Determination and application of the HJC constitutive model parameters for ultra-high performance concrete
-
摘要: 在超高性能混凝土的数值模拟中,合理地确定其本构模型参数是提高计算精度和设计可靠度的基础。基于超高性能混凝土单轴压缩试验、霍普金森压杆试验和已有的三轴围压试验等,确定了超高性能混凝土的Holmquist-Johnson-Cook (HJC)本构模型参数。利用LS_DYNA软件模拟单向板爆炸试验,通过与试验中单向板的损伤程度和最大挠度进行对比,验证了已确定参数的有效性。为了进一步了解超高性能混凝土构件的抗爆机理,采用已确定的参数对单向板爆炸工况进行数值模拟,分析配筋和尺寸变化对爆炸结果的影响。结果表明,在爆炸过程中,提高纵筋配筋率可以减小单向板的跨中最大挠度,适当加密箍筋可以减小单向板侧面的斜裂缝长度。超高性能混凝土单向板具有明显的尺寸效应,其中厚度和长度变化对爆炸结果的影响最突出。Abstract: The parameters of the Holmquist-Johnson-Cook (HJC) constitutive model for ultra-high performance concrete (UHPC) were determined based on uniaxial compression test, split Hopkinson pressure bar (SHPB) test and existing tri-axial compression test and so on, in order to improve the calculation accuracy and design reliability. In the determination process of parameters, the parameters of the HJC constitutive model were divided into five categories. The yield-surface parameters were determined by the static failure surface equation, the parameters of state equation were determined by the p-μ relation, the damage parameters were determined according to relevant literature, the basic physical parameters were determined according to the test, and so on. LS_DYNA was used to simulate the explosion test of the one-way slab. Firstly, the finite element model of the one-way slab was established. The HJC constitutive model was used for the UHPC, and the linear reinforcement model was used for the reinforcement material. The reinforcement and UHPC were connected by common joints. The air and explosive models were established, and the fluid-solid coupling method was used for calculation. The effectiveness of the determined parameters was verified by comparing the simulation results with the damage degree and the maximum deflection of the one-way slab in the test. In order to further understand the anti-blast mechanism of the UHPC members, the determined parameters were used to conduct numerical simulation on the one-way slab explosion condition, and the influences of reinforcement and size effect on the explosion result were analyzed. Results show that during the explosion process, the maximum mid-span deflection of the one-way slab can be reduced by increasing the longitudinal reinforcement ratio, and the length of oblique cracks on the side of the one-way slab can be reduced by properly encrypted stirrups. The UHPC one-way slab has an obvious size effect, and the variation of its thickness and length has the greatest influence on the explosion result.
-
