Processing math: 100%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

快速烤燃条件下B炸药战斗部的临界泄压面积

张克斌 李文彬 郑宇 姚文进 赵昌方 洪豆

贾古寨, 哈跃, 庞宝君, 管公顺, 祖士明. 玄武岩/Kevlar纤维布填充防护结构撞击极限及损伤特性[J]. 爆炸与冲击, 2016, 36(4): 433-440. doi: 10.11883/1001-1455(2016)04-0433-08
引用本文: 张克斌, 李文彬, 郑宇, 姚文进, 赵昌方, 洪豆. 快速烤燃条件下B炸药战斗部的临界泄压面积[J]. 爆炸与冲击, 2023, 43(5): 052301. doi: 10.11883/bzycj-2022-0234
Jia Guzhai, Ha Yue, Pang Baojun, Guan Gongshun, Zu Shiming. Ballistic limit and damage properties of basalt/Kevlar stuffed shield[J]. Explosion And Shock Waves, 2016, 36(4): 433-440. doi: 10.11883/1001-1455(2016)04-0433-08
Citation: ZHANG Kebin, LI Wenbin, ZHENG Yu, YAO Wenjin, ZHAO Changfang, HONG Dou. Critical vent area of a Comp-B warhead under fast cook-off[J]. Explosion And Shock Waves, 2023, 43(5): 052301. doi: 10.11883/bzycj-2022-0234

快速烤燃条件下B炸药战斗部的临界泄压面积

doi: 10.11883/bzycj-2022-0234
详细信息
    作者简介:

    张克斌(1995- ),男,博士研究生,kb2018@njust.edu.cn

    通讯作者:

    李文彬(1965- ),男,博士,教授,lwb2000cn@njust.edu.cn

  • 中图分类号: O389;TQ560.1

Critical vent area of a Comp-B warhead under fast cook-off

  • 摘要: 为了确定战斗部装药在快速烤燃条件下能稳定燃烧的临界泄压面积,基于质量守恒定律和气体状态方程,建立了战斗部壳体内考虑炸药初始温度和排气孔排气的气体压力增长模型。以B炸药圆柱战斗部为研究对象,研究了炸药意外点火后能稳定燃烧的AV0/SB(临界泄压面积/炸药外表面积)确定方法,并与实验值进行了比较。结果表明,本文建立的模型能够很好地预测B炸药战斗部的临界泄压面积。研究了战斗部炸药装药表面积、炸药初始温度、空气体积占比和炸药燃速对AV0/SB的影响,并将不同温度的模型预测值与实验值进行了比较。结果表明:炸药装药表面积对AV0/SB基本没有影响;AV0/SB与温度和炸药燃速成正相关,与空气体积占比成负相关;不同温度的模型预测值AV0/SB与实验值吻合较好。
  • 随着航天事业的发展,将会有越来越多的卫星等航天器在轨运行,这些卫星的运行区域大都在空间碎片密集区域,受空间碎片撞击损伤的威胁很高。载人航天器的运行轨道也处于空间碎片密集区域,而空间碎片撞击将直接影响到航天员的安全,决定载人航天任务的成败。为了保障在轨的安全,航天器必须具备一定的防护能力。目前,在航天器空间碎片防护结构上采用了Whipple防护结构、多层冲击防护结构、网格双防护屏结构及填充防护结构等[1-4],这些防护结构普遍采用了高性能纤维材料,如Nextel、Kevlar,且Nextel/Kevlar填充防护结构几乎覆盖了国际空间站的全部高风险区域。尽管对玄武岩及Kevlar纤维布填充防护结构超高速撞击损伤和防护性能已进行了大量研究,但是由于实验中填充材料及填充层的面密度各不相同,且实验条件不统一,因此所得结论也大相径庭[5-7]。同时,实验中所采用的弹丸直径过于单一,没有准确地给出玄武岩/Kevlar纤维布填充防护结构相对于Nextel/Kevlar填充防护结构及三层铝防护结构的防护性能的优劣。此外,现有文献中仅对玄武岩/Kevlar纤维布填充防护结构的损伤有一些零星的报道,并没有给出造成其不同损伤形貌的具体原因[6]

    本文中,针对玄武岩/Kevlar纤维布填充防护结构进行不同直径弹丸的超高速撞击实验,拟合撞击极限曲线,并与Nextel/Kevlar填充防护结构及三层铝防护结构的撞击极限曲线进行对比,分析玄武岩/Kevlar纤维布填充防护结构的防护性能;研究防护屏、填充层及舱壁的损伤形式,分析造成防护屏、填充层与舱壁不同损伤形貌的原因,探索玄武岩/Kevlar纤维布填充防护结构的防护机理。

