高压气体驱动二级轻气炮发射过程的数值模拟方法及应用

陈履坦 何起光 陈小伟

陈履坦, 何起光, 陈小伟. 高压气体驱动二级轻气炮发射过程的数值模拟方法及应用[J]. 爆炸与冲击, 2022, 42(12): 124201. doi: 10.11883/bzycj-2022-0054
引用本文: 陈履坦, 何起光, 陈小伟. 高压气体驱动二级轻气炮发射过程的数值模拟方法及应用[J]. 爆炸与冲击, 2022, 42(12): 124201. doi: 10.11883/bzycj-2022-0054
CHEN Lütan, HE Qiguang, CHEN Xiaowei. Numerical modeling on the launch process of a two-stage light gas gun using high-pressure gas as the driving source[J]. Explosion And Shock Waves, 2022, 42(12): 124201. doi: 10.11883/bzycj-2022-0054
Citation: CHEN Lütan, HE Qiguang, CHEN Xiaowei. Numerical modeling on the launch process of a two-stage light gas gun using high-pressure gas as the driving source[J]. Explosion And Shock Waves, 2022, 42(12): 124201. doi: 10.11883/bzycj-2022-0054

高压气体驱动二级轻气炮发射过程的数值模拟方法及应用

doi: 10.11883/bzycj-2022-0054
基金项目: 国家自然科学基金(11627901)
详细信息
    作者简介:

    陈履坦(1996- ),男,博士研究生,3120205137@bit.edu.cn

    通讯作者:

    陈小伟(1967- ),男,博士,教授,chenxiaoweintu@bit.edu.cn

  • 中图分类号: O313.4

Numerical modeling on the launch process of a two-stage light gas gun using high-pressure gas as the driving source

  • 摘要: 二级轻气炮是一种常见的超高速发射装置,多年来其数值研究大多采用简化一维模型,鲜有三维有限元模型。以14 mm口径高压气体驱动二级轻气炮为研究对象,采用耦合欧拉-拉格朗日(coupled Eulerian-Lagrangian, CEL)算法,根据膜片破裂与否,将二级轻气炮模型解耦为2个分级三维数值模型。为确定实验难以测得的参数(材料摩擦因数和膜片破膜压力),设计正交试验,拟合确定活塞与泵管间摩擦因数为0.82,弹丸与发射管摩擦因数为0.30和膜片破膜压力为11.73 MPa。正交结果表明,摩擦因数对计算结果影响较大,在高压气体驱动二级轻气炮的计算中不应忽略。通过上述方法建立数字化高压气体驱动二级轻气炮,完整复现气炮发射过程,计算的弹丸终速与实验结果吻合度高。选取验证工况详细分析了气炮发射过程内流场变化,并呈现关键时刻的压力云图。该气炮简化方法、分级思想和关键参数确认方法可推广应用于固体发射药驱动、爆轰驱动等其他驱动形式的二级/多级轻气炮。
  • 图  1  14 mm口径高压气体驱动二级轻气炮示意图

    Figure  1.  Schematics of a 14-mm-caliber two-stage light gas gun based on high-pressure gas driving

    图  2  14 mm口径高压气体驱动二级轻气炮二维模型

    Figure  2.  Two-dimensional models for the 14-mm-caliber two-stage light gas gun

    图  3  气炮模型

    Figure  3.  Light-gas gun models

    图  4  活塞模型

    Figure  4.  The piston model

    图  5  弹丸模型

    Figure  5.  The projectile model

    图  6  0~7.50 ms活塞前后压力云图

    Figure  6.  Pressure nephograms around the piston at 0−7.50 ms

    图  7  泵管和锥段35.30~37.70 ms压力云图

    Figure  7.  Pressure nephograms in the pump tube and the tapered section at 35.30−37.70 ms

