内部爆炸作用下20钢柱壳的变形及相变

李满江 赵志豪 董新龙 付应乾 俞鑫炉 周刚毅

李满江, 赵志豪, 董新龙, 付应乾, 俞鑫炉, 周刚毅. 内部爆炸作用下20钢柱壳的变形及相变[J]. 爆炸与冲击, 2023, 43(1): 013105. doi: 10.11883/bzycj-2022-0074
引用本文: 李满江, 赵志豪, 董新龙, 付应乾, 俞鑫炉, 周刚毅. 内部爆炸作用下20钢柱壳的变形及相变[J]. 爆炸与冲击, 2023, 43(1): 013105. doi: 10.11883/bzycj-2022-0074
LI Manjiang, ZHAO Zhihao, DONG Xinlong, FU Yingqian, YU Xinlu, ZHOU Gangyi. Deformation and phase transformation of 20 steel cylinders driven by inner explosion[J]. Explosion And Shock Waves, 2023, 43(1): 013105. doi: 10.11883/bzycj-2022-0074
Citation: LI Manjiang, ZHAO Zhihao, DONG Xinlong, FU Yingqian, YU Xinlu, ZHOU Gangyi. Deformation and phase transformation of 20 steel cylinders driven by inner explosion[J]. Explosion And Shock Waves, 2023, 43(1): 013105. doi: 10.11883/bzycj-2022-0074

内部爆炸作用下20钢柱壳的变形及相变

doi: 10.11883/bzycj-2022-0074
基金项目: 国家自然科学基金(11932108,11672143);冲击与安全工程教育重点实验室开放课题(CJ202013)
详细信息
    作者简介:

    李满江(1998- ),男,硕士研究生,manjiangli@qq.com

    通讯作者:

    董新龙(1964- ),男,博士,教授,博士生导师,dongxinlong@nbu.edu.cn

  • 中图分类号: O382

Deformation and phase transformation of 20 steel cylinders driven by inner explosion

  • 摘要: 研究冲击波作用下金属微观组织变化对于理解柱壳结构在高应变率下的变形及破坏极为重要。实验通过对20钢金属柱壳在内部爆炸载荷作用下的爆炸回收碎片截面进行微观分析,探讨冲击波作用下材料的组织演化、相变特征,同时使用有限元方法对柱壳膨胀断裂过程中的热力学特征进行分析。研究发现:20钢柱壳近内表面满足αε相变热力学条件的有限深度区域内,α晶粒内可见明显的平行滑移线分布特征;电子背散射衍射揭示了平行滑移线区域内组织碎化,且存在{112}<111>和{332}<113>两种孪晶,同时平行滑移线的碎化组织区域中存在密排六方晶格(HCP)的ε相结构,而试样原始组织及爆炸后除试样壁厚内部(0~3.0 mm)区域外均未见ε相结构残留。分析认为:冲击过程中发生了αε相变;相变引发的材料性能改变将可能影响断裂破坏过程;考虑冲击波作用下金属材料动态相变对结构变形与破坏的影响,对这类柱壳变形及破坏的精密物理模拟具有重要意义,有必要开展进一步研究。
  • 图  1  20钢材料原始组织

    Figure  1.  Original organization for 20 steel

    图  2  20钢原始组织不同晶粒尺寸的晶粒数量占比分布

    Figure  2.  Grain number proportion on grain size of original structure of 20 steel

    图  3  金属柱壳爆炸膨胀实验原理及装置

    Figure  3.  Principle and setup of metal cylinder driven by explosive expanding

    图  4  不同时刻爆轰产物压力和壳体中压力的分布

    Figure  4.  Pressure distribution of detonation products and shell at different times

    图  5  柱壳厚度方向不同位置径向压力历程

    Figure  5.  Radial pressure-time curves of different positions in the thickness direction of the cylinder shell

    图  6  不同时刻柱壳壁厚等效塑性应变分布

    Figure  6.  Equivalent plastic strain distribution of cylindrical shell wall thickness at different times