泄爆是工业上广泛使用的气体以及粉尘的爆炸防治手段之一, 其基本特点是通过泄爆口释放含能物质使容器内出现压力异常增加时能快速卸载压力, 保证容器自身的安全运行。当泄爆设备位于室内或者靠近工作区时, 需用泄爆导管将泄爆出来的含能物质排到室外或远离工作区的安全地方[1-2]。研究表明泄爆导管的存在增加了容器内爆炸的剧烈程度[3-6], 因此不能用现有的单容器的设计准则来设计导管泄爆容器。自20世纪80年代始, 对于导管泄爆容器规律开展了一些的实验研究, 在此基础上建立了设计规范NFPA 68[1]和经验公式[7], 但是利用这些经验公式和规范对导管泄爆容器内压力峰值进行预测往往产生较大的误差, 不能满足精度的要求, 因此必须寻求新的更准确的预测方法。
支持向量机(support vector machines, SVM)在处理高维非线性系统方面有其独特的优越性, 本文中, 应用支持向量机对导管泄爆容器与其可燃物质特性、容器导管几何参数、操作条件之间的内在相关性进行研究, 建立导管泄爆容器的压力峰值理论预测模型, 为导管泄爆容器结构安全性能评价以及设计提供更可靠的依据。
1. 压力峰值预测
1.1 主要影响因素
根据文献[7]的实验数据, 确定导管泄爆容器压力峰值pred(表压)与可燃物质特性、容器导管几何参数、操作条件等有关, 具体体现为8个主要影响因素:可燃气体的种类、气体的体积浓度φ、点火位置、导管长度Lt、导管直径Dt、容器体积V、破膜压力pv、容器初始压力p0。不同的气体对应不同的气体燃爆指数, 因此可利用气体的爆燃指数KG表征气体的种类[1, 8], 实验中的点火位置主要有3种, 即尾部点火、中心点火、泄爆口处点火, 这3种点火位置分别用1、2、3来表征, 其余影响因素的准确数值见文献[7], 导管泄爆容器压力峰值SVM预测模型的所有数据样本如表 1所示。
表 1 容器带导管泄爆实验数据Table 1. The experimental values for vessel venting by ductNo. KG/(MPa·m·s-1) φ/% 点火位置 Lt/m Dt/m V/m3 pv/kPa p0/kPa pred/kPa 1 10.0 4 1 0.60 0.016 0.003 66 101 101 145 2 10.0 4 1 0.60 0.021 0.003 66 101 101 117 3 10.0 4 1 0.60 0.036 0.003 6 101 101 127 4 10.0 4 1 1.10 0.016 0.003 66 101 101 180 5 10.0 4 1 1.10 0.021 0.003 66 101 101 145 6 10.0 4 1 1.10 0.036 0.003 66 101 101 192 7 10.0 4 1 2.60 0.016 0.003 66 101 101 192 8 10.0 4 1 2.60 0.021 0.003 66 101 101 155 9 10.0 4 1 2.60 0.036 0.003 66 101 101 192 10 10.0 4 1 2.60 0.053 0.003 66 101 101 211 11 10.0 4 2 1.70 0.036 0.003 66 101 101 201 12 10.0 4 2 1.70 0.036 0.003 66 131 101 216 13 10.0 4 2 1.70 0.036 0.003 66 192 101 266 14 10.0 4 2 1.70 0.036 0.003 66 331 101 337 15 10.0 4 1 1.70 0.036 0.003 66 101 101 176 16 10.0 4 1 1.70 0.036 0.003 66 133 101 188 17 10.0 4 1 1.70 0.036 0.003 66 184 101 181 18 10.0 4 3 1.70 0.036 0.003 66 212 101 127 19 10.0 4 3 1.70 0.036 0.003 66 325 101 224 20 10.0 5 2 1.00 0.844 6 2.600 111 101 19 21 10.0 5 2 2.00 0.844 6 2.600 111 101 30 22 10.0 5 2 3.00 0.844 6 2.600 111 101 39 23 10.0 5 1 3.00 0.844 6 2.600 111 101 101 24 8.4 5 2 25.00 0.500 10.000 111 101 410 25 8.4 5 2 25.00 0.500 10.000 106 101 280 26 8.4 5 2 4.00 0.200 2.000 116 101 430 27 8.4 5 2 10.00 0.200 2.000 116 101 520 28 8.4 5 2 10.00 0.380 2.000 116 101 215 29 8.4 5 2 1.83 0.050 0.027 121 101 500 30 8.4 5 2 2.35 0.050 0.027 126 101 440 31 8.4 5 2 2.35 0.050 0.027 126 101 350 32 8.4 5 2 2.35 0.050 0.027 266 101 190 33 8.4 5 2 1.83 0.050 0.027 243 101 440 34 14.0 18 2 0.16 0.035 0.022 101 101 300 35 14.0 18 2 0.32 0.035 0.022 101 101 482 36 14.0 18 2 0.54 0.035 0.022 101 101 565 37 14.0 18 2 0.80 0.035 0.022 101 101 482 38 14.0 18 2 1.40 0.035 0.022 101 101 513 39 14.0 18 2 1.75 0.035 0.022 101 101 518 40 14.0 18 2 2.80 0.035 0.022 101 