–21. DOI: 10.1016/j.psep.2019.06.032.
    [16] OUSJI H, BELKASSEM B, LOUAR M A, et al. Air-blast response of sacrificial cladding using low density foams: experimental and analytical approach [J]. International Journal of Mechanical Sciences, 2017, 128/129: 459–474. DOI: 10.1016/j.ijmecsci.2017.05.024.
    [17] 周尚勇, 高建村, 胡守涛, 等. 金属丝状材料对预混气体爆炸影响规律研究 [J]. 北京石油化工学院学报, 2019, 27(2): 62–65,76. DOI: 10.12053/j.issn.1008-2565.2019.02.011.

    ZHOU S Y, GAO J C, HU S T, et al. Study of the effect of metal filamentary materials on premixed gas explosion [J]. Journal of Beijing Institute of Petrochemical Technology, 2019, 27(2): 62–65,76. DOI: 10.12053/j.issn.1008-2565.2019.02.011.
    [18] 王曦浩, 夏志成, 孔新立, 等. 钢板夹泡沫铝组合板抗接触爆炸性能研究 [J]. 振动与冲击, 2017, 36(13): 86–91. DOI: 10.13465/j.cnki.jvs.2017.13.013.

    WANG X H, XIA Z C, KONG X L, et al. Anti-contact blast performance of steel-aluminum foam-steel sandwich panels [J]. Journal of Vibration and Shock, 2017, 36(13): 86–91. DOI: 10.13465/j.cnki.jvs.2017.13.013.
    [19] 张健, 赵桂平, 卢天健. 泡沫金属在冲击载荷下的动态压缩行为 [J]. 爆炸与冲击, 2014, 34(3): 278–284. DOI: 10.11883/1001-1455(2014)03-0278-07.

    ZHANG J, ZHAO G P, LU T J. High speed compression behaviour of metallic cellular materials under impact loading [J]. Explosion and Shock Waves, 2014, 34(3): 278–284. DOI: 10.11883/1001-1455(2014)03-0278-07.
    [20] 孙建华, 曲征, 魏春荣, 等. 泡沫金属抑制瓦斯爆炸火焰的实验及机理研究 [J]. 采矿与安全工程学报, 2013, 30(3): 463–467.

    SUN J H, QU Z, WEI C R, et al. Experimental and mechanism study on gas explosion flame suppressed by foam metal [J]. Journal of Mining and Safety Engineering, 2013, 30(3): 463–467.
    [21] ZHUANG C J, WANG Z R, ZHANG K, et al. Explosion suppression of porous materials in a pipe-connected spherical vessel [J]. Journal of Loss Prevention in the Process Industries, 2020, 65: 104106. DOI: 10.1016/j.jlp.2020.104106.
    [22] WANG Y J, JIANG S G, WU Z Y, et al. Study on the inhibition influence on gas explosions by metal foam based on its density and coal dust [J]. Journal of Loss Prevention in the Process Industries, 2018, 56: 451–457. DOI: 10.1016/j.jlp.2018.09.009.
    [23] SANTOSA S P, ARIFURRAHMAN F, IZZUDIN M H, et al. Response analysis of blast impact loading of metal-foam sandwich panels [J]. Procedia Engineering, 2017, 173: 495–502. DOI: 10.1016/j.proeng.2016.12.073.
    [24] 魏春荣, 徐敏强, 孙建华, 等. 多孔材料抑制瓦斯爆炸传播的实验及机理 [J]. 功能材料, 2012, 43(16): 2247–2250, 2255. DOI: 10.3969/j.issn.1001-9731.2012.16.031.

    WEI C R, XU M Q, SUN J H, et al. Experiment and mechanism of porous materials for suppressing the gas explosion [J]. Journal of Functional Materials, 2012, 43(16): 2247–2250, 2255. DOI: 10.3969/j.issn.1001-9731.2012.16.031.
    [25] 余明高, 刘梦茹, 温小萍, 等. 超细水雾-多孔材料协同抑制瓦斯爆炸实验研究 [J]. 煤炭学报, 2019, 44(5): 1562–1569. DOI: 10.13225/j.cnki.jccs.2018.0795.

    YU M G, LIU M R, WEN X P, et al. Synergistic inhibition of gas explosion by ultrafine water mist-porous materials [J]. Journal of China Coal Society, 2019, 44(5): 1562–1569. DOI: 10.13225/j.cnki.jccs.2018.0795.
    [26] 余明高, 万少杰, 徐永亮, 等. 荷电细水雾对管道瓦斯爆炸超压的影响规律研究 [J]. 中国矿业大学学报, 2015, 44(2): 227–232, 261. DOI: 10.13247/j.cnki.jcumt.000301.

    YU M G, WAN S J, XU Y L, et al. Study on the overpressure of gas explosion in the pipeline affected by charged water mist [J]. Journal of China University of Mining & Technology, 2015, 44(2): 227–232, 261. DOI: 10.13247/j.cnki.jcumt.000301.
    [27] 魏春荣. 多孔材料对瓦斯爆炸抑制作用研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012: 84–105.

    WEI C R. Porous materials inhibition on gas explosion [D]. Harbin, Heilongjiang, China: Harbin Institute of Technology, 2012: 84–105.
    [28] 林柏泉. 瓦斯爆炸动力学特征参数的测定及其分析 [J]. 煤炭学报, 2002, 27(2): 164–167. DOI: 10.3321/j.issn:0253-9993.2002.02.011.

    LIN B Q. The measurement and analysis of dynamics feature parameter in gas explosion [J]. Journal of China Coal Society, 2002, 27(2): 164–167. DOI: 10.3321/j.issn:0253-9993.2002.02.011.
    [29] 魏春荣, 李晓光, 孙建华, 等. 多孔材料阻隔爆效果评估方法 [J]. 湖南科技大学学报(自然科学版), 2014, 29(4): 1–6. DOI: 10.13582/j.cnki.1672-9102.2014.04.001.

    WEI C R, LI X G, SUN J H, et al. Research on evaluation method of suppression and isolation of explosion based on porous material [J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2014, 29(4): 1–6. DOI: 10.13582/j.cnki.1672-9102.2014.04.001.
    [30] 魏春荣, 徐敏强, 王树桐, 等. 多孔材料抑制瓦斯爆炸火焰波的实验研究 [J]. 中国矿业大学学报, 2013, 42(2): 206–213. DOI: 10.13247/j.cnki.jcumt.2013.02.008.

    WEI C R, XU M Q, WANG S T, et al. Experiment of porous materials for suppressing the gas explosion flame wave [J]. Journal of China University of Mining and Technology, 2013, 42(2): 206–213. DOI: 10.13247/j.cnki.jcumt.2013.02.008.
    [31] 刘庆刚, 魏青, 韩伟信, 等. 基于有限元法的V型缺口平板应力集中系数研究 [J]. 河北工业科技, 2019, 36(4): 240–245. DOI: 10.7535/hbgykj.2019yx04003.

    LIU Q G, WEI Q, HAN W X, et al. Study of the stress concentration factors of a V-notched plate by using finite element method [J]. Hebei Journal of Industrial Science and Technology, 2019, 36(4): 240–245. DOI: 10.7535/hbgykj.2019yx04003.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  68
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-08-06
  • 网络出版日期:  2023-02-14
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回