基于SPH-FEM耦合方法的柔性导爆索分离装置爆炸分离过程数值模拟

史腾达 陈福振 严红 刘虎

史腾达, 陈福振, 严红, 刘虎. 基于SPH-FEM耦合方法的柔性导爆索分离装置爆炸分离过程数值模拟[J]. 爆炸与冲击, 2022, 42(11): 112201. doi: 10.11883/bzycj-2022-0062
引用本文: 史腾达, 陈福振, 严红, 刘虎. 基于SPH-FEM耦合方法的柔性导爆索分离装置爆炸分离过程数值模拟[J]. 爆炸与冲击, 2022, 42(11): 112201. doi: 10.11883/bzycj-2022-0062
SHI Tengda, CHEN Fuzhen, YAN Hong, LIU Hu. Numerical simulation of explosive separation of mild detonating fuse based on coupling algorithm of smoothed particle hydrodynamics with finite element method[J]. Explosion And Shock Waves, 2022, 42(11): 112201. doi: 10.11883/bzycj-2022-0062
Citation: SHI Tengda, CHEN Fuzhen, YAN Hong, LIU Hu. Numerical simulation of explosive separation of mild detonating fuse based on coupling algorithm of smoothed particle hydrodynamics with finite element method[J]. Explosion And Shock Waves, 2022, 42(11): 112201. doi: 10.11883/bzycj-2022-0062

基于SPH-FEM耦合方法的柔性导爆索分离装置爆炸分离过程数值模拟

doi: 10.11883/bzycj-2022-0062
基金项目: 国防基础科研计划(JCKY2019607B001);国家自然科学基金(11902267);江苏省自然科学基金(BK20201203)
详细信息
    作者简介:

    史腾达(1997- ),男,硕士研究生,942568997@qq.com

    通讯作者:

    陈福振(1986- ),男,博士,副教授,chenfuzhen@nwpu.edu.cn

  • 中图分类号: O383

Numerical simulation of explosive separation of mild detonating fuse based on coupling algorithm of smoothed particle hydrodynamics with finite element method

  • 摘要: 为深入研究柔性导爆索在爆炸分离装置中的作用过程和机理,提出一种改进的光滑粒子流体动力学方法(smoothed particle hydrodynamics, SPH)与有限单元法( finite element method, FEM)耦合算法。新方法中不仅包含导爆索模拟的SPH方法与分离装置模拟的FEM方法之间的接触算法,同时将完全损伤失效后的单元采用转化算法动态转化成SPH粒子继续参与计算,转化后的粒子与未转化的有限单元之间采用接触算法计算。采用该方法对环型和平板型两种爆炸分离结构的分离过程进行了数值模拟,验证了新方法的准确性与问题适用性;分析了分离板的变形断裂及损伤碎片的飞溅过程,得到了分离装置表面不同时刻的应力分布、损伤因子的变化趋势、von Mises应力的变化趋势;探讨了炸药在不同比内能情况下单元的屈服损伤速度、碎片的飞溅位移速度。
  • 图  1  SPH粒子与有限单元接触

    Figure  1.  Contact between SPH particles and finite element

    图  2  有限单元转化为SPH粒子

    Figure  2.  Conversion of a finite element to SPH particles

    图  3  SPH-FEM耦合算法流程

    Figure  3.  Flow chart of SPH-FEM coupling algorithm

    图  4  平板型分离实验装置及模型

    Figure  4.  Plate-type separation experimental device and model

    图  5  分离装置和炸药的离散模型

    Figure  5.  Discrete models of separation device and explosive

    图  6  计算和实验的断裂弯曲形貌对比

    Figure  6.  Comparison of calculated and experimental bending fracture morphology

    图  7  断裂弯曲曲线对比

    Figure  7.  Comparison of fracture bending curves

    图  8  计算和实验的碎片位移曲线对比

    Figure  8.  Comparison of calculated and experimental fragment displacement curves

