不同角度分叉管道内氢气-空气爆轰传播特性

喻健良 詹潇兵 吕先舒 侯玉洁 闫兴清 于小哲

喻健良, 詹潇兵, 吕先舒, 侯玉洁, 闫兴清, 于小哲. 不同角度分叉管道内氢气-空气爆轰传播特性[J]. 爆炸与冲击, 2022, 42(12): 125401. doi: 10.11883/bzycj-2022-0100
引用本文: 喻健良, 詹潇兵, 吕先舒, 侯玉洁, 闫兴清, 于小哲. 不同角度分叉管道内氢气-空气爆轰传播特性[J]. 爆炸与冲击, 2022, 42(12): 125401. doi: 10.11883/bzycj-2022-0100
YU Jianliang, ZHAN Xiaobing, LYU Xianshu, HOU Yujie, YAN Xingqing, YU Xiaozhe. Propagation characteristics of hydrogen-air detonation in bifurcated tubes with different angles[J]. Explosion And Shock Waves, 2022, 42(12): 125401. doi: 10.11883/bzycj-2022-0100
Citation: YU Jianliang, ZHAN Xiaobing, LYU Xianshu, HOU Yujie, YAN Xingqing, YU Xiaozhe. Propagation characteristics of hydrogen-air detonation in bifurcated tubes with different angles[J]. Explosion And Shock Waves, 2022, 42(12): 125401. doi: 10.11883/bzycj-2022-0100

不同角度分叉管道内氢气-空气爆轰传播特性

doi: 10.11883/bzycj-2022-0100
基金项目: 国家自然科学基金(52104187,52174167)
详细信息
    作者简介:

    喻健良(1963- ),男,博士,教授,yujianliang@dlut.edu.cn

  • 中图分类号: O381

Propagation characteristics of hydrogen-air detonation in bifurcated tubes with different angles

  • 摘要: 在3种角度分叉管道内开展化学计量比氢气-空气爆轰实验,采用自制的火焰传感器和烟迹法分别获得了爆轰波传播速度和胞格结构,探究了不同角度管道分叉对爆轰传播的影响。结果表明:氢气-空气爆轰在经过分叉三通时受分叉口稀疏波影响导致爆轰波衰减解耦,但随着入射激波与下游管道壁面碰撞,逐渐由规则反射向马赫反射转变,最终完成重起爆过程。其中,直通支管内爆轰衰减主要受支管入口面积的影响,随着分叉角度增大,入口面积减小,爆轰衰减程度和重起爆距离也随之减小;而分叉支管内,爆轰衰减受支管入口面积与入口渐扩程度共同影响,但随着分叉角度的增大,入口面积变为主要影响因素。不同角度分叉管内的实验结果均表明,初始压力升高能显著提高爆轰稳定性,从而削弱分叉几何结构的影响。
  • 图  1  实验系统

    Figure  1.  Experimental system

    图  2  爆炸火焰信号的采集与处理

    Figure  2.  Acquisition and processing of explosion flame signals

    图  3  直管道内不同初始压力下爆炸传播速度变化

    Figure  3.  Velocity variation of explosion propagationin the straight tube at different initial pressures

    图  4  爆轰波经过不同角度的分叉三通进入直通支管过程中的速度变化

    Figure  4.  Velocity variation of detonation wave through different degree bifurcated tees entering into the straight branch tube

    图  5  爆轰波经过不同角度得分叉三通进入分叉支管过程中的速度变化

    Figure  5.  Velocity variations of detonation wave through different degree bifurcated tees entering into the collateral branch tube

    图  6  爆轰波在 30° 分叉管道内传播时的速度变化特征 (p0=40 kPa)

    Figure  6.  Velocity variation of detonation wave propagationin the 30° bifurcated tube at p0=40 kPa

    图  7  30° 分叉管道内胞格结构(p0=40 kPa)

    Figure  7.  Cellular structures in the 30° bifurcated tube at p0=40 kPa

    图  8  爆轰波经过分叉三通进入分叉支管后的胞格结构演化 (p0=40 kPa)

    Figure  8.  Cellular structure evolution of detonation wave entering collateral branch tubes through 30°, 45° and 90° bifurcated tees, respectively, at p0=40 kPa

    表  1  直通支管和分叉支管平面结构以及爆轰衰减和重起爆特征

    Table  1.   Plane structures of straight and collateral branch tubes as well as detonation decay and re-initiated characteristics in them