    图  7  径向不同位置经历的最大压力和温度

    Figure  7.  Maximum pressure-temperature experienced at different radial positions

    图  8  碎片横截面破坏金相特征

    Figure  8.  Metallographic structure of a fragment cross-section

    图  9  沿碎片截面不同深度典型金相组织形貌

    Figure  9.  Typical metallographic morphology at different depths along wall thickness

    图  10  沿柱壳壁厚方向不同位置处的维氏硬度

    Figure  10.  Vickers hardness at different locations along the wall-thickness of the cylindrical shell

    图  11  沿试样厚度不同位置的EBSD微观结构

    Figure  11.  Inverse pole figures of EBSD at the various location along wall thickness

    图  12  沿厚度不同位置处晶粒数量随尺寸的变化

    Figure  12.  Grain number distribution by grain size at the different locations along wall thickness

    图  13  爆炸后沿柱壳壁厚不同位置的EBSD物相BCC相和HCP相分析结果

    Figure  13.  Analysis of BCC and HCP phase by EBSD at different locations along the wall-thickness after explosion test

    图  14  沿壁厚不同区域孪晶EBSD衍射带

    Figure  14.  EBSD diffraction bands of the twins at different locations along the wall thickness

    表  1  20钢柱壳本构参数[35]

    Table  1.   Constitutive parameters of 20 steel cylindrical shells[35]

    A/MPaB/MPanmCTm/KTr/KcP/(J∙kg−1∙K−1)
    3337370.151.460.00801525299586
    下载: 导出CSV

    表  2  炸药本构方程相关参数[36]

    Table  2.   Related parameters of dynamite JWL constitutive equation[36]

    C1/GPaC2/GPa$ { \omega } $R1R2E0/(kJ∙m−3)V0pCJ/GPaρe/(kg∙m−3)D/(m∙s−1)
    209.255.8690.304.41.25.1112.511286280
    注:E0为初始体积内能;V0为初始相对体积;ρe为炸药密度。
    下载: 导出CSV
  • [1] GURNEY R W. The initial velocities of fragments from bombs, shells and grenades: BRL 405 [R]. Maryland: Army Ballistic Research Laboratory, 1943.
    [2] TAYLOR G I. The fragmentation of tubular bombs [J]. Advisory Council on Scientific Research and Technical Development, 1963, 5(1): 202–320.
    [3] HOGGATT C R, RECHT R F. Fracture behavior of tubular bombs [J]. Journal of Applied Physics, 1968, 39(3): 1856–1862. DOI: 10.1063/1.1656442.
    [4] 胡八一, 董庆东, 韩长生, 等. 爆炸金属管绝热剪切断裂的细观研究 [J]. 爆炸与冲击, 1993, 13(4): 305–312.

    HU B Y, DONG Q D, HAN C S, et al. Mesoscopic study of adiabatic shear fracture of the metal tubes under internal explosive loading [J]. Explosion and Shock Waves, 1993, 13(4): 305–312.
    [5] 金山, 汤铁钢, 孙学林, 等. 不同热处理条件下45钢柱壳的动态性能 [J]. 爆炸与冲击, 2006, 26(5): 423–428. DOI: 10.11883/1001-1455(2006)05-0423-06.

    JIN S, TANG T G, SUN X L, et al. Dynamic characteristics of 45 steel cylinder shell by different heat treatment conditions [J]. Explosion and Shock Waves, 2006, 26(5): 423–428. DOI: 10.11883/1001-1455(2006)05-0423-06.
    [6] GOTO D M, BECKER R, ORZECHOWSKI T J, et al. Investigation of the fracture and fragmentation of explosively driven rings and cylinders [J]. International Journal of Impact Engineering, 2008, 35(12): 1547–1556. DOI: 10.1016/j.ijimpeng.2008.07.081.
    [7] 张世文, 刘仓理, 于锦泉. 微缺陷对圆管膨胀断裂的影响 [J]. 爆炸与冲击, 2008, 28(4): 316–323. DOI: 10.11883/1001-1455(2008)04-0316-08.

