模拟立式拱顶油罐内油气爆炸实验研究

蔡运雄 蒋新生 王世茂 余彬彬 王子拓 王春辉 李玉玺

蔡运雄, 蒋新生, 王世茂, 余彬彬, 王子拓, 王春辉, 李玉玺. 模拟立式拱顶油罐内油气爆炸实验研究[J]. 爆炸与冲击, 2022, 42(10): 105401. doi: 10.11883/bzycj-2022-0012
引用本文: 蔡运雄, 蒋新生, 王世茂, 余彬彬, 王子拓, 王春辉, 李玉玺. 模拟立式拱顶油罐内油气爆炸实验研究[J]. 爆炸与冲击, 2022, 42(10): 105401. doi: 10.11883/bzycj-2022-0012
CAI Yunxiong, JIANG Xinsheng, WANG Shimao, YU Binbin, WANG Zituo, WANG Chunhui, LI Yuxi. Experimental study of gasoline-air mixture explosion in imitated vertical dome oil tank[J]. Explosion And Shock Waves, 2022, 42(10): 105401. doi: 10.11883/bzycj-2022-0012
Citation: CAI Yunxiong, JIANG Xinsheng, WANG Shimao, YU Binbin, WANG Zituo, WANG Chunhui, LI Yuxi. Experimental study of gasoline-air mixture explosion in imitated vertical dome oil tank[J]. Explosion And Shock Waves, 2022, 42(10): 105401. doi: 10.11883/bzycj-2022-0012

模拟立式拱顶油罐内油气爆炸实验研究

doi: 10.11883/bzycj-2022-0012
基金项目: 国家重点研发计划(2018YFC0809502);国家自然科学基金(51574254);军委科技委基础加强计划重点基础研究项目(2019-JCJQ-198-04);重庆市研究生科研创新项目(CYB20201)
详细信息
    作者简介:

    蔡运雄(1995- ),男,博士研究生,yunxiongcai@outlook.com

    通讯作者:

    蒋新生(1972- ),男,博士,教授,jxs_dy@163.com

  • 中图分类号: O389; X932

Experimental study of gasoline-air mixture explosion in imitated vertical dome oil tank

  • 摘要: 为探究立式拱顶油罐内油气体积分数、点火位置和液位对爆炸超压特性参数与火焰发展的影响规律,开展了一系列的实验研究,得到以下结果:(1)1.7%是任一工况下的最危险油气体积分数,内场超压发展都可以分为超压上升、超压泄放和振荡衰减3个阶段。爆炸过程中CH、C2、OH等自由基的生成和空间分布,使得不同初始油气体积分数下或不同爆炸阶段的火焰呈现不同的颜色变化。(2)点火位置对油气爆炸超压特性参数的影响较大,位置越靠下,爆炸威力越大。罐底中心点火时,内外场平均升压速率取得最大值,分别为0.46和0.05 MPa/s。(3)液位变化对油气爆炸内外场超压的影响较大,油罐侧壁上部位置点火时,50%液位是最危险的液位。任意液位下外场超压随比例距离的增大都呈现幂指数衰减规律,不同液位下油气爆炸外场冲击波超压峰值与距离和油气混合物体积的关系可以用一个公式统一表示。相比于气相空间,液相空间的超压变化具有延后性、负压增强和振荡衰减更快的特点。
  • 图  1  实验系统

    Figure  1.  The experimental system

    图  2  模拟油罐测点分布图

    Figure  2.  Simulated tank measuring point distribution diagram

    图  3  模拟油罐油气爆炸内场测点超压时序曲线

    Figure  3.  The time history of overpressure measurement points in the field of gasoline-air mixture explosion in simulated tank

    图  4  内外场平均升压速率与初始油气体积分数的关系

    Figure  4.  Average overpressure rise rate in the internal and external fields at different initial volume fractions