    超高速撞击实验采用二级轻气炮发射装置,其中二级轻气炮一级高压泵管口径为57 mm,二级发射管口径为10 mm。一级驱动气体为氮气,二级驱动气体为氢气。速度测量采用磁感应方法,测量精度高于2%。

    玄武岩/Kevlar纤维布填充防护结构形式如图 1所示,第1层防护屏为1 mm厚的6061-T6铝合金板,填充层由3层玄武岩纤维布和3层Kevlar纤维布组成,相对于弹丸撞击方向而言,玄武岩纤维布在前,Kevlar纤维布在后,填充层的面密度为0.168 g/cm2,舱壁为2.5 mm厚的5A06铝合金板,防护结构总的面密度为1.106 g/cm2。防护结构总防护间距(即舱壁前表面到最外层防护屏背面的距离)为100 mm, 填充层位于最外层铝合金防护屏和舱壁中间,即处于总防护间距一半的位置。实验中使用3.97、4.76、6.35和7.94 mm等4种不同直径的2017铝合金弹丸撞击玄武岩/Kevlar纤维布填充防护结构,撞击速度为0.6~5.0 km/s,撞击角为0°。

    图  1  玄武岩/Kevlar纤维布填充防护结构示意图
    Figure  1.  Experimental configuration of basalt/Kevlar stuffed Whipple shield

    玄武岩/Kevlar布填充防护结构超高速撞击实验结果见表 1,表中dpvDh分别为弹丸直径、撞击速度和防护屏穿孔直径。实验过程中,玄武岩/Kevlar纤维布填充防护结构防护效果的判定以铝合金舱壁是否穿孔、剥落为评价依据:舱壁无穿孔、无剥落,防护有效;有穿孔、剥落,防护失效。如果舱壁出现微裂纹损伤形式,则认为防护失效。

    表  1  玄武岩/Kevlar纤维填充防护结构超高速撞击实验结果
    Table  1.  Results of hypervelocity impact tests for basalt/Kevlar stuffed shields
    实验
    编号
    dp/mm v/(km·s-1) Dh/mm 舱壁
    损伤
    防护
    效果
    SW-33 7.94 0.650 8.15 鼓包 有效
    SW-22 7.94 0.680 8.26 鼓包 有效
    SW-32 7.94 0.750 8.42 穿孔 失效
    SW-34 7.94 0.868 8.61 穿孔 失效
    SW-26 7.94 0.977 8.73 穿孔 失效
    SW-24 7.94 1.076 8.41 穿孔 失效
    SW-23 7.94 1.097 8.65 穿孔 失效
    SW-01 6.35 0.818 6.81 鼓包 有效
    SW-02 6.35 0.940 7.74 微裂纹 失效
    SW-04 6.35 0.974 7.01 微裂纹 失效
    SW-05 6.35 1.112 7.30 微裂纹 失效
    SW-03 6.35 1.149 7.09 穿孔 失效
    SW-25 6.35 1.259 7.66 穿孔 失效
    SW-13 4.76 1.374 6.04 鼓包 有效
    SW-12 4.76 1.525 6.06 开裂 失效
    SW-11 4.76 1.595 6.06 穿孔 失效
    SW-08 3.97 1.211 5.58 鼓包 有效
    SW-09 3.97 1.776 5.62 开裂 失效
    SW-07 3.97 1.972 5.74 穿孔 失效
    SW-06 3.97 2.242 6.05 穿孔 失效
    SW-10 6.35 4.438 10.51 穿孔 失效
    SW-47 6.35 4.443 10.34 穿孔 失效
    SW-49 6.35 4.450 10.55 微裂 失效
    SW-48 6.35 4.700 10.63 鼓包 有效
    SW-18 4.76 3.205 7.76 穿孔 失效
    SW-40 4.76 3.550 7.56 穿孔 失效
    SW-19 4.76 3.572 7.51 穿孔 失效
    SW-20 4.76 3.572 7.92 双鼓包 有效
    SW-45 4.76 3.660 8.05 微鼓包 有效
    SW-36 4.76 3.910 8.31 微鼓包 有效
    SW-42 3.97 2.660 6.32 穿孔 失效
    SW-43 3.97 2.660 6.55 微裂纹 失效
    SW-16 3.97 2.809 6.44 穿孔 失效
    SW-46 3.97 2.860 6.71 微裂纹 失效
    SW-17 3.97 2.907 6.60 微裂纹 失效
    SW-15 3.97 3.379 6.90 微鼓包 有效
    SW-14 3.97 3.572 7.09 鼓包 有效
    下载: 导出CSV 
    | 显示表格

    撞击极限曲线是基于撞击极限方程得到的描述防护结构的临界弹丸直径dcr与撞击参数、结构参数之间关系的曲线,其是评价防护结构防护性能的重要手段,同样也是航天器防护结构设计的重要依据。由于弹丸超高速撞击填充防护结构,在不同速度区段呈现不同的动力学特性,因此撞击极限方程分为3段函数来表达。填充防护结构撞击极限方程可表示为:

    弹道区(vvL):

    dcr=CLFρk1pvk2cosk3θ

    对于Nextel/Kevlar填充防护结构而言,几何模型函数:

    F=tw(σ/275.8)0.5+cbmb

    液化/气化区(vvH):

    dcr=CH(twρw)k4Sk5(σ/σ0)k6ρk7bρk8pvk9cosk10θ

    破碎区(vLvvH):

    dcr=dcr,vHvHvvHvL+dcr,vLvvLvHvL

    上述方程中:CLCHcbαk1~k10为撞击极限方程参数; vLvH为弹道区、破碎区、熔化/气化区3区的临界速度(km/s),分别称为第1速度阈值和第2速度阈值; ρpρbρw分别为弹丸、防护屏和舱壁密度(g/cm3); S为防护屏间距(cm); σ为舱壁材料极限屈服强度(MPa); tw为舱壁厚度(cm); θ为撞击角(°)。

    对于特定材料弹丸超高速撞击某一填充防护结构,当撞击角为0°时,几何模型函数、弹丸密度、防护屏密度、舱壁密度、舱壁厚度及防护间距等参数均为常数,因此,撞击极限方程简化为:弹道区,dcr=CLvk2;液化/汽化区,dcr=CHvk2;破碎区, dcr=CMvk2; 其中CL,CH,CM为待定系数。

    对于本文玄武岩/Kevlar纤维布填充防护结构,根据表 1实验结果,拟合得到预测撞击极限方程为:弹道区(v≤2.528 km/s), dcr=0.605v-0.735; 破碎区, dcr=0.16v-0.105。

    图 2给出了玄武岩/Kevlar纤维布填充防护结构的预测撞击极限曲线和同等面密度的Nextel/Kevlar填充防护结构的撞击极限曲线[8-9]及三层铝防护屏的撞击极限曲线[10]。由图 2可知,玄武岩/Kevlar纤维布填充防护结构的撞击极限曲线与Nextel/Kevlar填充防护结构和三层铝防护结构的撞击极限曲线整体趋势基本相同。弹道区时,3种防护结构的撞击极限曲线几乎重合,表明在该碰撞速度范围内,在防护结构面密度相等的条件下,3种防护构型的防护性能相当。破碎区时,玄武岩/Kevlar纤维布填充防护结构的撞击极限曲线始终处于最上端,Nextel/Kevlar填充防护结构的撞击极限曲线位于中间,三层铝防护屏的撞击极限曲线则处于最下端。这表明,在防护结构面密度相等的条件下,三层铝防护屏的防护性能最差,玄武岩/Kevlar纤维布填充防护结构的防护性能最好。总体而言,纤维织物填充防护结构的防护性能优于三层铝防护屏的防护性能,玄武岩/Kevlar纤维布填充防护结构的防护性能已经达到了Nextel/Kevlar填充防护结构的防护水平,可以作为一种新的用于空间碎片防护的填充防护结构。

    图  2  玄武岩/Kevlar纤维布填充防护结构撞击极限曲线
    Figure  2.  Ballistic limit curves of basalt/Kevlar stuffed shield
    2.2.1   防护屏穿孔特性

    最外层防护屏穿孔损伤形貌如图 3所示,其均为圆形穿孔损伤。当撞击速度较低时,防护屏正面孔口边缘有瓣形突缘(堆积突起);防护屏背面也存在突缘,并有明显的后翘拉伸变形,其为充塞边缘端口。随着撞击速度的升高,处于破碎区段时,防护屏正面瓣形突起产生飞散,并减少;背面孔边缘也产生同正面一样的堆积飞散。其主要原因是弹丸撞击铝合金防护屏,在撞击界面产生巨大的冲击压力,防护屏材料在冲击压缩波的扰动下产生大量能量(热量),发生熔化,体积迅速增大,并在剪切流动的作用下,以很高的速度飞溅出去,未飞溅出去的材料粘附于圆孔周边,形成了防护屏正面的瓣形突缘。撞击速度愈高,剪切流动力愈大,防护屏熔化材料飞溅速度也愈高,使得残留粘附于孔周边的材料减少。撞击速度较低时,防护屏在拉伸波的扰动下产生整体变形,形成鼓包,并由高速弹丸充塞出一块防护屏材料,形成拉伸形突缘断口;随着撞击速度的增加,弹丸贯穿防护屏的速度大于拉伸波扰动防护屏产生整体变形的速度,使得防护屏未产生整体变形(鼓包)前便被充塞出一块,由于应力做功产生大量能量,防护屏材料熔化,熔化材料在剪切力的作用下沿弹丸飞行方向飞溅。