    α/(°)分叉管道平面结构直通支管 分叉支管
    p0/kPa传播特征p0/kPa传播特征
    30<30 kPavmin=(0.60~0.65)vCJ
    L≥16d
    17~21 kPavmin0.53vCJ
    不能重起爆
    30~40 kPavmin=(0.66~0.79)vCJ
    L≈14d
    25~30 kPavmin=(0.54~0.57)vCJ
    有重起爆趋势
    ≥40 kPavmin≥0.79vCJ
    L≤8d
    ≥35 kPavmin>0.53vCJ
    L=(11~16)d
    4518 kPavmin=0.74vCJ
    L≈10d
    速度波动大
    <55 kPavmin=(0.52~0.58)vCJ
    L≈18d
    >18 kPavmin≥0.86vCJ
    L≈10d
    ≥55 kPavmin≥0.65vCJ
    L≈10d
    90≥17 kPavmin≥0.84vCJ
    L=(1~2)d
    ≥17 kPavmin≥0.72vCJ
    L=(3~6)d
    下载: 导出CSV
  • [1] 范玮, 李建玲. 爆震组合循环发动机研究导论 [M]. 北京: 科学出版社, 2014: 80–86.
    [2] 魏雁昕, 李宝星, 翁春生. 分叉管内爆轰波传播特性实验研究 [J]. 航空兵器, 2017(2): 49–54. DOI: 10.19297/j.cnki.41-1228/tj.2017.02.010.

    WEI Y X, LI B X, WENG C S. Experimental study on propagation characteristics of detonation wave in bifurcated pipe [J]. Aero Weaponry, 2017(2): 49–54. DOI: 10.19297/j.cnki.41-1228/tj.2017.02.010.
    [3] HOPPER D R, KING P I, HOKE J L, et al. Development of a continuous branching pulsed detonation engine [C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA: AIAA, 2008. DOI: 10.2514/6.2008-112.
    [4] LIAW H J. Lessons in process safety management learned in the Kaohsiung gas explosion accident in Taiwan [J]. Process Safety Progress, 2016, 35(3): 228–232. DOI: 10.1002/prs.11818.
    [5] HOU L F, LI Y Z, QIAN X M, et al. Large-scale experimental investigation of the effects of gas explosions in underdrains [J]. Journal of Safety Science and Resilience, 2021, 2(2): 90–99. DOI: 10.1016/j.jnlssr.2021.03.001.
    [6] GUO C M, WANG C J, XU S L, et al. Cellular pattern evolution in gaseous detonation diffraction in a 90°-branched channel [J]. Combustion and Flame, 2007, 148(3): 89–99. DOI: 10.1016/j.combustflame.2006.11.001.
    [7] 王昌建, 徐胜利, 朱建士. 气相爆轰波在分叉管中传播现象的数值研究 [J]. 计算物理, 2006, 23(3): 317–324. DOI: 10.3969/j.issn.1001-246X.2006.03.009.

    WANG C J, XU S L, ZHU J S. Numerical study of gaseous detonation propagation through a bifurcated tube [J]. Chinese Journal of Computational Physics, 2006, 23(3): 317–324. DOI: 10.3969/j.issn.1001-246X.2006.03.009.
    [8] 王昌建, 徐胜利, 费立森. 气相爆轰波绕射流场显示研究 [J]. 爆炸与冲击, 2006, 26(1): 27–32. DOI: 10.11883/1001-1455(2006)01-0027-06.

    WANG C J, XU S L, FEI L S. Flow-field visualization for gaseous detonation diffraction experiments [J]. Explosion and Shock Waves, 2006, 26(1): 27–32. DOI: 10.11883/1001-1455(2006)01-0027-06.
    [9] WANG C J, XU S L, GUO C M. Gaseous detonation propagation in a bifurcated tube [J]. Journal of Fluid Mechanics, 2008, 599: 81–110. DOI: 10.1017/S0022112007009986.
    [10] HEIDARI A, WEN J. Numerical simulation of detonation failure and re-initiation in bifurcated tubes [J]. International Journal of Hydrogen Energy, 2017, 42(11): 7353–7359. DOI: 10.1016/j.ijhydene.2016.08.174.
    [11] JIANG C, PAN J F, ZHU Y J, et al. Influence of concentration gradient on detonation re-initiation in a bifurcated channel [J]. Fuel, 2022, 307: 121895. DOI: 10.1016/j.fuel.2021.121895.
    [12] 卢秦尉, 熊姹, 范玮. 稀释氩气对分叉管内爆震波绕射的影响 [J]. 推进技术, 2014, 35(11): 1566–1576. DOI: 10.13675/j.cnki.tjjs.2014.11.019.

