水下爆炸近壁面流场局部空化形成机理

徐维铮 黄宇 李业勋 赵宏涛 郑贤旭 王彦平

徐维铮, 黄宇, 李业勋, 赵宏涛, 郑贤旭, 王彦平. 水下爆炸近壁面流场局部空化形成机理[J]. 爆炸与冲击, 2023, 43(3): 032201. doi: 10.11883/bzycj-2022-0075
引用本文: 徐维铮, 黄宇, 李业勋, 赵宏涛, 郑贤旭, 王彦平. 水下爆炸近壁面流场局部空化形成机理[J]. 爆炸与冲击, 2023, 43(3): 032201. doi: 10.11883/bzycj-2022-0075
XU Weizheng, HUANG Yu, LI Yexun, ZHAO Hongtao, ZHENG Xianxu, WANG Yanping. On formation mechanism of local cavitation in the near-wall flow field caused by an underwater explosion[J]. Explosion And Shock Waves, 2023, 43(3): 032201. doi: 10.11883/bzycj-2022-0075
Citation: XU Weizheng, HUANG Yu, LI Yexun, ZHAO Hongtao, ZHENG Xianxu, WANG Yanping. On formation mechanism of local cavitation in the near-wall flow field caused by an underwater explosion[J]. Explosion And Shock Waves, 2023, 43(3): 032201. doi: 10.11883/bzycj-2022-0075

水下爆炸近壁面流场局部空化形成机理

doi: 10.11883/bzycj-2022-0075
基金项目: 装备预先研究领域基金(80928010101);中国工程物理研究院培育基金(PY20200003)
详细信息
    作者简介:

    徐维铮(1991- ),男,博士,助理研究员,xuweizheng@whut.edu.cn

    通讯作者:

    黄 宇(1986- ),男,博士,助理研究员,huangyu@buaa.edu.cn

  • 中图分类号: O382.1

On formation mechanism of local cavitation in the near-wall flow field caused by an underwater explosion

  • 摘要: 为深入认识水下爆炸近壁面流场局部空化的形成机理,采用自行研制的转镜式分幅相机,获得了炸药水下爆炸近壁面流场局部空化效应的光学图像,结合数值模拟和Taylor平面波理论、空泡动力学理论,分析了近壁面空化效应的形成过程。结果表明:界面反射的稀疏波作用和水中空化核的膨胀发展是水下爆炸近壁面流场空化效应形成的原因;外界流场压力对空泡初期膨胀运动影响较小,对空泡后期运动行为影响较大;低压环境下不同尺度空泡的运动行为存在较大差异,小尺度空泡(半径小于10 μm)在低压环境下处于快速膨胀、溃灭状态,对流场空化影响较小;大尺度空泡(半径大于10 μm)可失去稳定性,半径持续增大,对流场空化区的形成影响较大;水中不同尺寸空泡空间分布的随机性可导致空化区成长过程中呈现非规则形状。
  • 图  1  实验布局

    Figure  1.  Experimental layout

    图  2  测试系统

    Figure  2.  Test system

    图  3  近壁面冲击波反射演化过程(工况1)

    Figure  3.  Evolution of reflected shock waves near the wall in case 1

    图  4  近壁面空化演化过程(工况2)

    Figure  4.  Evolution of cavitation near the wall in case 2

    图  5  不同外界流场压力下空泡运动半径和速度时间历程曲线

    Figure  5.  Time histories of radius and velocity of cavitation bubbles under different external pressures

    图  6  不同半径空泡在外界流场压力pl = 0下运动半径和速度时间历程曲线

    Figure  6.  Time histories of radius and velocity of cavitation bubbles with different radii under the external pressure pl = 0

    表  1  水的材料参数[18]

    Table  1.   Parameters of water[18]

    A1/GPaA2/GPaA3/GPaB0B1T1/GPaT2/GPaρ0/(g∙cm−3)p0/Pae0/(J∙kg−1)
    2.209.5414.570.280.282.2001.0101 325361.875
    下载: 导出CSV

    表  2  B炸药的材料参数[18]

    Table  2.   Parameters of Comp B[18]

    A/GPaB/GPaR1R2ωpCJ/GPaDCJ/(m∙s−1)ρe/(g∙cm−3)E0/(GJ∙m−3)
    524.27.684.201.100.3429.579801.7178.5
    下载: 导出CSV
  • [1] 汪俊, 刘国振, 刘建湖, 等. 考虑空泡及再加载效应的水下爆炸流固相互作用分析 [J]. 兵工学报, 2014, 35(S2): 157–163.

    WANG J, LIU G Z, LIU J H, et al. Investigation of fluid-structure interaction under underwater explosion with effect of local cavitation and reloading [J]. Acta Armamentarii, 2014, 35(S2): 157–163.
    [2] 周章涛, 刘建湖, 裴红波, 等. 水下近距和接触爆炸流固耦合作用机理及加载效应研究 [J]. 兵工学报, 2017, 38(S1): 136–145.

    ZHOU Z T, LIU J H, PEI H B, et al. Fluid-structure interaction mechanism and loading effect in close-in and contact underwater explosions [J]. Acta Armamentarii, 2017, 38(S1): 136–145.
    [3] TAYLOR G I. The pressure and impulse of submarine explosion waves on plates [J]. Compendium of Underwater Explosion Research, 1941, 1: 1155–1174.
    [4] 李海涛, 朱锡, 黄晓明, 等. 水下爆炸冲击波作用下空化区域形成的特性研究 [J]. 高压物理学报, 2008, 22(2): 181–186. DOI: 10.11858/gywlxb.2008.02.019.