    图  3  防护屏超高速撞击穿孔损伤
    Figure  3.  Perforation damage in the first bumper by hypervelocity impact

    图 4给出了防护屏穿孔直径随撞击速度的变化曲线。弹丸直径一定时,穿孔直径随撞击速度的升高而增大,呈非线性变化。目前,预测穿孔直径的经验公式主要有Maiden[11]、Nysmith[12]、Sawle[13]、Guan[14]等经验公式。由图 4可知,对于直径为3.97 mm的铝球撞击铝合金防护屏,上述穿孔直径方程并不适用于本文实验结果。其中,Swale[13]公式高估了防护屏穿孔直径,Maiden[11]、Nysmith[12]与Guan[14]3个公式则低估了防护屏穿孔直径,且4个方程预测结果与本文实验结果之间误差均大于20%,最大误差超过50%。综上所述,由于实验和预测公式间选用的材料在性能方面存在差异,预测结果也会带来较大的误差,因此,有必要针对本文材料进行超高速撞击特性研究。

    图  4  防护屏穿孔直径随撞击速度的变化
    Figure  4.  Hole diameter in the first bumper via impact velocity
    2.2.2   填充层损伤特性

    弹丸击穿防护屏后,会产生飞散碎片,飞散碎片会对填充层造成不同形式的损伤。图 5(a)表明,当撞击速度处于低速区时,填充层前面的玄武岩纤维面层上有较规则的方孔,方孔四边分别平行于玄武岩纤维布的经纱和纬纱,且纤维断裂面平滑,纱线断口附近没有出现明显的弯曲变形;背面Kevlar面层也产生了穿孔,但其断裂纱线产生了较大的拉伸变形,形成球冠状突起,遮住贯穿孔,孔周边纱线被弹丸推开,形成倒圆锥式凹陷,并伴有少量抽纱。随着撞击速度接近第1速度阈值时,玄武岩纤维面层上出现许多孔,如图 5(b)(c)所示,其中弹丸主体在填充层上形成一个方形大孔,而小碎片则在周围形成一些小孔,大小沿径向向外逐渐减小。大孔断面纤维整齐光滑,周围小孔断面不一。Kevlar填充层背面为一个方孔,四边也平行于Kevlar面层的经、纬纱,但断口不是很平滑,纱线拉伸变形较大,且有些纱线明显被拉长但没有断裂,产生推移变形,形成倒圆锥式突起,并伴有少量抽纱。

    图  5  填充层超高速撞击损伤
    Figure  5.  Hypervelocity impact damage of stuffed layer

    当撞击速度为破碎区时,填充层正面损伤为圆形大孔,周围有许多小孔呈散射分布;玄武岩和Kevlar断裂的纱线向弹丸飞行的反向翻转,断口不整齐,有毛边。填充层背面为近似方形孔,伴有撕裂,断口不整齐,Kevlar纤维布有明显抽纱现象,如图 5(d)所示。

    玄武岩布和Kevlar布的细观损伤形态如图 6所示。玄武岩纤维作为一种陶瓷纤维材料,脆性很强,破坏时发生脆性断裂,随着撞击速度的增高,其纤维断裂截面趋于规整;而Kevlar作为一个高分子聚合物,具有较大韧性,随着撞击速度的提高,应变率升高,Kevlar纤维丝强度增高,韧性减小,侧向劈裂和原纤化加剧。此外,Kevlar纤维材料具有较低的玻璃化温度,撞击过程中Kevlar纤维发生明显的热塑性变形。

    图  6  填充层纤维丝微损伤形态
    Figure  6.  Micro-damage of filaments in stuffed layer

    以上分析表明,玄武岩/Kevlar纤维布填充层通过纤维丝的断裂和拉伸变形吸收弹丸撞击能量。另外,根据文献[5]可知,玄武岩纤维布具有切割、破碎弹丸的能力,使大碎片或弹丸进一步破碎,且不产生新的大碎片,这也正是玄武岩/Kevlar纤维布填充防护结构防护性能优于Nextel/Kevlar填充防护结构和三层铝防护屏的重要原因。

    2.2.3   舱壁损伤特性

    图 7给出了不同速度区段舱壁的超高速撞击损伤形貌。弹丸撞击速度低于第1速度阈值时,弹丸仅产生塑性变形,以完整的形态撞击舱壁,造成舱壁穿孔或撞击坑损伤;随着撞击速度的提高,弹丸发生少量破碎,造成舱壁贯穿孔或大撞击坑周围形成小撞击坑。随着弹丸撞击速度的继续提高,当其超过第1速度阈值后,舱壁中心区域损伤最严重,并沿着径向向外损伤程度逐渐减轻。