101 214 41 14.0 18 2 3.50 0.035 0.022 101 101 464 42 14.0 18 2 4.91 0.035 0.022 101 101 357 43 14.0 18 2 6.14 0.035 0.022 101 101 375 44 14.0 18 2 6.75 0.035 0.022 101 101 339 45 14.0 18 2 2.50 0.025 0.022 101 101 500 46 14.0 18 2 2.50 0.025 0.022 101 101 473 47 14.0 18 2 2.50 0.025 0.022 101 101 420 48 14.0 10 2 2.50 0.025 0.020 101 101 82 49 14.0 12 2 2.50 0.025 0.020 101 101 238 50 14.0 14 2 2.50 0.025 0.020 101 101 291 51 14.0 16 2 2.50 0.025 0.020 101 101 347 52 14.0 18 2 2.50 0.025 0.020 101 101 400 53 14.0 20 2 2.50 0.025 0.020 101 101 430 54 14.0 22 2 2.50 0.025 0.020 101 101 482 55 14.0 25 2 2.50 0.025 0.020 101 101 500 56 14.0 30 2 2.50 0.025 0.020 101 101 82 57 14.0 20 2 0.04 0.025 0.020 101 101 368 58 14.0 20 2 0.17 0.025 0.020 101 101 368 59 14.0 20 2 0.30 0.025 0.020 101 101 671 60 14.0 20 2 0.61 0.025 0.020 101 101 636 61 14.0 20 2 1.26 0.025 0.020 101 101 457 62 14.0 20 2 2.50 0.025 0.020 101 101 400 1.2 经验公式模型和SVM预测模型
1.2.1经验公式模型
在以往实验及理论研究的基础上, A.D.Benedetto等[7]依据实验数据通过拟合获得了用于导管泄爆容器压力峰值预测的经验公式:
(Br)t,ducted(Br)t,un−ducted∝(p∗m)−4S−0.10V−0.4L−1.6tD3.7t (1) pm=pred/p0(pv/p0)1.5={(Br)−2.4t,ductedpm≤1,(Br)t,ducted≥1p∗m−6(Br)0.5t,ductedpm>1,(Br)t,ducted<1 (2) (Br)t,un−ducted=0.21√Eγu(μχ)un−ductedBr (3) (μχ)un−ducted=1.75((1+103√V#)(1+0.5(Br)0.5)1+πv)0.4π0.61,# (4) Br=AvV2/3cS0(E−1−1/γb1−1/γu) (5) 式中:pm*为密闭爆炸对应的压力峰值; S0为层流火焰速度; V为容器体积; Lt为导管长度; Dt为导管直径; pred为导管泄爆容器压力峰值; pv为破膜压力; p0为容器初始压力; E为膨胀比; Br为Bradley数; V#为泄爆容器的量纲一体积; πv为量纲一破膜压力; π1, #为量纲一初始压力; Av为泄爆面积; c为声速; γu为未燃气体比热容比; γb为已燃气体比热容比。根据式(3)~(5)可以计算(Br)t, un-ducted, 结合式(1)计算(Br)t, ducted; 将(Br)t, ducted代入式(2), 可以求得pred。
1.2.2支持向量机模型
V.N.Vapnik提出的支持向量机[9], 是基于统计学原理的新一代机器学习技术, 主要用于分类和回归。基于结构风险最小化原则, 具有处理小样本、非线性、高维等特点及极强推广能力[10], 且预测性能及稳定性优于其他机器学习工具, 例如人工神经网络等[11-12]。支持向量机简单的描述[13-14]如下。
假设训练样本为{xi, yi}, 其中xi∈R为输入因素、yi∈R为输出结果, i=1, 2, …, N。利用一个非线性映射函数将输入因素映射到特征空间φ(x), 回归模型可以表述为:
y=f(x)=wϕ(x)+b (6) 根据支持向量机的结构最小化原则, 系数w和b可以通过最小化R(C)获得:
R(C)=C1NN∑i=1Lε(yi,f(xi))+12‖w‖2 (7) Lε(yi,f(xi))={0|yi−f(xi)|<ε|yi−f(xi)|−ε|yi−f(xi)|⩾ε (8) 式中
为经验误差, 可由敏感损失函数
)获得
表征函数的平坦程度; C为惩罚因子, 用于平衡回归函数的平坦度和偏差。引入松弛变量ξ和ξ*, 式(7)可以表达为:
MaxR(w,ξ⋆)=12‖w‖2+Cn∑i=1(ξi+ξ∗i)f(xi)−wx−b⩽ε+ξi,wx+b−f(xi)⩽ε+ξ∗i,ξi⩾0,ξ∗i⩾0 (9) 因此, 式(6)可以表达为:
f(x,αi,α∗i)=l∑i=1(αi−α∗i)K(x,xi)+b (10) 式中:K(x, xi)为核函数, 核函数满足K(x, xi)=φ(x)φ(xi)。
支持向量机算法采用Libsvm软件。支持向量机主要由核函数类型、惩罚因子C以及不敏感损失函数中ε等几个参数决定。现有4种常用的核函数分别为:线性核函数、多项式核函数、Sigmoid核函数、径向基核函数(RBF)。其中径向基核函数应用最广泛, 且只含有一个参数, 便于参数优化[14-15], 所以本文中选用径向基核函数:K(x, xi)=exp(-‖x-xi‖2/γ2)。对于径向基核函数, 最重要的参数是核函数的宽度γ。核函数的宽度γ与惩罚因子C及ε同时决定了支持向量机的泛化能力及预测性能。由于这几个参数之间有较大的相关性, 因此采用格点搜索方法寻找预测模型的最优参数组合[16]。