    图  5  不同初始体积分数的油气爆炸火焰传播图像

    Figure  5.  Images of flame propagation of gasoline-air mixture explosion at different initial volume fractions

    图  6  不同点火位置油气爆炸罐内火焰传播图像

    Figure  6.  Images of flame propagation of gasoline-air mixture explosion inside the tank at different ignition locations

    图  7  75%液位油气爆炸内外场最大超压峰值与初始油气体积分数的关系

    Figure  7.  The maximum overpressure peak in the internal and external field of gasoline-air mixture explosion with different initial volume fraction at 75% liquid level

    图  8  100%液位油气爆炸内外场最大超压峰值与初始油气体积分数的关系

    Figure  8.  The maximum overpressure peak in the internal and external field of gasoline-air mixture explosion with different initial volume fraction at 100% liquid level

    图  9  油气爆炸内外场最大超压峰值与油气混合物体积的关系

    Figure  9.  Relationship between the maximum overpressure peak in the internal and external field of gasoline-air mixture explosion and the volume of gasoline-air mixture

    图  10  油罐外场最大超压峰值分布

    Figure  10.  Distribution of the maximum overpressure peak in the external field of the tank

    图  11  不同液位外场最大超压峰值与比例距离的关系

    Figure  11.  Relationship between the maximum overpressure inside the tank and the scaled distance at different liquid levels

    图  12  50%液位油罐油气爆炸内场测点超压时序曲线

    Figure  12.  Time series curve of overpressure inside tank of gasoline-air mixture explosion at 50% liquid level

    图  13  油气爆炸油罐内场压力传播图

    Figure  13.  Pressure propagation diagram of gasoline-air mixture explosion inside tank

    图  14  不同液位油气爆炸火焰传播图像

    Figure  14.  Images of flame propagation of gasoline-air mixture explosion at different liquid levels

    表  1  不同初始体积分数下的油气爆炸内场超压参数

    Table  1.   Internal field overpressure parameters of gasoline-air mixture explosion at different initial volume fractions

    φCH/%pin,max/kPatin,max/ms(dp/dt)in,ave/(MPa·s−1)
    0.920.372120.10
    1.126.711030.26
    1.427.02 700.39
    1.627.86 690.40
    1.731.59 680.46
    1.827.44 900.31
    2.024.671150.22
    2.322.981940.12
    2.620.264620.04
    下载: 导出CSV

    表  2  不同初始体积分数下油气爆炸罐内火焰强度最大峰值和形成时间

    Table  2.   Maximum peak flame intensity and time of formation in the tank at different initial volume fractions

    φCH/%Imax/mVtmax/ms
    0.9 14483
    1.1 69238
    1.4190175
    1.6137184
    1.7107188
    1.8 70238
    2.0 97313
    2.3162485
    2.6161798
    下载: 导出CSV

    表  3  不同点火位置的油气爆炸超压参数

    Table  3.   Overpressure parameters of gasoline-air mixture explosion at different ignition locations

    点火位置pin,max/kPatin,max/ms(dp/dt)in,ave/(MPa·s−1)pext,max /kPatext,max/ms(dp/dt)ext,ave/(MPa·s−1)
    上部点火21.91640.340.18 50.04
    中部点火22.60640.350.27 90.03
    下部点火26.22650.400.37120.03
    底部点火31.59680.470.53100.05
    下载: 导出CSV

    表  4  不同液位下不同初始体积分数油气爆炸内外场最大超压峰值

    Table  4.   The maximum overpressure peak in the internal and external field of gasoline-air mixture explosion with different initial volume fraction at different liquid levels

    φCH/%75%液位100%液位
    pin, max/kPapext, max /kPapin, max/kPapext, max /kPa
    0.919.700.1119.880.05
    1.120.950.1220.760.09
    1.422.940.1720.910.09
    1.623.290.1821.410.16
    1.724.020.2222.470.18
    1.823.890.2021.080.15
    2.022.390.1920.630.09
    2.322.550.1520.150.07
    2.619.950.1320.160.03
    下载: 导出CSV