    图  7  舱壁的超高速撞击损伤
    Figure  7.  Hypervelocity impact damage of rear wall

    此外,击穿防护屏后,弹丸形成碎片云,并发生熔化或气化,熔化/气化的碎片云具有较高的温度和速度,当撞击到面层纤维丝时,产生较高的冲击压力,并伴有多种冲击现象,包括弹性波、塑性波和流动波。而纤维丝在横波和纵波的作用下发生解体,以短纤维、纤维团或纤维束的形式喷向舱壁,使舱壁损伤区有黑色喷溅物和丝状物,如图 7(c)所示,其中黑色喷溅物为金属铝液化或气化喷射物和填充层纤维丝烧蚀后的喷射物;丝状物为Kevlar纤维丝,其都以束状或团状出现,一般位于黑色喷溅区边界处。随着撞击速度的提高,这些丝状物逐渐被烧蚀碳化,由于碳化粉末仍有较高的温度,其可以造成舱壁正面烧蚀损伤,如图 7(d)所示。

    玄武岩/Kevlar纤维布填充防护结构的防护机理如图 8所示,弹丸撞击铝合金防护屏,在撞击界面产生巨大的冲击压力。

    图  8  玄武岩/Kevlar纤维布填充防护结构防护机理
    Figure  8.  Protection mechanism of basalt/Kevlar stuffed shields

    如撞击速度较低时,冲击压力不足以使弹丸破碎,弹丸贯穿防护屏,头部产生塑性变形,飞行速度降低,其继续撞击纤维布填充层,纤维面层主要通过玄武岩纤维丝的剪切断裂和Kevlar纤维丝拉伸变形消耗弹丸动能,使弹丸剩余能量造成的舱壁损伤减轻。

    如果撞击速度较高,弹丸和防护屏在冲击压缩波扰动下破碎,并使弹丸和防护屏材料产生液化或者气化,形成高温碎片云,高温碎片云撞击纤维布填充层,根据2.2.2和2.2.3节可知,玄武岩纤维丝切割碎片,使碎片进一步细化,Kevlar纤维丝对细化碎片进行拦截。

    此外,高温高速碎片云使纤维丝体解,烧蚀并粉末化,在舱壁正面形成较大喷溅区,喷溅区面积较大,使得作用在舱壁单位面积上的能量较小,从而减小了对舱壁的损伤。

    综上所述,玄武岩/Kevlar纤维布填充防护结构通过填充层消耗、吸收和分散弹丸或碎片云的能量,以起到更好的防护效果。

    (1) 通过超高速撞击实验研究了玄武岩/Kevlar纤维布填充防护结构的撞击极限,与同等面密度的Nextel/Kevlar填充防护结构和三层铝防护屏进行比较,得出玄武岩/Kevlar纤维布填充防护结构的防护性能优于三层铝防护屏的防护性能,且也已经达到Nextel/Kevlar填充防护结构的防护水平,完全可以作为一种新的用于空间碎片防护的填充防护结构。

    (2) 研究了防护屏、填充层和舱壁的超高速撞击损伤特性,分析了造成防护屏、填充层与舱壁不同损伤形貌的原因,初步探索了玄武岩/Kevlar填充防护结构的防护机理。玄武岩纤维布破碎弹丸,使弹丸或碎片破碎,同时连同Kevlar纤维布一起消耗、吸收弹丸的撞击能量,使玄武岩/Kevlar纤维布填充防护结构具有和Nextel/Kevlar填充防护结构类似的防护效果,优于三层铝防护屏的防护性能。

    下一步工作重点是,进一步扩大超高速撞击实验的速度范围,深入分析撞击极限的弹丸形状效应。

  • 图  1  战斗部结构示意图

    Figure  1.  Schematic diagrams of the cylindrical charge structure

    图  2  排气面积与炸药初始燃烧面积比为0.4%时战斗部内部压力随时间变化曲线

    Figure  2.  The variation curve of pressure in the warhead with time when the ratio of vent area to initial combustion area of explosive is 0.4%

    图  3  不同排气面积与炸药初始燃烧面积比时战斗部内气体压力随时间的变化曲线

    Figure  3.  The variation curves of pressure with time at different ratios of vent area to initial combustion area of explosive

    图  4  不同排气面积与炸药初始燃烧面积比时战斗部内部的压力峰值

    Figure  4.  The pressure peaks in the warhead at different ratios of vent area to initial combustion area of explosive

    图  5  峰值压力低于10 MPa的排气面积与炸药初始燃烧面积比

    Figure  5.  The ratios of vent area to initial combustion area of explosive with peak pressure below 10 MPa

    图  6  模型预测结果与文献[20]中实验值的对比

    Figure  6.  Comparison of the results predicted by the developed model with experimental values obtained from reference [20]

