基于DIC技术的爆炸应力波过异质界面应变场演化规律实验研究

杨仁树 赵勇 赵杰 左进京 葛丰源 陈程 丁晨曦

杨仁树, 赵勇, 赵杰, 左进京, 葛丰源, 陈程, 丁晨曦. 基于DIC技术的爆炸应力波过异质界面应变场演化规律实验研究[J]. 爆炸与冲击, 2022, 42(12): 123201. doi: 10.11883/bzycj-2022-0097
引用本文: 杨仁树, 赵勇, 赵杰, 左进京, 葛丰源, 陈程, 丁晨曦. 基于DIC技术的爆炸应力波过异质界面应变场演化规律实验研究[J]. 爆炸与冲击, 2022, 42(12): 123201. doi: 10.11883/bzycj-2022-0097
YANG Renshu, ZHAO Yong, ZHAO Jie, ZUO Jinjing, GE Fengyuan, CHEN Cheng, DING Chenxi. Experimental study on evolution of strain field of explosion stress wave passing through a heterogeneous interface based on the DIC method[J]. Explosion And Shock Waves, 2022, 42(12): 123201. doi: 10.11883/bzycj-2022-0097
Citation: YANG Renshu, ZHAO Yong, ZHAO Jie, ZUO Jinjing, GE Fengyuan, CHEN Cheng, DING Chenxi. Experimental study on evolution of strain field of explosion stress wave passing through a heterogeneous interface based on the DIC method[J]. Explosion And Shock Waves, 2022, 42(12): 123201. doi: 10.11883/bzycj-2022-0097

基于DIC技术的爆炸应力波过异质界面应变场演化规律实验研究

doi: 10.11883/bzycj-2022-0097
基金项目: 国家自然科学基金(52074301);中国博士后科学基金(2021M700386,2020TQ0032);爆破工程湖北省重点实验室开放基金(BL2021-05)
详细信息
    作者简介:

    杨仁树(1963- ),男,博士,教授,博士生导师,yangrsustb@163.com

    通讯作者:

    赵 勇(1993- ),男,博士研究生,zhaoyong931216@126.com

  • 中图分类号: O382

Experimental study on evolution of strain field of explosion stress wave passing through a heterogeneous interface based on the DIC method

  • 摘要: 采用氯仿粘结聚碳酸酯(polycarbonate, PC)板和聚甲基丙烯酸甲酯(polymethylmethacrylate, PMMA)板模拟含异质界面模型;在PC介质中布置柱状炮孔并与界面呈一定角度,根据炮孔端部与界面相对位置,分别于柱状炮孔两个端部设置起爆点,起爆点远离界面端部时定义为孔口起爆,靠近界面端部时定义为孔底起爆;借助数字图像相关实验系统,研究爆炸应力波通过异质界面后PMMA介质应变场演化过程及炮孔底部区域拉、压应变变化规律。实验结果表明,异质界面改变了爆炸应力波过界面后的传播形态。孔口起爆时,异质界面受爆破荷载作用后易形成应力集中区,界面处产生开裂,横向拉伸波作用是造成异质界面开裂的主要原因。起爆方式对过界面后介质PMMA的横/纵向拉、压应变场作用贡献不同,主要体现在应变场强度、拉/压应变场位置分布2个方面。在炮孔底部区域,起爆方式对应变场时程特性的影响主要体现在作用时效长短和应变强度2个方面。孔口起爆时,横/纵向应变体现出短时效、高强度的变化特征。就应变强度而言,起爆方式对横向压应变的影响显著强于其对纵向拉应变的影响。对空间分布特性影响主要体现在衰减程度,起爆方式对纵向应变衰减程度影响较大。无论采用何种起爆方式,爆炸应变场在PC介质中衰减速度较快,进入PMMA介质后衰减速度显著降低。
  • 图  1  数字图像相关方法的基本原理

    Figure  1.  The basic principle for the digital image correlation method

    图  2  数字图像相关实验系统

    Figure  2.  An experimental system based on the digital image correlation method

    图  3  试件模型

    Figure  3.  The specimen model

    图  4  试件受爆炸荷载作用后的断裂

    Figure  4.  Fracture of the specimens under explosion load

    图  5  θ=30º时的孔口起爆应变演化云图

    Figure  5.  Strain field evolution of the hole-top initiation at θ=30º

    图  6  θ=30º时的孔底起爆应变演化云图

    Figure  6.  Strain field evolution of the bottom initiation at θ=30º

    图  7  θ=60º时不同起爆方式下t=55.00 μs时的横向应变云图

    Figure  7.  Transverse strain fields at t=55.00 μs for different initiation modes with θ=60º