    表  5  不同液位油气爆炸内场超压参数

    Table  5.   Overpressure parameters inside tank of gasoline-air mixture explosion at different liquid levels

    液位/%pin,max/kPatin,max/ms(dp/dt)in,ave/(MPa·s−1)
    021.91640.34
    2523.30630.37
    5025.40590.43
    7524.02560.43
    10022.47530.42
    下载: 导出CSV
  • [1] COZZANI V, ANTONIONI G, SPADONI G. Quantitative assessment of domino scenarios by a GIS-based software tool [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(5): 463–477. DOI: 10.1016/j.jlp.2005.11.007.
    [2] LANDUCCI G, GUBINELLI G, ANTONIONI G, et al. The assessment of the damage probability of storage tanks in domino events triggered by fire [J]. Accident Analysis & Prevention, 2009, 41(6): 1206–1215. DOI: 10.1016/j.aap.2008.05.006.
    [3] ATKINSON G, COLDRICK S, GANT S, et al. Flammable vapor cloud generation from overfilling tanks: learning the lessons from Buncefield [J]. Journal of Loss Prevention in the Process Industries, 2015, 35(5): 329–338. DOI: 10.1016/j.jlp.2014.11.011.
    [4] HERBERT I. The UK Buncefield incident–The view from a UK risk assessment engineer [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6): 913–920. DOI: 10.1016/j.jlp.2010.09.001.
    [5] RUI S, WANG C, LUO X, et al. Experimental study on the effects of ignition location and vent burst pressure on vented hydrogen-air deflagrations in a cubic vessel [J]. Fuel, 2020, 278(10): 118342. DOI: 10.1016/j.fuel.2020.118342.
    [6] LI P, HUANG P, LIU Z, et al. Experimental study on vented explosion overpressure of methane/air mixtures in manhole [J]. Journal of Hazardous Materials, 2019, 374(7): 349–355. DOI: 10.1016/j.jhazmat.2019.04.046.
    [7] 苏航, 蒋利桥, 曹海亮, 等. 微小空间内丙烷/空气火焰传播特性与加氢爆燃实验 [J]. 爆炸与冲击, 2018, 38(2): 381–389. DOI: 10.11883/bzycj-2016-0198.

    SU H, JIANG L Q, CAO H L, et al. Characteristics of propane/air flame propagation and propane/hydrogen/air detonation in a micro chamber [J]. Explosion and Shock Waves, 2018, 38(2): 381–389. DOI: 10.11883/bzycj-2016-0198.
    [8] 吴松林, 杜扬, 张培理, 等. 点火方式对受限空间油气爆燃规律的影响 [J]. 化工学报, 2016, 67(4): 1626–1632. DOI: 10.11949/j.issn.0438-1157.20150958.

    WU S L. DU Y, ZHANG P L, et al. Effect of ignition node on gasoline-air deflagration behavior in confined space [J]. Journal of Chemical Industry and Engineering, 2016, 67(4): 1626–1632. DOI: 10.11949/j.issn.0438-1157.20150958.
    [9] LI G Q, WU J, WANG S M, et al. Effects of gas concentration and obstacle location on overpressure and flame propagation characteristics of hydrocarbon fuel-air explosion in a semi-confined pipe [J]. Fuel, 2021, 285(9): 119268. DOI: 10.1016/j.fuel.2020.119268.
    [10] 李国庆, 杜扬, 齐圣, 等. 障碍物位置和油气浓度对油气泄压爆炸特性影响 [J]. 化工学报, 2018, 69(5): 2327–2336. DOI: 10.11949/j.issn.0438-1157.20171184.