    图  7  战斗部不同装药表面积对应的面积比临界值

    Figure  7.  Critical values of area ratios corresponding to different charge surface areas

    图  8  战斗部装药不同初始温度对应的面积比临界值

    Figure  8.  Critical area ratios corresponding to different initial temperatures of the explosive charge

    图  9  不同空气体积占比对应的面积比临界值

    Figure  9.  Critical area ratios corresponding to different air volume ratios

    图  10  不同炸药常数对应的面积比临界值

    Figure  10.  Critical area ratios corresponding to different explosive constants

    表  1  战斗部及装药尺寸参数

    Table  1.   Dimensional parameters of cylindrical charge structure

    部位 直径/mm长度/mm
    战斗部内腔27108
    炸药装药27104.76
    空气273.24
    泄压孔5.054
    5.651
    6.190
    6.686
    7.148
    下载: 导出CSV

    表  2  炸药性能参数

    Table  2.   Explosive performance parameters

    α/(m∙s−1∙Pa−1)AB/K−1M/(kg∙mol−1)TB/Kk
    0.01×10−612.040.02350.02825001.27
    下载: 导出CSV

    表  3  不同炸药装药表面积的战斗部参数

    Table  3.   Cylindrical charge structure parameters for different explosive charge surface areas

    序号D0/mmL/mmL0/mmSB/mm2
    127104.7610810 031.16
    217104.761086 048.88
    337104.7610814 327.60
    42775.66787 562.81
    527133.8613812 499.51
    下载: 导出CSV

    表  4  不同空气体积占比的战斗部参数

    Table  4.   Parameters of cylindrical charge for different air volume ratios

    序号D0/mmL/mmL0/mmSB/mm2β/%
    127104.7610810 031.163
    227104.76105.8210 031.161
    327104.7611810 031.1611.22
    427104.7612810 031.1618.16
    527104.7613810 031.1624.09
    627104.7614810 031.1629.22
    727104.76174.610 031.1640
    827104.76209.5210 031.1650
    下载: 导出CSV
  • [1] 许蕾, 张鹏. 国内外钝感弹药评估标准的发展与分析 [J]. 航天标准化, 2010(4): 35–37. DOI: 10.19314/j.cnki.1009-234x.2010.04.009.

    XU L, ZHANG P. Development and analysis of evaluation criteria for insensitive munitions at home and abroad [J]. Aerospace Standardization, 2010(4): 35–37. DOI: 10.19314/j.cnki.1009-234x.2010.04.009.
    [2] 黄亨建, 路中华, 刘晓波等. 欧美钝感弹药技术发展现状与趋势 [J]. 含能材料, 2017, 25(8): 618–621. DOI: 10.11943/j.issn.1006-9941.2017.08.00X.

    HUANG H J, LU Z H, LIU X B, et al. Development status and trend of insensitive ammunition technology in Europe and America [J]. Energetic Materials, 2017, 25(8): 618–621. DOI: 10.11943/j.issn.1006-9941.2017.08.00X.
    [3] 马晗晔, 王雨时, 王光宇. 国外不敏感炸药综述 [J]. 兵器装备工程学报, 2020, 41(5): 166–174. DOI: 10.11809/bqzbgcxb2020.05.032.

    MA H Y, WANG Y S, WANG G Y. Review of insensitive explosives abroad [J]. Journal of Ordnance Equipment Engineering, 2020, 41(5): 166–174. DOI: 10.11809/bqzbgcxb2020.05.032.
    [4] 梁斌, 钱立新, 牛公杰. 常规弹药热缓解技术研究初步分析 [C]//2014(第六届)含能材料与钝感弹药技术学术研讨会. 成都, 2014: 218–223.

    LIANG B, QIAN L X, NIU G J. Preliminary analysis on thermal mitigation technology of conventional ammunition [C]// Proceedings of the Symposium on Energetic Materials and Insensitive Ammunition Technology. Chengdu, Sichuan, China, 2014: 218–223.
    [5] 沈飞, 王胜强, 王辉. HMX基含铝炸药装药慢烤缓释结构设计及验证 [J]. 含能材料, 2019, 27(10): 861–866. DOI: 10.11943/CJEM2018273.

    SHEN F, WANG S Q, WANG H. Design and verification of slow-baking and sustained-release structure of HMX-based aluminum-containing explosive charge [J]. Energetic Materials, 2019, 27(10): 861–866. DOI: 10.11943/CJEM2018273.
    [6] 沈飞, 王胜强, 王辉. 不同约束条件下HMX基含铝炸药的慢烤响应特性 [J]. 火炸药学报, 2019, 42(4): 385–390. DOI: 10.14077/j.issn.1007-7812.2019.04.012.

