水中金属丝电爆炸动力学过程的零维模型

薛创 宁成 彭先觉

薛创, 宁成, 彭先觉. 水中金属丝电爆炸动力学过程的零维模型[J]. 爆炸与冲击, 2023, 43(5): 054202. doi: 10.11883/bzycj-2022-0171
引用本文: 薛创, 宁成, 彭先觉. 水中金属丝电爆炸动力学过程的零维模型[J]. 爆炸与冲击, 2023, 43(5): 054202. doi: 10.11883/bzycj-2022-0171
XUE Chuang, NING Cheng, PENG Xianjue. Zero-dimensional modeling of the underwater electrical explosion of wires[J]. Explosion And Shock Waves, 2023, 43(5): 054202. doi: 10.11883/bzycj-2022-0171
Citation: XUE Chuang, NING Cheng, PENG Xianjue. Zero-dimensional modeling of the underwater electrical explosion of wires[J]. Explosion And Shock Waves, 2023, 43(5): 054202. doi: 10.11883/bzycj-2022-0171

水中金属丝电爆炸动力学过程的零维模型

doi: 10.11883/bzycj-2022-0171
基金项目: 中国工程物理研究院创新基金(CX2019030)
详细信息
    作者简介:

    薛 创(1984- ),男,博士,副研究员,xue_chuang@iapcm.ac.cn

  • 中图分类号: O389

Zero-dimensional modeling of the underwater electrical explosion of wires

  • 摘要: 金属丝电爆炸包含丰富的物理内容,近年来国内的实验和理论研究取得了重要进展,理解该过程有助于完善Z箍缩及磁加载等离子体动力学过程的物理建模,校验物性参数。在自相似运动假设条件下,发展了冷启动计算的水中电爆炸丝零维动力学模型。从一维磁流体模型出发,推导了描述丝等离子体膨胀的零维动能方程和内能方程,采用实际气体状态方程和修正的李-莫尔电导率参数作为封闭条件,根据质量守恒及水中激波雨贡纽关系式获得了丝等离子体的边界条件。应用于水中铜丝电爆炸动力学过程和能量转化分析,结果表明:该零维模型的物理假设合理,在一定范围内改变丝直径等参数可产生不同的放电模式,与一维模型及实验结果符合较好,能够为同类实验的优化设计和数据分析提供参考。
  • 图  1  铜介质物性参数以及丝等离子体的轨迹

    Figure  1.  Physical properties parameters of copper and trajectory of wire plasma

    图  2  铜介质的电导率参数与实验结果[22]比较

    Figure  2.  Comparison of the electrical conductivity for copper with experiment results[22]

    图  3  电爆炸金属丝的等效电路模型

    Figure  3.  Circuit model for the electrically exploding wire

    图  4  丝等离子体边界及水中激波间断示意图

    Figure  4.  Schematic profile of the wire plasma interface and shock wave in the water

    图  5  电压和电流的时间演化曲线

    Figure  5.  Temporal evolution of voltages and currents

    图  6  等离子体边界和激波阵面的时间演化曲线

    Figure  6.  Temporal evolution of wire radius and shock front

    图  7  丝等离子体和水介质压力分布随时间的演化

    Figure  7.  Pressure histories of wire plasma and water

    图  8  等离子体密度和温度的时间演化曲线

    Figure  8.  Temporal evolution of density and temperature of the wire plasma

    图  9  能量及其源项随时间的演化曲线

    Figure  9.  Temporal evolution of Joule heating, work, internal energy and kinetic energy of the wire plasma

    图  10  压力及电阻率的时间演化曲线

    Figure  10.  Temporal evolution of pressure and resistivity

    图  11  丝半径改变下的电流及电压波形

    Figure  11.  Current and voltage waveform for wires with different radii

  • [1] 王莹. 电爆炸导体及其应用 [J]. 爆炸与冲击, 1986, 6(2): 184–192.