    图  9  不同时刻装置保护罩正应力分布

    Figure  9.  Normal stress distribution of protective cover at different times

    图  10  损伤因子随时间变化的曲线

    Figure  10.  Variation curves of damage factor with time

    图  11  位置D处von Mises应力随时间变化的曲线

    Figure  11.  Variation curve of von Mises stress at position D with time

    图  12  分离装置和炸药粒子的离散模型

    Figure  12.  Discrete models of separation device and explosive particle

    图  13  碎片位移曲线图对比

    Figure  13.  Comparison of fragment displacement curves

    图  14  不同时刻装置正应力分布

    Figure  14.  Normal stress distribution of device at different times

    图  15  损伤因子随时间变化曲线

    Figure  15.  Variation curves of damage factor with time

    图  16  位置H处的von Mises应力随时间变化的曲线

    Figure  16.  Variation curve of von Mises stress at position H with time

    表  1  炸药的JWL状态方程参数

    Table  1.   Parameters of JWL equation of state for explosives

    工况材料装药密度/(kg·m−3爆速/(m·s−1A/GPaB/GPaR1R2w比内能/(kJ·kg−1
    1RDX15008611611.3010.654.401.200.325450
    2HL1517508611972.2738.235.251.730.4810000
    3195086111172.2740.235.251.730.4815000
    注:工况3的材料是人为添加的,旨在预测之后出现的更大含能材料。
    下载: 导出CSV

    表  2  分离装置的参数

    Table  2.   Parameters of separation device

    材料密度/(kg·m−3弹性模量/GPaμA/MPa B/MPaCn
    78502000.335251010.17390.081
    mD1D2D3D4D5g0/s−1T0/KTm/KCp/(J·kg−1·K−1
    0.0813001.7320.54−0.012300.00053001800452
    下载: 导出CSV
  • [1] 文学军. 线式爆炸分离碎片飞散安全性研究 [D]. 长沙: 国防科学技术大学, 2016.

    WEN X J. Separation security of fragments during linear explosive separation process [D]. Changsha: National University of Defense Technology, 2016.
    [2] 曹雷. 爆炸分离过程中保护罩结构能量分配及损伤特性研究 [D]. 长沙: 国防科学技术大学, 2016.

    CAO L. Study on energy distribution and damage property of protecting retainer during explosion separation [D]. Changsha: National University of Defense Technology, 2016.
    [3] 吴艳萍, 魏华男, 薛润华, 等. 柔性多点同步起爆装置设计与试验研究 [J]. 火工品, 2022(3): 14–17. DOI: 10.3969/j.issn.1003-1480.2022.03.004.

    WU Y P, WEI H N, XUE R H, et al. Design and experimental study of flexible multipoint synchronous initiation device [J]. Initiators & Pyrotechnics, 2022(3): 14–17. DOI: 10.3969/j.issn.1003-1480.2022.03.004.
    [4] 赵凯, 朱顺官, 张琳, 等. SY装药柔爆索的爆轰特性研究 [J]. 火工品, 2015(6): 10–13. DOI: 10.3969/j.issn.1003-1480.2015.06.003.

    ZHAO K, ZHU S G, ZHANG L, et al. Study on detonation characteristic of SY mild detonating cord [J]. Initiators & Pyrotechnics, 2015(6): 10–13. DOI: 10.3969/j.issn.1003-1480.2015.06.003.
    [5] 范新中, 苏晗, 杨小龙, 等. 一种航天线性分离装置装药量可靠性设计及可靠性评定方法 [J]. 导弹与航天运载技术, 2013(5): 63–65. DOI: 10.7654/j.issn.1004-7182.20130515.

    FAN X Z, SU H, YANG X L, et al. A reliability design and evaluation method for charge weight of aerospace linear separation devices [J]. Missiles and Space Vehicles, 2013(5): 63–65. DOI: 10.7654/j.issn.1004-7182.20130515.
    [6] 陈敏, 隋允康, 阳志光. 宇航火工分离装置爆炸分离数值模拟 [J]. 火工品, 2007, 16(5): 5–8. DOI: 10.3969/j.issn.1003-1480.2007.05.002.

    CHEN M, SUI Y K, YANG Z G. Numerical simulation of exploding separation for aerospace pyrotechnical actuated separation device [J]. Initiators & Pyrotechnics, 2007, 16(5): 5–8. DOI: 10.3969/j.issn.1003-1480.2007.05.002.
    [7] 王瑞峰, 卢芳云, 阳志光, 等. 保护罩破坏机理的分析及改进设计 [J]. 导弹与航天运载技术, 2007, 27(4): 17–20. DOI: 10.3969/j.issn.1004-7182.2007.04.005.