    SHEN F, WANG S Q, WANG H. Slow-baking response characteristics of HMX-based aluminum-containing explosives under different constraints [J]. Chinese Journal of Explosives and Propellants, 2019, 42(4): 385–390. DOI: 10.14077/j.issn.1007-7812.2019.04.012.
    [7] 闫丽, 王雨时, 闻泉, 等. 国外钝感弹药技术新进展 [J]. 飞航导弹, 2017(8): 9–51. DOI: 10.16338/j.issn.1009-1319.2017.08.09.

    YAN L, WANG Y S, WEN Q, et al. New progress of foreign insensitive ammunition technology [J]. Airborne Missile, 2017(8): 9–51. DOI: 10.16338/j.issn.1009-1319.2017.08.09.
    [8] 徐瑞, 智小琦, 于永利, 等. 热刺激下不同结构引信的响应机理 [J]. 高压物理学报, 2021, 35(5): 127–137. DOI: 10.11858/gywlxb.20210720.

    XU R, ZHI X Q, YU Y L, et al. Response mechanism of fuzes with different structures under thermal stimulation [J]. Chinese Journal of High Voltage Physics, 2021, 35(5): 127–137. DOI: 10.11858/gywlxb.20210720.
    [9] 陈朗, 李贝贝, 马欣. DNAN炸药烤燃特征 [J]. 含能材料, 2016, 24(1): 6. DOI: 10.11943/j.issn.1006-9941.2016.01.004.

    CHEN L, LI B B, MA X. Cook-off characteristics of DNAN explosives [J]. Energetic Materials, 2016, 24(1): 6. DOI: 10.11943/j.issn.1006-9941.2016.01.004.
    [10] 吴松. 火烧环境下含炸药结构热响应行为的数值模拟研究[D]. 绵阳: 中国工程物理研究院, 2014. 51–63.

    WU S. Numerical simulation of thermal response behavior of explosive-containing structures in fire environment [D]. Mianyang, Sichuan, China: China Academy of Engineering Physics, 2014: 51–63.
    [11] 徐瑞. 热刺激下缓释结构与炸药响应烈度关系的研究[D]. 太原: 中北大学, 2021: 45–53. DOI: 10.27470/d.cnki.ghbgc.2021.000588.

    XU R. Study on the relationship between sustained-release structure and explosive response intensity under thermal stimulation [D]. Taiyuan, Shanxi, China: North University of China, 2021: 45–53. DOI: 10.27470/d.cnki.ghbgc.2021.000588.
    [12] ZHU M, WANG S G, HUANG H, et al. Numerical and experimental study on the response characteristics of warhead in the fast cook-off process [J]. Defence Technology, 2021, 17(4): 1444–1452. DOI: 10.3969/j.issn.2214-9147.2021.04.030.
    [13] 陈科全, 黄亨建, 路中华, 等. 一种弹体排气缓释结构设计方法与试验研究 [J]. 弹箭与制导学报, 2015, 35(4): 4. DOI: 10.15892/j.cnki.djzdxb.2015.04.004.

    CHEN K Q, HUANG H J, LU Z H, et al. Design method and experimental study of a slow-release structure for projectile exhaust [J]. Journal of Rocket and Guidance, 2015, 35(4): 4. DOI: 10.15892/j.cnki.djzdxb.2015.04.004.
    [14] 徐瑞, 智小琦, 王帅. 缓释结构对B炸药烤燃响应烈度的影响 [J]. 高压物理学报, 2021, 35(3): 035201. DOI: 10.11858/gywlxb.20200657.

    XU R, ZHI X Q, WANG S. Influence of sustained-release structure on the response intensity of B explosives [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035201. DOI: 10.11858/gywlxb.20200657.
    [15] 邓海, 沈飞, 梁争峰, 等. 不同约束条件下B炸药的慢烤响应特性 [J]. 火炸药学报, 2018, 41(5): 6. DOI: 10.14077/j.issn.1007-7812.2018.05.008.

    DENG H, SHEN F, LIANG Z F, et al. Slow-baking response characteristics of B explosive under different constraints [J]. Chinese Journal of Explosives and Propellants, 2018, 41(5): 6. DOI: 10.14077/j.issn.1007-7812.2018.05.008.
    [16] BRADLEY D, MITCHESON A. The venting of gaseous explosions in spherical vessels. Ⅱ: theory and experiment [J]. Combustion and Flame, 1978, 32: 237–255. DOI: 10.1016/0010-2180(78)90098-6.
    [17] GRAHAM K J. Mitigation of fuel fire threat to large rocket motors by venting [R]. California, United States: Air Force Research Laboratory Edwards Air Force Base, 2010.
    [18] SAHIN H, NARIN B, FUNDA D. Development of a design methodology against fast cook-off threat for insensitive munitions [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 580–587. DOI: 10.1002/prep.201500333.
    [19] VETTER R F. Reduction of fuel fire cook-off hazard of rocket motors [R]. Naval Air Weapons Station China Lake, 1977.
    [20] MCCHRISTIAN L, CISTANO J, FOXX C, et al. Vulnerability of nuclear weapon systems to fire studies of burning explosives: RTD-TDR-63-3086 [R]. Chicago: Illinois Institute of Technology, 1963.
    [21] 周捷. 熔铸混合炸药慢速烤燃机理研究[D]. 太原: 中北大学, 2020. DOI: 10.27470/d.cnki.ghbgc.2020.000464.