    LI H T, ZHU X, HUANG X M, et al. On the characteristics of cavitation formation subjected to underwater blast shock wave [J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 181–186. DOI: 10.11858/gywlxb.2008.02.019.
    [5] 李海涛, 朱石坚, 陈志坚, 等. 全入射角度下平板冲击波的壁压载荷及局部空化特性 [J]. 爆炸与冲击, 2014, 34(3): 354–360. DOI: 10.11883/1001-1455(2014)03-0354-07.

    LI H T, ZHU S J, CHEN Z J, et al. Characteristics of wall pressure and cavitation on the plate subjected to underwater explosion shockwaves at any angle of incidence [J]. Explosion and Shock Waves, 2014, 34(3): 354–360. DOI: 10.11883/1001-1455(2014)03-0354-07.
    [6] RAJENDRAN R, LEE J M. A comparative damage study of air- and water-backed plates subjected to non-contact underwater explosion [J]. International Journal of Modern Physics B, 2008, 22(09n11): 1311–1318. DOI: 10.1142/S0217979208046700.
    [7] FELIPPA C A, DERUNTZ J A. Finite element analysis of shock-induced hull cavitation [J]. Computer Methods in Applied Mechanics and Engineering, 1984, 44(3): 297–337. DOI: 10.1016/0045-7825(84)90134-8.
    [8] ZONG Z, ZHAO Y J, YE F, et al. Parallel computing of the underwater explosion cavitation effects on full-scale ship structures [J]. Journal of Marine Science and Application, 2012, 11(4): 469–477. DOI: 10.1007/s11804-012-1157-7.
    [9] ZHANG A M, REN S F, LI Q, et al. 3D numerical simulation on fluid-structure interaction of structure subjected to underwater explosion with cavitation [J]. Applied Mathematics and Mechanics, 2012, 33(9): 1191–1206. DOI: 10.1007/s10483-012-1615-8.
    [10] SAUREL R, LEMETAYER O. A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation [J]. Journal of Fluid Mechanics, 2001, 431: 239–271. DOI: 10.1017/S0022112000003098.
    [11] SANDUSKY H, CHAMBERS P, ZERILLI F, et al. Dynamic measurements of plastic deformation in a water-filled aluminum tube in response to detonation of a small explosives charge [J]. Shock and Vibration, 1999, 6(3): 125–132. DOI: 10.1155/1999/650860.
    [12] XIE W F, YOUNG Y L, LIU T G. Multiphase modeling of dynamic fluid-structure interaction during close-in explosion [J]. International Journal for Numerical Methods in Engineering, 2008, 74(6): 1019–1043. DOI: 10.1002/nme.2207.
    [13] PARK J. Application of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to internal explosion inside a water-filled tube [J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 572–583. DOI: 10.1016/j.ijnaoe.2018.10.002.
    [14] JIN Z Y, YIN C Y, CHEN Y, et al. Coupling Runge-Kutta discontinuous Galerkin method to finite element method for compressible multi-phase flow interacting with a deformable sandwich structure [J]. Ocean Engineering, 2017, 130: 597–610. DOI: 10.1016/j.oceaneng.2016.12.013.
    [15] 许亮, 冯成亮, 刘铁钢. 弹性板水下爆炸冲击载荷的修正虚拟流体方法分析 [J]. 计算物理, 2017, 34(1): 1–9. DOI: 10.3969/j.issn.1001-246X.2017.01.001.

    XU L, FENG C L, LIU T G. Analysis of impact load on elastic plate in underwater explosions with modified ghost fluid method [J]. Chinese Journal of Computational Physics, 2017, 34(1): 1–9. DOI: 10.3969/j.issn.1001-246X.2017.01.001.
    [16] 王龙侃, 丁松, 李涛, 等. 基于RKDG方法的近壁面水下爆炸空化特性研究 [C]//北京力学会第24届学术年会会议论文集. 北京: 北京力学会, 2018.
    [17] 张之凡, 王成. 近场水下爆炸空化效应对结构的载荷特性研究 [C]//北京力学会第24届学术年会会议论文集. 北京: 北京力学会, 2018.
    [18] Century Dynamics Inc. AUTODYN theory manual version 4.3[Z]. Concord, CA, USA: Century Dynamic Inc. , 2003.
    [19] 张林夫, 夏维洪. 空化与空蚀 [M]. 南京: 河海大学出版社, 1989.
    [20] 黄继汤. 空化与空蚀的原理及应用 [M]. 北京: 清华大学出版社, 1991.
    [21] 杨博凯, 卢义玉, 杨晓峰, 等. 空化水射流空泡溃灭过程的数值分析 [J]. 郑州大学学报(工学版), 2012, 33(4): 60–64. DOI: 10.3969/j.issn.1671-6833.2012.04.014.

    YANG B K, LU Y Y, YANG X F, et al. Numerical analysis on collapse of cavitation bubble in a water jet flow [J]. Journal of Zhengzhou University (Engineering Science), 2012, 33(4): 60–64. DOI: 10.3969/j.issn.1671-6833.2012.04.014.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  107
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-08-09
  • 网络出版日期:  2023-02-23
  • 刊出日期:  2023-03-05

目录

    /

    返回文章
    返回