    WANG R F, LU F Y, YANG Z G, et al. Investigation on fracture mechanism of a retainer and its improvement design [J]. Missiles and Space Vehicles, 2007, 27(4): 17–20. DOI: 10.3969/j.issn.1004-7182.2007.04.005.
    [8] 宋保永, 卢红立, 阳志光, 等. 分离结构在冲击载荷作用下的破坏机理研究 [J]. 兵工学报, 2009, 30(S2): 102–106.

    SONG B Y, LU H L, YANG Z G, et al. Studies on fracture mechanism of explosive separation device subjected to impact loads [J]. Acta Armamentarii, 2009, 30(S2): 102–106.
    [9] 卢红立, 靳佳波, 侯金瑛, 等. 爆炸载荷作用下玻璃钢防护结构破坏分析 [J]. 兵工学报, 2016, 37(S1): 109–113.

    LU H L, JIN J B, HOU J Y, et al. Research on failure of fiberglass protective structure under explosive load [J]. Acta Armamentarii, 2016, 37(S1): 109–113.
    [10] 戈庆明, 渠弘毅, 王寅虎, 等. 柔性导爆索切割过程仿真及试验研究 [J]. 导弹与航天运载技术, 2020(6): 23–26. DOI: 10.7654/j.issn.1004-7182.20200605.

    GE Q M, QU H Y, WANG Y H, et al. Simulation and experiment of cutting ability of mild detonating fuse [J]. Missiles and Space Vehicles, 2020(6): 23–26. DOI: 10.7654/j.issn.1004-7182.20200605.
    [11] 王维国, 陈育民, 刘汉龙, 等. 基于SPH-FEM耦合法的土体爆炸效应数值研究 [J]. 岩土力学, 2013, 34(7): 2104–2110. DOI: 10.16285/j.rsm.2013.07.015.

    WANG W G, CHEN Y M, LIU H L, et al. Numerical simulation of explosion in soil based on a coupled SPH-FEM algorithm [J]. Rock and Soil Mechanics, 2013, 34(7): 2104–2110. DOI: 10.16285/j.rsm.2013.07.015.
    [12] WANG W, WU Y J, WU H, et al. Numerical analysis of dynamic compaction using FEM-SPH coupling method [J]. Soil Dynamics and Earthquake Engineering, 2021, 140: 106420. DOI: 10.1016/j.soildyn.2020.106420.
    [13] ZHONG H Q, LYU L, YU Z X, et al. Study on mechanical behavior of rockfall impacts on a shed slab based on experiment and SPH-FEM coupled method [J]. Structures, 2021, 33: 1283–1298. DOI: 10.1016/j.istruc.2021.05.021.
    [14] CHUZEL-MARMOT Y, ORTIZ R, Combescure A. Three dimensional SPH-FEM gluing for simulation of fast impacts on concrete slabs [J]. Computers & Structures, 2011, 89(23/24): 2484–2494. DOI: 10.1016/j.compstruc.2011.06.002.
    [15] 初文华, 张阿漫, 明付仁, 等. SPH-FEM耦合算法在爆炸螺栓解锁分离过程中的应用 [J]. 振动与冲击, 2012, 31(23): 197–202. DOI: 10.3969/j.issn.1000-3835.2012.23.036.

    CHU W H, ZHANG A M, MING F R, et al. Application of three-dimensional SPH-FEM coupling method in unlocking process of an explosion bolt [J]. Journal of Vibration and Shock, 2012, 31(23): 197–202. DOI: 10.3969/j.issn.1000-3835.2012.23.036.
    [16] 肖毅华, 胡德安, 韩旭, 等. 一种自适应轴对称FEM-SPH耦合算法及其在高速冲击模拟中的应用 [J]. 爆炸与冲击, 2012, 32(4): 384–392. DOI: 10.11883/1001-1455(2012)04-0384-09.

    XIAO Y H, HU D A, HAN X, et al. An adaptive axisymmetric FEM-SPH coupling algorithm and its application to high velocity impact simulation [J]. Explosion and Shock Waves, 2012, 32(4): 384–392. DOI: 10.11883/1001-1455(2012)04-0384-09.
    [17] 张志春, 强洪夫, 高巍然. 一种新型SPH-FEM耦合算法及其在冲击动力学问题中的应用 [J]. 爆炸与冲击, 2011, 31(3): 243–249. DOI: 10.11883/1001-1455(2011)03-0243-07.