    LI G Q, DU Y, QI S, et al. Effects of obstacle position and gas concentration on gasoline-air explosion venting [J]. CIESC Journal, 2018, 69(5): 2327–2336. DOI: 10.11949/j.issn.0438-1157.20171184.
    [11] WANG S M, YAN Z H, LI X D, et al. The venting explosion process of premixed fuel vapour and air in a half-open vessel: An analysis of the overpressure dynamic process and flame evolution behaviour [J]. Fuel, 2020, 268(5): 117508.
    [12] 李蒙, 杜扬, 李国庆, 等. 含90°直角弯管结构受限空间油气泄压爆炸实验与大涡模拟研究 [J]. 化工学报, 2018, 69(12): 5370–5378. DOI: 10.11949/j.issn.0438-1157.20180519.

    LI M, DU Y, LI G Q, et al. Experimental and large eddy simulation study on gasoline-air mixture explosions in semi-confined pipe with 90° right-angle bend [J]. CIESC Journal, 2018, 69(12): 5370–5378. DOI: 10.11949/j.issn.0438-1157.20180519.
    [13] 杜扬, 李蒙, 李国庆, 等. 含双侧分支结构受限空间油气泄压爆炸超压特性与火焰行为 [J]. 化工进展, 2018, 37(7): 2557–2564. DOI: 10.16085/j.issn.1000-6613.2017-2522.

    DU Y, LI M, LI G Q, et al. Effects of bilateral branches structure on characteristics of gasoline-air mixtures explosion overpressure and flame behavior in a semi-confined space [J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2557–2564. DOI: 10.16085/j.issn.1000-6613.2017-2522.
    [14] 杜扬, 王世茂, 袁广强, 等. 含弱约束端面短管道油气爆炸特性实验研究 [J]. 爆炸与冲击, 2018, 38(2): 465–472. DOI: 10.11883/bzycj-2015-0242.

    DU Y, WANG S M, YUAN G Q, et al. Experimental study of fuel-air mixture explosion characteristics in the short pipe containing weakly confined face at the end [J]. Explosion and Shock Waves, 2018, 38(2): 465–472. DOI: 10.11883/bzycj-2015-0242.
    [15] WANG S M, WU D J, GUO H, et al. Effects of concentration, temperature, ignition energy and relative humidity on the overpressure transients of fuel-air explosion in a medium-scale fuel tank [J]. Fuel, 2020, 259(1): 116265.1–116265.8. DOI: 10.1016/j.fuel.2019.116265.
    [16] CAI Y X, JIANG X S, WANG S M, et al. Experimental study on explosion overpressure and flame propagation characteristics of simulated vertical dome oil tank [J]. Journal of Loss Prevention in the Process Industries, 2022, 76: 104752. DOI: 10.1016/j.jlp.2022.104752.
    [17] 刘洪涛, 陈志莉, 胡潭高, 等. 油料池火焰红外光谱特性分析研究 [J]. 光谱学与光谱分析, 2016, 36(10): 3442–3448. DOI: 10.3964/j.issn.1000-0593(2016)10-3442-07.

    LIU H T, CHEN Z L, HU T G, et al. Analytic study on the characteristics of infrared spectrum of oil pool flame [J]. Spectroscopy and Spectral Analysis, 2016, 36(10): 3442–3448. DOI: 10.3964/j.issn.1000-0593(2016)10-3442-07.
    [18] 蒋新生, 徐建楠, 冯军, 等. 汽油着火初期光谱特征及燃烧动力学分析 [J]. 发光学报, 2018, 39(11): 1639–1645. DOI: 10.3788/fgxb20183911.1639.

    JIANG X S, XU J N, FENG J, et al. Flame spectral characteristics and analysis of combustion kinetics at initial stage of gasoline fire [J]. Chinese Journal of Luminescence, 2018, 39(11): 1639–1645. DOI: 10.3788/fgxb20183911.1639.
    [19] ZHANG P L, WANG J, LIANG J J, et al. Explosions of gasoline vapor/air mixture in closed vessels with different shapes and sizes [J]. Journal of Loss Prevention in the Process Industries, 2018, 57: 327–334. DOI: 10.1016/j.jlp.2018.12.010.
    [20] 段晓瑜, 崔庆忠, 郭学永, 等. 炸药在空气中爆炸冲击波的地面反射超压实验研究 [J]. 兵工学报, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013.