    图  8  活塞的速度/位移-时间曲线

    Figure  8.  Velocity- and displacement-time curves of the piston

    图  9  膜片处的压力-时间曲线

    Figure  9.  Pressure-time curve at the diaphragm

    图  10  二级模型0~1.95 ms的压力云图

    Figure  10.  Pressure nephograms of the second-stage model at 0−1.95 ms

    图  11  活塞的速度和位移时间里程曲线

    Figure  11.  Velocity- and displacement-time curves of the piston

    图  12  弹丸尾部2.20~3.20 ms的压力云图

    Figure  12.  Pressure nephograms at the tail of the projectile at 2.20-3.20 ms

    图  13  弹丸时间-速度/弹尾压力曲线

    Figure  13.  Pressure-time curve at the tail of the projectile and velocity-time curve of the projectile

    图  14  等分均布观测点和弹丸弹尾的压力变化对比

    Figure  14.  Comparison of pressure changes between the evenly-distributed observation points and the projectile tail

    图  15  0~39.10 ms锥段气体温度曲线

    Figure  15.  Temperature-time curve of the gas in the tapered section at 0−39.10 ms

    图  16  36.90~37.70 ms锥段瞬态温度场

    Figure  16.  Transient temperature fields in the tapered section at 36.90−37.70 ms

    表  1  14 mm口径高压气体驱动二级轻气炮几何参数

    Table  1.   The geometrical parameters of the 14-mm-caliber two-stage light-gas gun

    部件长度/mm内径/mm入锥角度/(°)
    高压气室72090
    泵管1182060
    发射管660014
    锥段32014~604.5
    下载: 导出CSV

    表  2  14 mm高压气体驱动二级轻气炮的实验参数

    Table  2.   Experimental parameters of the 14-mm-caliber two-stage light-gas gun

    实验高压气室初始压力/MPa泵管初始压力/MPa活塞质量/g弹丸质量/g膜片厚度/mm弹丸终速/(m·s−1
    115.70.0417331.510.43 846
    222.10.0457331.550.44 155
    321.70.0477332.430.43 571
    下载: 导出CSV

    表  3  Johnson-Cook模型材料参数[20-21]

    Table  3.   Material parameters for the Johnson-Cook model[20-21]

    材料密度/(kg·m−3泊松比杨氏模量/GPa初始屈服应力/MPa硬化常数/MPa应变硬化指数温度系数熔化温度/K
    4340不锈钢79000.33200280802.50.62211673
    27900.3373.13696840.341.71000
    下载: 导出CSV

    表  4  气体材料参数

    Table  4.   Material parameters for gases

    气体R/(J·(mol·K)−1环境压力/Pa比定容热容/(J·(kg·K)−1
    氦气207703116
    氮气298.30743
    下载: 导出CSV

    表  5  正交试验的因素及水平

    Table  5.   Factors and levels of orthogonal tests

    水平μ1μ2p/MPa
    10.30.110
    20.50.220
    30.70.330
    40.90.440
    下载: 导出CSV

    表  6  正交工况及弹丸终速

    Table  6.   The orthogonal cases as well as the final velocities of projectiles

    计算工况μ1μ2p/MPav/(m·s−1计算工况μ1μ2p/MPav/(m·s−1
    试验1试验2试验3试验1试验2试验3
    10.30.110451748354183 90.70.130364544284597
    20.30.220475149594243100.70.240423042794622
    30.30.330479751944142110.70.310356840363396
    40.30.440478250394180120.70.420346940193264
    50.50.120445343964184130.90.140458147553842
    60.50.210408142903611140.90.230441245504030
    70.50.340399743753887150.90.320423244513786
    80.50.430419740293720160.90.410384038433742
    下载: 导出CSV

    表  7  正交试验结果分析

    Table  7.   Analysis of orthogonal test results

    v/(m·s−1试验 1 试验 2 试验 3
    μ1μ2pμ1μ2pμ1μ2p
    k14711.754299.004001.50 5006.754603.504251.00 4187.004201.503688.50
    k24182.004368.504226.254272.504519.504456.253850.504126.503869.25
    k33728.004148.504262.754190.504514.004550.253969.753802.754122.25
    k44266.254072.004397.504399.754232.504384.003805.503682.004132.75
    R983.75296.50396.00816.25371.00299.25 381.50519.50444.25
    下载: 导出CSV

    表  8  观测点的参数及波阵面平均速度

    Table  8.   Parameters for observation points and mean wavefront velocities at observation points