    WANG Y. Electrical exploding conductor and its applications [J]. Explosion and Shock Waves, 1986, 6(2): 184–192.
    [2] 欧阳登焕. 铜箔和铜网格的电爆炸参数 [J]. 爆炸与冲击, 1982, 2(4): 55–60.

    OUYANG D H. Electrically exploding parameters of copper foils and meshes [J]. Explosion and Shock Waves, 1982, 2(4): 55–60.
    [3] 张永民, 姚伟博, 邱爱慈, 等. 金属丝电爆炸现象研究综述 [J]. 高电压技术, 2019, 45(8): 2668–2680. DOI: 10.13336/j.1003-6520.hve.20180615006.

    ZHANG Y M, YAO W B, QIU A C, et al. Review of wire electrical explosion phenomena [J]. High Voltage Engineering, 2019, 45(8): 2668–2680. DOI: 10.13336/j.1003-6520.hve.20180615006.
    [4] 吴坚, 阴国锋, 范云飞, 等. 金属丝电爆炸研究进展-(Ⅱ): 水环境 [J]. 高电压技术, 2018, 44(12): 4003–4012. DOI: 10.13336/j.1003-6520.hve.20181126030.

    WU J, YIN G F, FAN Y F, et al. Review of electrical exploding wires-(Ⅱ): underwater [J]. High Voltage Engineering, 2018, 44(12): 4003–4012. DOI: 10.13336/j.1003-6520.hve.20181126030.
    [5] ANTONOV O, GILBURD L, EFIMOV S, et al. Generation of extreme state of water by spherical wire array underwaterelectrical explosion [J]. Physics of Plasmas, 2012, 19(10): 102702. DOI: 10.1063/1.4757984.
    [6] TANG T G, REN G W, GUO Z L, et al. An improved technique of expanding metal ring experiment under high explosive loading [J]. Review of Scientific Instruments, 2013, 84(4): 043908. DOI: 10.1063/1.4802255.
    [7] 张寒虹, 陈志福, 张弛. 水中电爆炸的实验研究 [J]. 爆炸与冲击, 2002, 22(4): 363–367.

    ZHANG H H, CHEN Z F, ZHANG C. Experimental reserches on underwater wire exploding [J]. Explosion and Shock Waves, 2002, 22(4): 363–367.
    [8] 伍俊英, 冯长根, 陈朗, 等. 金属电爆炸等离子体辐射温度测量 [J]. 战术导弹技术, 2006(5): 31–33. DOI: 10.3969/j.issn.1009-1300.2006.05.007.

    WU J Y, FENG C G, CHEN L, et al. Plasma radiation temperature measurement of metal explosion [J]. Tactical Missile Technology, 2006(5): 31–33. DOI: 10.3969/j.issn.1009-1300.2006.05.007.
    [9] 金涌, 栗保明. 铜丝电爆炸的光谱分析 [J]. 爆炸与冲击, 2014, 34(2): 252–256. DOI: 10.11883/1001-1455(2014)02-0252-05.

    JIN Y, LI B M. Spectral analysis on electrical explosion of copper wire [J]. Explosion and Shock Waves, 2014, 34(2): 252–256. DOI: 10.11883/1001-1455(2014)02-0252-05.
    [10] 朱鑫磊, 邹晓兵, 赵屾, 等. 电爆金属丝质量密度分布的演变过程 [J]. 强激光与粒子束, 2014, 26(4): 045014. DOI: 10.11884/HPLPB201426.045014.

    ZHU X L, ZOU X B, ZHAO S, et al. Evolution of mass density distribution of electrical explosion of metal wires [J]. High Power Laser and Particle Beams, 2014, 26(4): 045014. DOI: 10.11884/HPLPB201426.045014.
    [11] TUCKER T J. Behavior of exploding gold wires [J]. Journal of Applied Physics, 1961, 32(10): 1894–1900. DOI: 10.1063/1.1728259.
    [12] 石桓通, 邹晓兵, 赵屾, 等. 并联金属丝提高电爆炸丝沉积能量的数值模拟 [J]. 物理学报, 2014, 63(14): 145206. DOI: 10.7498/aps.63.145206.