    ZHANG S W, LIU C L, YU J Q. Influences of microdefects on expanding fracture of a metal cylinder [J]. Explosion and Shock Waves, 2008, 28(4): 316–323. DOI: 10.11883/1001-1455(2008)04-0316-08.
    [8] 潘顺吉, 俞鑫炉, 董新龙. 不同载荷下TA2钛合金柱壳爆炸碎裂的实验研究 [J]. 高压物理学报, 2017, 31(4): 382–388. DOI: 10.11858/gywlxb.2017.04.005.

    PAN S J, YU X L, DONG X L. Experimental study of fragmentation behavior of exploded TA2 alloy cylinders with varied charge [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 382–388. DOI: 10.11858/gywlxb.2017.04.005.
    [9] LIU M T, REN G W, FAN C, et al. Experimental and numerical studies on the expanding fracture behavior of an explosively driven 1045 steel cylinder [J]. International Journal of Impact Engineering, 2017, 109: 240–252. DOI: 10.1016/j.ijimpeng.2017.07.008.
    [10] 吴思思, 董新龙, 俞鑫炉. 45钢柱壳爆炸膨胀断裂的SPH模拟分析 [J]. 爆炸与冲击, 2021, 41(10): 103101. DOI: 10.11883/bzycj-2021-0172.

    WU S S, DONG X L, YU X L. An investigating on explosive expanding fracture of 45 steel cylinders by SPH method [J]. Explosion and Shock Waves, 2021, 41(10): 103101. DOI: 10.11883/bzycj-2021-0172.
    [11] 吴文苍, 董新龙, 庞振, 等. TA2钛合金开口柱壳外爆碎片分布研究 [J]. 力学学报, 2021, 53(6): 1795–1806. DOI: 10.6052/0459-1879-21-017.

    WU W C, DONG X L, PANG Z, et al. Study on fragments distribution of explosively driven cylinders for TA2 titanium alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1795–1806. DOI: 10.6052/0459-1879-21-017.
    [12] 庞振, 董新龙, 吴文苍, 等. TA2钛金属柱壳外爆绝热剪切碎裂及微观组织演化 [J]. 稀有金属材料与工程, 2021, 50(12): 4334–4341.

    PANG Z, DONG X L, WU W C, et al. Multiple adiabatic shear fragmentation and microstructure evolution of explosive-driven TA2 pure titanium cylinders [J]. Rare Metal Materials and Engineering, 2021, 50(12): 4334–4341.
    [13] 刘明涛, 汤铁钢. 爆炸加载下金属壳体膨胀断裂过程中的关键物理问题 [J]. 爆炸与冲击, 2021, 41(1): 011402. DOI: 10.11883/bzycj-2020-0351.

    LIU M T, TANG T G. Key physical problems in the expanding fracture of explosively driven metallic shells [J]. Explosion and Shock Waves, 2021, 41(1): 011402. DOI: 10.11883/bzycj-2020-0351.
    [14] LI W B, CHEN Z C, WANG X M, et al. Research on the intermediate phase of 40CrMnSiB steel shell under different heat treatments [J]. Defence Technology, 2021, 17(3): 1032–1041. DOI: 10.1016/j.dt.2020.06.009.
    [15] 张世文, 李英雷, 陈艳, 等. 爆炸加载下金属柱壳破片软回收技术研究 [J]. 爆炸与冲击, 2021, 41(11): 114102. DOI: 10.11883/bzycj-2020-0449.