    观测点S/mΔS/mt/msΔt/msc/(m·s−1)观测点S/mΔS/mt/msΔt/msc/(m·s−1)
    000 63.2600.6502.350.203250
    10.0180.0180.050.0536073.9000.6402.500.154267
    20.6700.6521.401.3548384.5500.6502.650.154333
    31.3100.6401.750.35182995.2000.6502.800.154333
    41.9600.6501.950.203250105.8500.6503.000.203250
    52.6100.6502.150.203250116.4900.6403.150.154267
    下载: 导出CSV
  • [1] 龚自正, 杨继运, 张文兵, 等. 航天器空间碎片超高速撞击防护的若干问题 [J]. 航天器环境工程, 2007, 24(3): 125–130. DOI: 10.3969/j.issn.1673-1379.2007.03.001.

    GONG Z Z, YANG J Y, ZHANG W B, et al. Spacecraft protection from the hypervelocity impact of space meteoroid and orbital debris [J]. Spacecraft Environment Engineering, 2007, 24(3): 125–130. DOI: 10.3969/j.issn.1673-1379.2007.03.001.
    [2] BARKER L M, CHHABILDAS L C, TRUCANO T G, et al. High gas pressure acceleration of flier plates-experimental techniques [J]. International Journal of Impact Engineering, 1990, 10(1/2/3/4): 67–80. DOI: 10.1016/0734-743X(90)90049-2.
    [3] NONAKA S, TAKAYAMA K, KIBE S. Hypervelocity impact tests with bumper-walled structure against space debris [C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA: AIAA, 1998: 800. DOI: 10.2514/6.1998-800.
    [4] 刘海明. 二级轻气炮内弹道过程计算机仿真 [D]. 南京: 南京理工大学, 2006.

    LIU H M. Computer emulation of interior ballistics process of two-stage light gas gun [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology, 2006.
    [5] 杨继运. 二级轻气炮模拟空间碎片超高速碰撞试验技术 [J]. 航天器环境工程, 2006, 23(1): 16–22. DOI: 10.3969/j.issn.1673-1379.2006.01.003.

    YANG J Y. Simulation of space debris hypervelocity impact using two stage light gas gun [J]. Spacecraft Environment Engineering, 2006, 23(1): 16–22. DOI: 10.3969/j.issn.1673-1379.2006.01.003.
    [6] 张向荣, 朱玉荣, 林俊德, 等. 压缩氮气驱动的高速气炮实验技术 [J]. 航天器环境工程, 2015, 32(4): 343–348. DOI: 10.3969/j.issn.1673-1379.2015.04.001.

    ZHANG X R, ZHU Y R, LIN J D, et al. Experimental technique of high velocity gas gun driven by compressed nitrogen [J]. Spacecraft Environment Engineering, 2015, 32(4): 343–348. DOI: 10.3969/j.issn.1673-1379.2015.04.001.
    [7] ANGRILLI F, PAVARIN D, DE CECCO M, et al. Impact facility based upon high frequency two-stage light-gas gun [J]. Acta Astronautica, 2003, 53(3): 185–189. DOI: 10.1016/S0094-5765(02)00207-2.
    [8] 董石, 孟川民, 肖元陆, 等. 反应气体驱动二级轻气炮技术的初步研究 [J]. 高压物理学报, 2017, 31(2): 182–186. DOI: 10.11858/gywlxb.2017.02.011.

    DONG S, MENG C M, XIAO Y L, et al. Preliminary study of two-stage light gas gun using reactive gas as driving energy [J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 182–186. DOI: 10.11858/gywlxb.2017.02.011.
    [9] TANG W Q, WANG Q, WEI B C, et al. Performance and modeling of a two-stage light gas gun driven by gaseous detonation [J]. Applied Sciences, 2020, 10(12): 4383. DOI: 10.3390/app10124383.
    [10] 张德志, 唐润棣, 林俊德, 等. 新型气体驱动二级轻气炮研制 [J]. 兵工学报, 2004, 25(1): 14–18. DOI: 10.3321/j.issn:1000-1093.2004.01.004.