    SHI H T, ZOU X B, ZHAO S, et al. Numerical simulation of energy deposition improvment in electrical wire explosion using a parallel wire [J]. Acta Physica Sinica, 2014, 63(14): 145206. DOI: 10.7498/aps.63.145206.
    [13] 郭军, 邱爱慈. 熔丝电爆炸过程电气特性的数字仿真 [J]. 系统仿真学报, 2006, 18(1): 20–22, 40. DOI: 10.3969/j.issn.1004-731X.2006.01.006.

    GUO J, QIU A C. Digital simulation for fuse electrical characteristics in process of electrically exploding [J]. Journal of System Simulation, 2006, 18(1): 20–22, 40. DOI: 10.3969/j.issn.1004-731X.2006.01.006.
    [14] BLOOMBERG H W, LAMPE M, COLOMBANT D G. Early expansion in exploding multiple wire arrays [J]. Journal of Applied Physics, 1980, 51(10): 5277–5284. DOI: 10.1063/1.327482.
    [15] 晁攸闯, 韩若愚, 李兴文, 等. 水中电爆炸放电通道特性0维数值模拟 [J]. 高电压技术, 2014, 40(10): 3112–3118. DOI: 10.13336/j.1003-6520.hve.2014.10.024.

    CHAO Y C, HAN R Y, LI X W, et al. Zero-dimensional simulation of discharge channel properties during underwater electrical wire explosion [J]. High Voltage Engineering, 2014, 40(10): 3112–3118. DOI: 10.13336/j.1003-6520.hve.2014.10.024.
    [16] ROSOSHEK A, EFIMOV S, GUROVICH V, et al. Evolution of a shock wave generated by underwater electrical explosion of a single wire [J]. Physics of Plasmas, 2019, 26(4): 042302. DOI: 10.1063/1.5092321.
    [17] STEPHENS J, NEUBER A. Exploding-wire experiments and theory for metal conductivity evaluation in the sub-eV regime [J]. Physical Review E, 2012, 86(6): 066409. DOI: 10.1103/PhysRevE.86.066409.
    [18] CHUNG K J, LEE K, HWANG Y S, et al. Numerical model for electrical explosion of copper wires in water [J]. Journal of Applied Physics, 2016, 120(20): 203301. DOI: 10.1063/1.4968396.
    [19] MORE R M, WARREN K H, YOUNG D A, et al. A new quotidian equation of state (QEOS) for hot dense matter [J]. The Physics of Fluids, 1988, 31(10): 3059–3078. DOI: 10.1063/1.866963.
    [20] LEE Y T, MORE R M. An electron conductivity model for dense plasmas [J]. The Physics of Fluids, 1984, 27(5): 1273–1286. DOI: 10.1063/1.864744.
    [21] DESJARLAIS M P. Practical improvements to the lee-more conductivity near the metal-insulator transition [J]. Contributions to Plasma Physics, 2001, 41(2/3): 267–270. DOI: 10.1002/1521-3986(200103)41:2/3<267::AID-CTPP267>3.0.CO;2-P.
    [22] DESILVA A W, KATSOUROS J D. Electrical conductivity of dense copper and aluminum plasmas [J]. Physical Review E, 1998, 57(5): 5945–5951. DOI: 10.1103/PhysRevE.57.5945.
    [23] STEPHENS J, DICKENS J, NEUBER A. Semiempirical wide-range conductivity model with exploding wire verification [J]. Physical Review E, 2014, 89(5): 053102. DOI: 10.1103/PhysRevE.89.053102.
  • 加载中
图(11)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  91
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 修回日期:  2022-07-05
  • 网络出版日期:  2022-07-07
  • 刊出日期:  2023-05-05

目录

    /

    返回文章
    返回