    图  8  研究区域示意图

    Figure  8.  Schematic diagram of the target area

    图  9  θ=30º,孔口起爆时PMMA介质拉、压应变分布可视化结果

    Figure  9.  Visualization results of tensile and compressive strain distribution in PMMA with the hole-top initiation at θ=30º

    图  10  θ=30º,孔底起爆时PMMA介质拉、压应变分布可视化结果

    Figure  10.  Visualization results of tensile and compressive strain distribution in PMMA with the hole-bottom initiation at θ=30º

    图  11  θ=60º,孔口起爆时PMMA介质拉、压应变分布可视化结果

    Figure  11.  Visualization results of tensile and compressive strain distribution in PMMA with the hole-top initiation at θ=60º

    图  12  θ=60º,孔底起爆时PMMA介质拉、压应变分布可视化结果

    Figure  12.  Visualization results of tensile and compressive strain distribution in PMMA with the hole-bottom initiation at θ=60º

    图  13  炮孔底部的测点分布

    Figure  13.  Distribution of measuring points at the bottom of the blasthole

    图  14  θ=30º时孔口起爆测点应变时程曲线

    Figure  14.  Strain time history curves at measuring points with hole-top initiation at θ=30 º

    图  15  θ=30º时孔底起爆测点应变时程曲线

    Figure  15.  Strain time history curves at measuring points with hole-bottom initiation at θ=30º

    图  16  应变峰值及其衰减拟合曲线

    Figure  16.  Strain peaks and their attenuation-fitting curves

    表  1  PC和PMMA相关材料参数[25-26]

    Table  1.   Relevant material parameters of PC and PMMA[25-26]

    材料ρ/(kg·m−3)cp/(m∙s−1)cs/(m∙s−1)Ed/GPaGd/GPaμd
    PC1449212510904.51.70.32
    PMMA1240232012606.11.90.31
    下载: 导出CSV

    表  2  PC和PMMA介质中测点拉、压应变峰值

    Table  2.   Tensile and compressive strain peaks at measured points in PC and PMMA

    介质测点x/mmθ=30º, 孔口起爆θ=30º, 孔底起爆θ=60º, 孔口起爆θ=60º, 孔底起爆
    εxx,max/10−6εyy,max/10−6εxx,max/10−6εyy,max/10−6εxx,max/10−6εyy,max/10−6εxx,max/10−6εyy,max/10−6
    PCL1111392784453756309911485740043442914
    L29111476784295722439261599134152230
    L3796505473242617597498493425481781
    L4590324438195014626421398619481522
    L5380533513146310885614314314571170
    PMMAR15535616301236900428419521256970
    R215444415761205890362516301042821
    R32540211257113278033681578784625
    R4353356106295967829461461739518
    R545327594296059329121211649490
    R655295782391355925991049639451
    R7 65 2789 812 778 511 2557 941 570 450
    下载: 导出CSV

    表  3  应变衰减指数和应变衰减程度

    Table  3.   Strain attenuation index and strain attenuation degree

    起爆方式应变衰减函数 衰减指数(εL4εR1)/εL4
    PCPMMA PCPMMA
    θ=30º,孔口起爆εxxεmax=1.40x−1.57εmax=56144x−0.661.570.660.4070
    εyyεmax=1.01x−2.40εmax=25613x−0.762.400.760.6327
    θ=30º,孔底起爆εxxεmax=5.98x−2.50εmax=56144x−0.66 2.500.420.3662
    εyyεmax=1.51x−2.89εmax=25613x−0.762.890.580.3844
    θ=60º,孔口起爆εxxεmax=5.44x−2.09εmax=27604x−0.52 2.090.520.3328
    εyyεmax=6.94x−2.32εmax=20396x−0.652.320.650.5103
    θ=60º,孔底起爆εxxεmax=2.76x−2.97εmax=23138x−0.82 2.970.820.3552
    εyyεmax=4.65x−2.50εmax=22053x−0.882.500.880.3627
    下载: 导出CSV