    LU Q W, XIONG C, FAN W. Effects of argon dilution on detonation diffraction in branch tube [J]. Journal of Propulsion Technology, 2014, 35(11): 1566–1576. DOI: 10.13675/j.cnki.tjjs.2014.11.019.
    [13] 李生才, 冯长根, 赵同虎. 拐角角度对爆轰波拐角效应的影响 [J]. 爆炸与冲击, 1999, 19(4): 289–294.

    LI S C, FENG C G, ZHAO T H. The influence of the angle of convex corner on the effect of detonation waves [J]. Explosion and Shock Waves, 1999, 19(4): 289–294.
    [14] 恽寿榕, 马峰, 康敬. 爆轰波传播拐角效应的近似理论分析 [C]//中国空气动力学学会第十届物理气体动力学专业委员会会议论文集. 福建厦门: 中国空气动力学会, 2001: 3–8.
    [15] SHORT M, CHIQUETE C, BDZIL J B, et al. Detonation diffraction in a circular arc geometry of the insensitive high explosive PBX 9502 [J]. Combustion and Flame, 2018, 196: 129–143. DOI: 10.1016/j.combustflame.2018.06.002.
    [16] 赵曦, 孙校书, 刘诚. 弯管角度对爆轰波传播特性的影响 [J]. 海军航空工程学院学报, 2009, 24(5): 591–593,600. DOI: 10.3969/j.issn.1673-1522.2009.05.026.

    ZHAO X, SUN X S, LIU C. Effects on explosion wave spreading features by the angle of siphon [J]. Journal of Naval Aeronautical Engineering Institute, 2009, 24(5): 591–593,600. DOI: 10.3969/j.issn.1673-1522.2009.05.026.
    [17] GWAK M C, YOH J J. Effect of multi-bend geometry on deflagration to detonation transition of a hydrocarbon-air mixture in tubes [J]. International Journal of Hydrogen Energy, 2013, 38(26): 11446–11457. DOI: 10.1016/j.ijhydene.2013.06.108.
    [18] 齐骏, 潘振华, 张彭岗, 等. 弯管内连续旋转爆轰波传播模式实验研究 [J]. 工程热物理学报, 2017, 38(2): 435–439.

    QI J, PAN Z H, ZHANG P G, et al. Experimental study on the propagation mode of continuous rotating detonation through the bend [J]. Journal of Engineering Thermophysics, 2017, 38(2): 435–439.
    [19] MCBRIDE B J, GORDON S. Computer program for calculation of complex chemical equilibrium compositions and applications: Ⅱ. users manual and program description: 19960044559 [R]. Washington, USA: NASA, 1996.
    [20] 杜扬, 李国庆, 吴松林, 等. T型分支管道对油气爆炸强度的影响 [J]. 爆炸与冲击, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06.

    DU Y, LI G Q, WU S L, et al. Explosion intensity of gasoline-air mixture in the pipeline containing a T-shaped branch pipe [J]. Explosion and Shock Waves, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06.
    [21] LI L, LI J M, NGUYEN V B, et al. A study of detonation re-initiation through multiple reflections in a 90-degree bifurcation channel [J]. Combustion and Flame, 2017, 180: 207–216. DOI: 10.1016/j.combustflame.2017.03.004.
    [22] 喻健良, 高远, 闫兴清, 等. 初始压力对爆轰波在管道内传播的影响 [J]. 大连理工大学学报, 2014, 54(4): 413–417. DOI: 10.7511/dllgxb201404007.

    YU J L, GAO Y, YAN X Q, et al. Effect of initial pressure on propagation of detonation wave in round tube [J]. Journal of Dalian University of Technology, 2014, 54(4): 413–417. DOI: 10.7511/dllgxb201404007.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  77
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-17
  • 修回日期:  2022-08-07
  • 网络出版日期:  2022-10-25
  • 刊出日期:  2022-12-08

目录

    /

    返回文章
    返回