    DUAN X Y, CUI Q Z, GUO X Y, et al. Experimental investigation of ground reflected overpressure of shock wave in air blast [J]. Acta Armamentarii, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013.
    [21] ZHOU Z Q, NIE J X, OU Z C, et al. Effects of the aluminum content on the shock wave pressure and the acceleration ability of RDX-based aluminized explosives [J]. Journal of Applied Physics, 2014, 116(14): 113–33305. DOI: 10.1063/1.4897658.
    [22] DISIMILE P J, DAVIS J, TOY N. Mitigation of shock waves within a liquid filled tank [J]. International Journal of Impact Engineering, 2011, 38: 61–72. DOI: 10.1016/j.ijimpeng.2010.10.006.
    [23] 徐海斌, 张德志, 秦学军, 等. 炸药周围水层对空气冲击波反射超压影响的实验研究 [J]. 兵工学报, 2014, 35(7): 1027–1031. DOI: 10.3969/j.issn.1000-1093.2014.07.014.

    XU H B, ZHANG D Z, QIN X J, et al. An investigation on mitigation effect of water surrounding an explosive on reflected overpressure of shock wave [J]. Acta Armamentarii, 2014, 35(7): 1027–1031. DOI: 10.3969/j.issn.1000-1093.2014.07.014.
    [24] 杨亚东, 李向东, 王晓鸣. 长方体密闭结构内爆炸冲击波传播与叠加分析模型 [J]. 兵工学报, 2016, 37(8): 1449–1455. DOI: 10.3969/j.issn.1000-1093.2016.08.016.

    YANG Y D, LI X D, WANG X M. An analytical model for propagation and superposition of internal explosion shockwaves in closed cuboid structure [J]. Acta Armamentarii, 2016, 37(8): 1449–1455. DOI: 10.3969/j.issn.1000-1093.2016.08.016.
    [25] 刘小龙, 黄建国, 雷开卓. 水下等离子体声源的冲击波负压特性 [J]. 物理学报, 2013, 62(20): 1–7. DOI: 10.7498/aps.62.204301.

    LIU X L, HUANG J G, LEI K Z. Shock wave negative pressure characteristics of underwater plasma sound source [J]. Acta Physica Sinica, 2013, 62(20): 1–7. DOI: 10.7498/aps.62.204301.
    [26] 陈先锋. 丙烷—空气预混火焰微观结构及加速传播过程中的动力学研究[D]. 合肥: 中国科学技术大学, 2007.

    CHEN X F. Study on fine flame structure behavior and flame accelerating mechanism of premixed propane-air[D]. Hefei: University of Science and Technology China, 2007.
    [27] WU F, JOMAAS G, LAW C K. An experimental investigation on self-acceleration of cellular spherical flames [J]. Proceedings of the Combustion Institute, 2013, 34(1): 937–945. DOI: 10.1016/j.proci.2012.05.068.
    [28] WEI S, YU M, PEI B, et al. Suppression of CO2 and H2O on the cellular instability of premixed methane/air flame [J]. Fuel, 2020, 264(9): 116862. DOI: 10.1016/j.fuel.2019.116862.
    [29] XIAO H H, MAKAROV D, SUN J, et al. Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct [J]. Combustion and Flame, 2012, 159(4): 1523–38. DOI: 10.1016/j.combustflame.2011.12.003.
    [30] LI Y C, BI M, GAO W. Theoretical pressure prediction of confined hydrogen explosion considering flame instabilities [J]. Journal of Loss Prevention in the Process Industries, 2019, 57(1): 320–326. DOI: 10.1016/j.jlp.2019.01.001.
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  494
  • HTML全文浏览量:  147
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-03-03
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回