    表  4  不同测点孔口起爆应变峰值与孔底起爆应变峰值的比值

    Table  4.   Ratios of strain peak of top initiation to strain peak of bottom initiation at different measuring points

    θ/(º)应变应变峰值比
    PC PMMA
    L1L2L3L4L5R1R2R3R4R5R6R7
    30εxx3.73.84.04.65.54.33.73.63.53.43.23.6
    εyy2.73.03.13.03.21.81.81.61.61.61.51.6
    60εxx2.62.72.93.33.93.43.54.34.04.54.14.5
    εyy2.52.72.82.62.72.02.02.52.82.52.32.1
    下载: 导出CSV
  • [1] 冷振东, 范勇, 卢文波, 等. 孔内双点起爆条件下的爆炸能量传输与破岩效果分析 [J]. 岩石力学与工程学报, 2019, 38(12): 2451–2462. DOI: 10.13722/j.cnki.jrme.2019.0474.

    LENG Z D, FAN Y, LU W B, et al. Explosion energy transmission and rock-breaking effect of in-hole dual initiation [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2451–2462. DOI: 10.13722/j.cnki.jrme.2019.0474.
    [2] 刘鑫, 杨军, 唐红亮. 同时起爆的双孔台阶模型试验研究 [J]. 岩石力学与工程学报, 2020, 39(12): 2460–2470. DOI: 10.13722/j.cnki.jrme.2020.0283.

    LIU X, YANG J, TANG H L. Experimental study on simultaneous initiation in double-hole bench model [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2460–2470. DOI: 10.13722/j.cnki.jrme.2020.0283.
    [3] 高启栋, 靳军, 王亚琼, 等. 孔内起爆位置对爆破振动场分布的影响作用规律 [J]. 爆炸与冲击, 2021, 41(10): 105201. DOI: 10.11883/bzycj-2020-0352.

    GAO Q D, JIN J, WANG Y Q, et al. Acting law of in-hole initiation position on distribution of blast vibration field [J]. Explosion and Shock Waves, 2021, 41(10): 105201. DOI: 10.11883/bzycj-2020-0352.
    [4] 贾海鹏, 刘殿书, 陈斌, 等. 相邻隧道爆破振速分布规律研究 [J]. 矿业科学学报, 2019, 4(6): 506–514. DOI: 10.19606/j.cnki.jmst.2019.06.005.

    JIA H P, LIU D S, CHEN B, et al. Study on the vibration velocity distribution law of adjacent tunnel blasting [J]. Journal of Mining Science and Technology, 2019, 4(6): 506–514. DOI: 10.19606/j.cnki.jmst.2019.06.005.
    [5] 杨仁树, 苏洪. 爆炸荷载下含预裂缝的裂纹扩展实验研究 [J]. 煤炭学报, 2019, 44(2): 482–489. DOI: 10.13225/j.cnki.jccs.2018.0110.

    YANG R S, SU H. Experimental study on crack propagation with pre-crack under explosion load [J]. Journal of China Coal Society, 2019, 44(2): 482–489. DOI: 10.13225/j.cnki.jccs.2018.0110.
    [6] 杨仁树, 左进京, 肖成龙, 等. 爆炸载荷作用下静裂纹对运动裂纹扩展影响的实验研究 [J]. 振动与冲击, 2018, 37(13): 65–70,84. DOI: 10.13465/j.cnki.jvs.2018.13.010.

    YANG R S, ZUO J J, XIAO C L, et al. Tests for interaction between static crack and dynamic one under explosion loading [J]. Journal of Vibration and Shock, 2018, 37(13): 65–70,84. DOI: 10.13465/j.cnki.jvs.2018.13.010.
    [7] 许鹏, 陈程, 郭洋, 等. 含垂直层理介质在切缝药包爆破下裂纹扩展行为的试验研究 [J]. 矿业科学学报, 2019, 4(6): 498–505. DOI: 10.19606/j.cnki.jmst.2019.06.004.

    XU P, CHEN C, GUO Y, et al. Experimental study on crack propagation of slit charge blasting in media with vertical bedding plane [J]. Journal of Mining Science and Technology, 2019, 4(6): 498–505. DOI: 10.19606/j.cnki.jmst.2019.06.004.
    [8] 杨立云, 张蓝月, 丁晨曦, 等. 超高速数字图像相关实验系统及其在爆炸研究中的应用 [J]. 科技导报, 2018, 36(13): 58–64. DOI: 10.3981/j.issn.1000-7857.2018.13.008.