    ZHOU J. Study on the slow roasting mechanism of molten-cast mixed explosives [D]. Taiyuan, Shanxi, China: North University of China, 2020. DOI: 10.27470/d.cnki.ghbgc.2020.000464.
    [22] 张俊, 刘荣忠, 郭锐, 等. 高速旋转飞行弹丸外弹道表面温度场研究 [J]. 兵工学报, 2013, 34(4): 425–430. DOI: 10.3969/j.issn.1000-1093.2013.04.007.

    ZHANG J, LIU R Z, GUO R, et al. Research on the temperature field of the outer ballistic surface of the high-speed rotating flying projectile [J]. Acta Armamentarii, 2013, 34(4): 425–430. DOI: 10.3969/j.issn.1000-1093.2013.04.007.
    [23] KOERNER J, MAIENSCHEIN J, BLACK K, et al. LX-17 deflagration at high pressures and temperatures: UCRL-CONF-225607 [R]. Livermore, California, United States: Lawrence Livermore National Laboratory, 2006.
    [24] GLASCOE E, MAIENSCHEIN J, BURNHAM A, et al. PBXN-9 ignition kinetics and deflagration rates: LLNL-PROC-403194 [R]. Livermore, California, United States: Lawrence Livermore National Laboratory, 2008.
    [25] GLASCOE E, SPRINGER H K, TRINGE J, et al. A comparison of deflagration rates at elevated pressures and temperatures with thermal explosion results [C]//17th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter. Chicago, Illinois, United States, 2011.
    [26] 潘文达. 俄国的炸药燃烧数据库 [J]. 火炸药学报, 1994(2): 35–37.

    PAN W D. Russian explosive combustion database [J]. Chinese Journal of Explosives and Propellants, 1994(2): 35–37.
    [27] 姚奎光, 赵学峰, 樊星, 等. 高压下PBX-1炸药的燃速-压力特性 [J]. 爆炸与冲击, 2020, 40(1): 011404. DOI: 10.11883/bzycj-2019-0347.

    YAO K G, ZHAO X F, FAN X, et al. Burning rate-pressure characteristics of PBX-1 explosive under high pressure [J]. Explosion and Shock Waves, 2020, 40(1): 011404. DOI: 10.11883/bzycj-2019-0347.
  • 期刊类型引用(8)

    1. 武江凯,迟润强,韩增尧,庞宝君,郑世贵. 载人航天器密封舱结构超高速撞击易损性. 哈尔滨工业大学学报. 2023(08): 25-31 . 百度学术
    2. 徐铧东,于东,刘文翔,石景富,苗常青. 屏间充气展开式多屏防护结构及其防护性能分析. 载人航天. 2022(01): 75-80 . 百度学术
    3. 崔俊杰,郭章新,朱明,李永存,栾云博,杨强. 表面带金属层的复合材料层合板低速冲击数值模拟. 材料导报. 2021(04): 4150-4158 . 百度学术
    4. 武强,张庆明,龚自正,任思远,刘海. 活性Whipple结构超高速撞击防护性能实验研究. 爆炸与冲击. 2021(02): 84-92 . 本站查看
    5. 武强,龚自正,张庆明,任思远. 含能活性材料防护结构超高速撞击特性数值模拟研究. 振动与冲击. 2021(11): 202-210 . 百度学术
    6. 屈雪蕊. Comp.B含能材料落锤冲击应力特性分析. 西安航空学院学报. 2021(03): 70-74+96 . 百度学术
    7. 古青波,从强,常洁,王巍. 空间柔性充气密封舱用新型填充防护结构碎片撞击计算分析与实验研究. 航天器环境工程. 2020(02): 125-130 . 百度学术
    8. 贾光辉,姚光乐,张帅. 填充式防护结构弹道极限方程的差异演化优化. 北京航空航天大学学报. 2018(07): 1489-1495 . 百度学术

    其他类型引用(7)

  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  503
  • HTML全文浏览量:  131
  • PDF下载量:  131
  • 被引次数: 15
出版历程
  • 收稿日期:  2022-05-30
  • 修回日期:  2022-09-29
  • 网络出版日期:  2022-10-13
  • 刊出日期:  2023-05-05

目录

/

返回文章
返回