    ZHANG S W, LI Y L, CHEN Y, et al. Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading [J]. Explosion and Shock Waves, 2021, 41(11): 114102. DOI: 10.11883/bzycj-2020-0449.
    [16] MINSHALL S. Investigation of a polymorphic transition in iron at 130-kbar [J]. Physical Review, 1955, 98(1): 271.
    [17] BANCROFT D, PETERSON E L, MINSHALL S. Polymorphism of iron at high pressure [J]. Journal of Applied Physics, 1956, 27(3): 291–298. DOI: 10.1063/1.1722359.
    [18] JAMIESON J C, LAWSON A W. X-Ray diffraction studies in the 100 kilobar pressure range [J]. Journal of Applied Physics, 1962, 33(3): 776–780. DOI: 10.1063/1.1777167.
    [19] MEYERS M A. Dynamic behavior of materials [M]. New York: John Wiley & Sons, Inc, 1994. DOI: 10.1002/9780470172278.
    [20] DOBROMYSLOV A V, KOZLOV E A, TALUTS N I. High-strain-rate deformation of Armco iron induced by spherical and quasi-spherical converging shock waves and the mechanism of the α-ɛ transformation [J]. The Physics of Metals and Metallography, 2008, 106(5): 531–541. DOI: 10.1134/S0031918X08110136.
    [21] SHAO J L, DUAN S Q, HE A M, et al. Dynamic properties of structural transition in iron under uniaxial compression [J]. Journal of Physics: Condensed Matter, 2009, 21(24): 245703. DOI: 10.1088/0953-8984/21/24/245703.
    [22] GUNKELMANN N, BRINGA E M, KANG K, et al. Polycrystalline iron under compression: plasticity and phase transitions [J]. Physical Review B, 2012, 86(14): 144111. DOI: 10.1103/PhysRevB.86.144111.
    [23] WANG S J, SUI M L, CHEN Y T, et al. Microstructural fingerprints of phase transitions in shock-loaded iron [J]. Scientific Reports, 2013, 3: 1086. DOI: 10.1038/srep01086.
    [24] DOUGHERTY L M, GRAY Ⅲ G T, CERRETA E K, et al. Rare twin linked to high-pressure phase transition in iron [J]. Scripta Materialia, 2009, 60(9): 772–775. DOI: 10.1016/j.scriptamat.2009.01.014.
    [25] EPSHTEIN G N. Structure of metals deformed by explosion [M]. Moscow: Metallurgiya, 1988.
    [26] YAAKOBI B, BOEHLY T R, MEYERHOFER D D, et al. EXAFS measurement of iron bcc-to-hcp phase transformation in Nanosecond-Laser Shocks [J]. Physical Review Letters, 2005, 95(7): 075501. DOI: 10.1103/PhysRevLett.95.075501.
    [27] IVANOV A G, NOVIKOV S A. On rarefaction shocks in iron and steel [J]. Zh Eksp Teor Fiz, 1961, 40(6): 1880–1882.
    [28] ERKMAN J O. Smooth spalls and the polymorphism of iron [J]. Journal of Applied Physics, 1961, 32(5): 939–944. DOI: 10.1063/1.1736137.
    [29] IVANOV A G, NOVIKOV S A. Rarefaction shock waves in iron from explosive loading [J]. Combustion, Explosion, and Shock Waves, 1986, 22(3): 343–350. DOI: 10.1007/BF00750354.
    [30] ZUREK A K, FRANTZ C E, GRAY G T. In shock wave and high strain rate phenomena in materials [M]. Boca Raton: CRC Press, 1992.
    [31] VOLTZ C, ROY G. Study of spalling for high purity iron below and above shock induced α $\Leftrightarrow $ ε phase transition [J]. AIP Conference Proceedings, 2004, 706(1): 511–516. DOI: 10.1063/1.1780289.
    [32] VOLTZ C, BUY F, ROY G. Iron damage and spalling behavior below and above shock induced α $\Leftrightarrow $ ε phase transition [J]. AIP Conference Proceedings, 2006, 845(1): 678–681. DOI: 10.1063/1.2263413.
    [33] DE RESSÉGUIER T, HALLOUIN M. Effects of the α-ε phase transition on wave propagation and spallation in laser shock-loaded iron [J]. Physical Review B, 2008, 77(17): 174107. DOI: 10.1103/PhysRevB.77.174107.