    YANG L Y, ZHANG L Y, DING C X, et al. Ultra high speed digital image correlation system and its application in blasting research [J]. Science & Technology Review, 2018, 36(13): 58–64. DOI: 10.3981/j.issn.1000-7857.2018.13.008.
    [9] 李二强, 冯吉利, 朱天宇, 等. 基于数字图像相关方法的层状板岩Ⅰ型断裂特性研究 [J]. 采矿与安全工程学报, 2021, 38(5): 979–987. DOI: 10.13545/j.cnki.jmse.2020.0375.

    LI E Q, FENG J L, ZHU T Y, et al. Examining type Ⅰ fracture characteristics in layered slates with digital image correlation [J]. Journal of Mining & Safety Engineering, 2021, 38(5): 979–987. DOI: 10.13545/j.cnki.jmse.2020.0375.
    [10] 孙强, 王启乾, 刘国有, 等. 基于超高速DIC方法的近距侧爆破地铁隧道应变场分析 [J]. 矿业科学学报, 2018, 3(1): 39–45. DOI: 10.19606/j.cnki.jmst.2018.01.005.

    SUN Q, WANG Q Q, LIU G Y, et al. Proximity side blasting based on ultra-high speed DIC method strain field analysis of subway tunnels [J]. Journal of Mining Science and Technology, 2018, 3(1): 39–45. DOI: 10.19606/j.cnki.jmst.2018.01.005.
    [11] DUTLER N, NEJATI M, VALLEY B, et al. On the link between fracture toughness, tensile strength, and fracture process zone in anisotropic rocks [J]. Engineering Fracture Mechanics, 2018, 201: 56–79. DOI: 10.1016/j.engfracmech.2018.08.017.
    [12] HOSDEZ J, LANGLOIS M, WITZ J F, et al. Plastic zone evolution during fatigue crack growth: digital image correlation coupled with finite elements method [J]. International Journal of Solids and Structures, 2019, 171: 92–102. DOI: 10.1016/j.ijsolstr.2019.04.032.
    [13] 齐飞飞, 张科, 谢建斌. 基于DIC技术的含不同节理密度类岩石试件破裂机制研究 [J]. 岩土力学, 2021, 42(6): 1669–1680. DOI: 10.16285/j.rsm.2020.1710.

    QI F F, ZHANG K, XIE J B. Fracturing mechanism of rock-like specimens with different joint densities based on DIC technology [J]. Rock and Soil Mechanics, 2021, 42(6): 1669–1680. DOI: 10.16285/j.rsm.2020.1710.
    [14] 杨立云, 刘振坤, 周莹莹, 等. 爆炸应力波在含层理介质中传播规律的实验研究 [J]. 爆破, 2018, 35(2): 1–5,11. DOI: 10.3963/j.issn.1001-487X.2018.02.001.

    YANG L Y, LIU Z K, ZHOU Y Y, et al. Study on propagation law of explosive stress wave in layered media [J]. Blasting, 2018, 35(2): 1–5,11. DOI: 10.3963/j.issn.1001-487X.2018.02.001.
    [15] 徐振洋, 杨军, 郭连军. 爆炸聚能作用下混凝土试件劈裂的高速3D DIC实验 [J]. 爆炸与冲击, 2016, 36(3): 400–406. DOI: 10.11883/1001-1455(2016)03-0400-07.

    XU Z Y, YANG J, GUO L J. Study of the splitting crack propagation morphology using high-speed 3D DIC [J]. Explosion and Shock Waves, 2016, 36(3): 400–406. DOI: 10.11883/1001-1455(2016)03-0400-07.
    [16] YANG R S, DING C X, YANG L Y, et al. Visualizing the blast-induced stress wave and blasting gas action effects using digital image correlation [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 47–54. DOI: 10.1016/j.ijrmms.2018.10.007.
    [17] CHI L Y, ZHANG Z X, AALBERG A, et al. Fracture processes in granite blocks under blast loading [J]. Rock Mechanics and Rock Engineering, 2019, 52(3): 853–868. DOI: 10.1007/s00603-018-1620-0.
    [18] 赵程, 鲍冲, 松田浩, 等. 数字图像技术在节理岩体裂纹扩展试验中的应用研究 [J]. 岩土工程学报, 2015, 37(5): 944–951. DOI: 10.11779/CJGE201505022.