    ZHANG Z C, QIANG H F, GAO W R. A new coupled SPH-FEM algorithm and its application to impact dynamics [J]. Explosion and Shock Waves, 2011, 31(3): 243–249. DOI: 10.11883/1001-1455(2011)03-0243-07.
    [18] 林晓东, 卢义玉, 汤积仁, 等. 基于SPH-FEM耦合算法的磨料水射流破岩数值模拟 [J]. 振动与冲击, 2014, 33(18): 170–176. DOI: 10.13465/j.cnki.jvs.2014.18.028.

    LIN X D, LU Y Y, TANG J R, et al. Numerical simulation of abrasive water jet breaking rock with SPH-FEM coupling algorithm [J]. Journal of Vibration and Shock, 2014, 33(18): 170–176. DOI: 10.13465/j.cnki.jvs.2014.18.028.
    [19] 胡英国, 卢文波, 陈明, 等. SPH-FEM耦合爆破损伤分析方法的实现与验证 [J]. 岩石力学与工程学报, 2015, 34(S1): 2740–2748. DOI: 10.13722/j.cnki.jrme.2014.0104.

    HU Y G, LU W B, CHEN M, et al. Implementation and verification of SPH-FEM coupling blasting damage analytical method [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2740–2748. DOI: 10.13722/j.cnki.jrme.2014.0104.
    [20] 米建宇, 黄飞, 李树清, 等. 基于SPH-FEM耦合算法的后混合磨料水射流冲击破岩数值模拟研究 [J]. 振动与冲击, 2021, 40(16): 132–139. DOI: 10.13465/j.cnki.jvs.2021.16.017.

    MI J Y, HUANG F, LI S Q, et al. Numerical simulation of rock breaking by rear-mixed abrasive water jet based on an SPH-FEM coupling algorithm [J]. Journal of Vibration and Shock, 2021, 40(16): 132–139. DOI: 10.13465/j.cnki.jvs.2021.16.017.
    [21] 方天成, 任福深, 刘汉旭, 等. 粒子浆液射流冲击下岩石动态损伤及破坏效应 [J]. 振动与冲击, 2021, 40(24): 107–118. DOI: 10.13465/j.cnki.jvs.2021.24.014.

    FANG T C, REN F S, LIU H X, et al. Dynamical response and failure effect of rock with particle slurry jet impact [J]. Journal of Vibration and Shock, 2021, 40(24): 107–118. DOI: 10.13465/j.cnki.jvs.2021.24.014.
    [22] 程兵, 汪海波, 宗琦. 基于SPH-FEM耦合法切缝药包爆破机理数值模拟 [J]. 含能材料, 2020, 28(4): 300–307. DOI: 10.11943/CJEM2018363.

    CHENG B, WANG H B, ZONG Q. Numerical simulation on blasting mechanism of slotted cartridge based on coupled SPH-FEM Algorithm [J]. Chinese Journal of Energetic Materials, 2020, 28(4): 300–307. DOI: 10.11943/CJEM2018363.
    [23] 刘赛, 张伟贵, 吕振华. 穿甲燃烧弹侵彻陶瓷复合装甲和玻璃复合装甲的FEM-SPH耦合计算模型 [J]. 爆炸与冲击, 2021, 41(1): 102–113. DOI: 10.11883/bzycj-2020-0069.

    LIU S, ZHANG W G, LYU Z H. An FEM-SPH coupled model for simulating penetration of armor-piercing bullets into ceramic composite armors and glass composite armors [J]. Explosion and Shock Waves, 2021, 41(1): 102–113. DOI: 10.11883/bzycj-2020-0069.
    [24] KARMAKAR S, SHAW A. Response of R. C. plates under blast loading using FEM-SPH coupled method [J]. Engineering Failure Analysis, 2021, 125: 105409. DOI: 10.1016/j.engfailanal.2021.105409.
    [25] BØRVIK T, LANGSETH M, HOPPERSTAD O S, et al. Ballistic penetration of steel plates [J]. International Journal of Impact Engineering, 1999, 22(9/10): 855–886. DOI: 10.1016/S0734-743X(99)00011-1.
    [26] 强洪夫. 光滑粒子流体动力学新方法及应用[M]. 北京: 科学出版社, 2017.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  417
  • HTML全文浏览量:  120
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 修回日期:  2022-08-24
  • 网络出版日期:  2022-09-05
  • 刊出日期:  2022-11-18

目录

    /

    返回文章
    返回