    ZHANG D Z, TANG R D, LIN J D, et al. Development of a new type gas-driven two-stage light gas gun [J]. Acta Armamentarii, 2004, 25(1): 14–18. DOI: 10.3321/j.issn:1000-1093.2004.01.004.
    [11] 尚甲豪, 邢好运, 汪球, 等. 气相爆轰驱动二级轻气炮内弹道数值模拟 [J]. 力学学报, 2022, 54(3): 810–821. DOI: 10.6052/0459-1879-21-437.

    SHANG J H, XING H Y, WANG Q, et al. Numerical research on interior ballistics of the two-stage light gas gun driven by gaseous detonation [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 810–821. DOI: 10.6052/0459-1879-21-437.
    [12] 林俊德. 非火药驱动的二级轻气炮的发射参数分析 [J]. 爆炸与冲击, 1995, 15(3): 229–240.

    LIN J D. A analysis of launching parameters for a two stage lioht gas gun not driven by powder [J]. Explosion and Shock Waves, 1995, 15(3): 229–240.
    [13] SEIGEL A E. The theory of high speed guns [R]. Paris, France: Advisory Group for Aerospace Research and Development, 1965.
    [14] GROTH C P T, GOTTLIEB J J. Numerical study of two-stage light-gas hypervelocity projectile launchers: UTIAS Report, No. 327 [R]. Toronto, Canada: University of Toronto, 1988.
    [15] PIACESI R, GATES D F, SEIGEL A E. Computer analysis of two-stage hypervelocity model launchers [R]. White Oak, Maryland, USA: Naval Ordnance Laboratory, 1963. DOI: 10.21236/ad0408675.
    [16] 胡天翔, 张庆明, 薛一江, 等. 初始条件对氢氧爆轰气体炮内弹道性能的影响规律 [J]. 高压物理学报, 2021, 35(6): 063301. DOI: 10.11858/gywlxb.20210779.

    HU T X, ZHANG Q M, XUE Y J, et al. Influence of initial conditions on the interior ballistic performance of hydrogen-oxygen detonation gas gun [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 063301. DOI: 10.11858/gywlxb.20210779.
    [17] NOH W F. CEL: a time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code [R]. Livermore, USA: Lawrence Radiation Laboratory, 1963.
    [18] 黄洁, 梁世昌, 李海燕, 等. 二级轻气炮发射过程内弹道数值计算研究 [J]. 空气动力学学报, 2013, 31(5): 657–661. DOI: 10.7638/kqdlxxb-2012.0055.

    HUANG J, LIANG S C, LI H Y, et al. Numerical research on interior ballistics of the launch process of two-stage light gas gun [J]. Acta Aerodynamica Sinica, 2013, 31(5): 657–661. DOI: 10.7638/kqdlxxb-2012.0055.
    [19] SYONO Y, GOTO T. A two-stage light gas gun for shock wave research [J]. The Science Reports of the Research Institutes, Tohoku University, Serial A:Physics, Chemistry and Metallurgy, 1980, 29: 17–31.
    [20] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering fracture mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [21] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and hightemperatures [C]//The Seventh International Symposium on Ballistics. The Hague, Netherlands, 1983.
    [22] Grassia L, DAMORE A, SIMON S L. On the viscoelastic Poisson’s ratio in amorphous polymers [J]. Journal of Rheology, 2010, 54(5): 1009–1022. DOI: 10.1122/1.3473811.
    [23] SPAN R, LEMMON E W, JACOBSEN R T, et al. A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa [J]. Journal of Physical and Chemical Reference Data, 2000, 29(6): 1361–1433. DOI: 10.1063/1.1349047.
    [24] MCCARTY R D, ARP V D. A new wide range equation of state for helium [M]//FAST R W. Advances in Cryogenic Engineering. Boston, USA: Springer, 1990: 1465–1475.
    [25] ANGRILLI F, DE CECCO M, PAVARIN D. Diagnostic procedure for two-stage light gas gun pellet injector by means of numerical analysis [J]. Fusion Technology, 1998, 34(3P2): 430–434. DOI: 10.13182/FST98-A11963651.
  • 加载中
图(16) / 表(8)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  134
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-17
  • 修回日期:  2022-08-30
  • 网络出版日期:  2022-10-27
  • 刊出日期:  2022-12-08

目录

    /

    返回文章
    返回