    ZHAO C, BAO C, HIROSHI M, et al. Application of digital image correlation method in experimental research on crack propagation of brittle rock [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 944–951. DOI: 10.11779/CJGE201505022.
    [19] DING C X, YANG R S, FENG C. Stress wave superposition effect and crack initiation mechanism between two adjacent boreholes [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104622. DOI: 10.1016/j.ijrmms.2021.104622.
    [20] 李清, 张随喜, 万明华, 等. 长径比对束状炮孔端部裂纹力学特征影响的研究 [J]. 矿业科学学报, 2019, 4(2): 112–119. DOI: 10.19606/j.cnki.jmst.2019.02.003.

    LI Q, ZHANG S X, WAN M H, et al. Study on the influence of length- diameter ratio on the mechanical characteristics of cracks at the end of linear charges [J]. Journal of Mining Science and Technology, 2019, 4(2): 112–119. DOI: 10.19606/j.cnki.jmst.2019.02.003.
    [21] 向文飞, 舒大强, 朱传云. 起爆方式对条形药包爆炸应力场的影响分析 [J]. 岩石力学与工程学报, 2005, 24(9): 1624–1628. DOI: 10.3321/j.issn:1000-6915.2005.09.026.

    XIANG W F, SHU D Q, ZHU C Y. Impacts of detonating mode on blast stress field of linear explosive charge [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1624–1628. DOI: 10.3321/j.issn:1000-6915.2005.09.026.
    [22] 杨圣奇, 孙博文, 田文岭. 不同层理页岩常规三轴压缩力学特性离散元模拟 [J]. 工程科学学报, 2022, 44(3): 430–439. DOI: 10.13374/j.issn2095-9389.2020.10.12.005.

    YANG S Q, SUN B W, TIAN W L. Discrete element simulation of the mechanical properties of shale with different bedding inclinations under conventional triaxial compression [J]. Chinese Journal of Engineering, 2022, 44(3): 430–439. DOI: 10.13374/j.issn2095-9389.2020.10.12.005.
    [23] 丁晨曦. 爆炸动静破岩作用与高应力状态下爆破动力学行为研究 [D]. 北京: 中国矿业大学(北京), 2020. DOI: 10.27624/d.cnki.gzkbu.2020.000068.

    DING C X. Study on dynamic-staic rock fracture mechanism of blasting and blasting dynamic behavior under high stress condition [D]. Beijing, China: China University of Mining and Technology (Beijing), 2020. DOI: 10.27624/d.cnki.gzkbu.2020.000068.
    [24] 孙强, 李雪东, 姚腾飞, 等. 基于DIC的爆炸加载下脆性材料裂纹扩展规律的试验研究 [J]. 爆炸与冲击, 2019, 39(10): 103102. DOI: 10.11883/bzycj-2018-0308.

    SUN Q, LI X D, YAO T F, et al. Experimental study on crack propagation of brittle materials based on DIC under explosive loading [J]. Explosion and Shock Waves, 2019, 39(10): 103102. DOI: 10.11883/bzycj-2018-0308.
    [25] 左进京. 立井深孔分段掏槽与周边定向断裂损伤控制试验研究 [D]. 北京: 中国矿业大学(北京), 2020. DOI: 10.27624/d.cnki.gzkbu.2020.000069.

    ZUO J J. Experimental study on sectional cut blasting and directional fracture damage control of vertical shaft deep hole [D]. Beijing, China: China University of Mining and Technology (Beijing), 2020. DOI: 10.27624/d.cnki.gzkbu.2020.000069.
    [26] 赵勇, 肖成龙, 杨立云, 等. 动、静裂纹作用偏置效应的动焦散冲击实验 [J]. 爆炸与冲击, 2020, 40(7): 073201. DOI: 10.11883/bzycj-2019-0401.

    ZHAO Y, XIAO C L, YANG L Y, et al. Dynamic caustics experiments on offset effects between dynamic and static cracks [J]. Explosion and Shock Waves, 2020, 40(7): 073201. DOI: 10.11883/bzycj-2019-0401.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  164
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-06-26
  • 网络出版日期:  2022-09-05
  • 刊出日期:  2022-12-08

目录

    /

    返回文章
    返回