    [34] ОРЛЕНКО Л П. Explosion physics [M]. 3rd ed. Translated by SUN C W. Beijing: Science Press, 2011.
    [35] BASHISTAKUMAR M, PUSHKAL B. Finite element analysis of orthogonal cutting forces in machining AISI 1020 steel using a carbide tip tool [J]. Journal of Engineering Sciences, 2018, 5(2): A1–A10. DOI: 10.21272/JES.2018.5(2).A1.
    [36] DOBRATZ B M. LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants: UCRL-52997 [R]. Livermore: Lawrence Livermore National Laboratory, 1981.
    [37] BROWN J M, MCQUEEN R G. Melting of iron under core conditions [J]. Geophysical Research Letters, 1980, 7(7): 533–536. DOI: 10.1029/GL007i007p00533.
    [38] JEANLOZ R, WENK H R. Convection and anisotropy of the inner core [J]. Geophysical Research Letters, 1988, 15(1): 72–75. DOI: 10.1029/gl015i001p00072.
    [39] SAXENA S K, SHEN G, LAZOR P. Experimental evidence for a new iron phase and implications for Earth’s core [J]. Science, 1993, 260(5112): 1312–1314. DOI: 10.1126/science.260.5112.1312.
    [40] WENK H R, MATTHIES S, HEMLEY R J, et al. The plastic deformation of iron at pressures of the Earth’s inner core [J]. Nature, 2000, 405(6790): 1044–1047. DOI: 10.1038/35016558.
    [41] SMITH C S. Metallographic studies of metals after explosive shock [J]. Transactions of the Metallurgical Society of AIME, 1958, 212: 574–589.
    [42] MIYAGI L, KUNZ M, KNIGHT J, et al. In situ phase transformation and deformation of iron at high pressure and temperature [J]. Journal of Applied Physics, 2008, 104(10): 103510. DOI: 10.1063/1.3008035.
    [43] ZARKEVICH N A, JOHNSON D D. Coexistence pressure for a martensitic transformation from theory and experiment: revisiting the bcc-hcp transition of iron under pressure [J]. Physical Review B, 2015, 91(17): 174104. DOI: 10.1103/PhysRevB.91.174104.
    [44] PAUL W, WARSCHAUER D M. Solids under pressure [M]. New York: McGraw-Hill, 1963.
    [45] JOHNSON P C, STEIN B A, DAVIS R S. Temperature dependence of shock-induced phase transformations in iron [J]. Journal of Applied Physics, 1962, 33(2): 557–561. DOI: 10.1063/1.1702465.
    [46] CLOUGHERTY E V, KAUFMAN L. In high pressure measurements [M]. Washington: Butterworths, 1963.
    [47] BLACKBURN L D, KAUFMAN L, COHEN M. Phase transformations in iron-ruthenium alloys under high pressure [J]. Acta Metallurgica, 1965, 13(5): 533–541. DOI: 10.1016/0001-6160(65)90104-5.
    [48] GILES P M, LONGENBACH M H, MARDER A R. High-pressure α $\rightleftarrows $ ε martensitic transformation in iron [J]. Journal of Applied Physics, 1971, 42(11): 4290–4295. DOI: 10.1063/1.1659768.
    [49] BROWN J M, MCQUEEN R G. Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B7): 7485–7494. DOI: 10.1029/jb091ib07p07485.
    [50] LOREE T R, FOWLER C M, ZUKAS E G, et al. Dynamic polymorphism of some binary iron alloys [J]. Journal of Applied Physics, 1966, 37(4): 1918–1927. DOI: 10.1063/1.1708625.
    [51] 王永刚. 延性金属动态拉伸断裂及其临界损伤度研究 [D]. 北京: 中国工程物理研究院, 2006.
    [52] DOBROMYSLOV A V, KOZLOV E A, LITVINOV B V, et al. High-rate deformation of Armco iron under loading by spherical converging shock waves [J]. Doklady Physics, 2007, 52(8): 418–421. DOI: 10.1134/s1028335807080046.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  102
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-11-04
  • 网络出版日期:  2022-12-01
  • 刊出日期:  2023-01-05

目录

    /

    返回文章
    返回