随机抽取表 1中10组数据为模型的预测集(见表 2), 用于检验模型的预测性能。其余52组数据作为训练集, 用于建立SVM模型, 将各影响因素作为建立SVM模型的输入, 对应的pred作为模型的输出, 通过格点搜索方法确定SVM模型的最优参数为:C=16.0, ε=1.5, γ=0.29。以上最优参数作为支持向量机的输入参数建立相应的预测模型, 并应用建立的模型对预测集样本的泄爆压力峰值进行预测。利用SVM模型及经验公式, 对导管泄爆容器内压力峰值进行预测, 结果与实验值的对比见图 1。
表 2 泄爆压力峰值的SVM检验样本参数Table 2. Prediction samples for vessel vented through ductNo. KG/
(MPa·m·s-1)φ/% 点火位置 Lt/m Dt/m V/m3 pv/kPa p0/kPa pred/kPa 1 10.0 4 1 0.60 0.036 0.003 6 101 101 127 2 10.0 4 1 2.60 0.036 0.003 66 101 101 192 3 10.0 5 2 3.00 0.844 6 2.600 111 101 39 4 14.0 18 2 1.40 0.035 0.022 101 101 513 5 14.0 14 2 2.50 0.025 0.020 101 101 291 6 14.0 18 2 6.75 0.035 0.022 101 101 339 7 10.0 4 2 1.70 0.036 0.003 66 192 101 266 8 14.0 18 2 2.50 0.025 0.022 101 101 420 9 10.0 4 1 1.10 0.021 0.003 66 101 101 145 10 14.0 18 2 2.50 0.025 0.022 101 101 473 2. 模型的验证
表 3给出了SVM模型预测值和经验公式的计算值及误差。SVM模型的最大绝对误差绝对值为62.2kPa, 最大相对误差为22.52%, 而经验公式的分别为654kPa和273.10%。SVM模型的相关系数R2=0.979 6, 标准误差δsd=26.3kPa, 均方根误差δrms=27.8kPa, 平均相对误差εar=8.21%, 而文献中的经验公式的R2=0.42, δsd=271.6kPa, δrms=286.3kPa, εar=92.49%。由此可知, SVM预测结果与实验值更接近, 误差更小, 总体上具有较高的精度, 因此SVM预测模型对于导管泄爆容器内的压力峰值具有较好的预测性能, 且预测性能优于经验公式, 并且利用支持向量机预测模型考虑了不同点火位置的影响, 而经验公式无法考虑点火位置的影响。
表 3 泄爆压力峰值预测值与检验样本值的对比Table 3. Predicted values of peak pressure in vessel vented by ductNo. pred/kPa 经验公式 支持向量机 p/kPa Δp/kPa ε/% p/kPa Δp/kPa ε/% 1 127 278 151 118.90 155.6 28.6 22.52 2 192 410 218 113.54 187.7 -4.3 2.24 3 39 31.5 -7.5 19.23 45.5 6.5 16.67 4 513 450 -63 12.28 450.8 -62.2 12.13 5 291 480 189 64.95 295.0 4.0 1.37 6 339 534 195 57.52 333.5 -5.5 1.62 7 266 920 654 245.86 285.5 19.5 7.33 8 420 440 20 4.76 435.7 15.7 3.74 9 145 541 396 273.10 154.5 9.5 6.55 10 473 543 70 14.80 435.3 -37.7 7.97 3. 结论
总结了影响容器内压力峰值的因素, 将其分为3类即可燃物质特性、容器导管几何参数、操作条件, 包含8个影响因素, 分别为可燃气体的种类、气体的体积浓度、点火位置、导管长度、导管直径、容器体积、破膜压力、容器初始压力。将这些因素作为输入变量, 应用支持向量机对容器内压力峰值进行了研究, 建立了导管泄爆容器压力峰值预测模型, 此模型包含了影响导管泄爆容器压力峰值的所有主要因素, 弥补了经验公式不能包含所有影响因素的不足。同时, 对模型的有效性及预测能力进行了验证, 发现所建立模型具有较好的预测能力, 可以用于导管泄爆容器内的压力峰值的预测, 且预测能力优于经验公式。本模型为导管泄爆容器结构安全性能评价以及设计提供一种新的更可靠的方法。
-
表 1 不同应变率下的UHPC力学参数
Table 1. UHPC mechanical parameters under different strain rates
应变率/s−1 抗压强度/MPa ¯σ ¯p 10−4 105.0 1.000 0 0.333 3 10−2 113.3 1.079 0 0.359 7 50 134.6 1.281 9 0.427 3 102 164.7 1.568 6 0.522 9 表 2 超高性能混凝土HJC模型参数
Table 2. HJC model parametrs of UHPC
A B N C T/MPa Sfmax εefmin D1 D2 fs ˙ε0/s−1 0.232 8 1.744 3 0.705 1 0.003 6 7.12 7.0 0.018 1 0.04 1.0 0.1725 1 pc/MPa pl/MPa μc μl K1/GPa K2/GPa K3/GPa σc/MPa G/GPa ρ/(g·cm−3) 35.0 235.0 0.0011 0.0383 46.4 −195.0 416.6 105.0 20.37 2.67 表 3 钢筋本构模型参数
Table 3. Parameters of reinforcement constitutive models
材料 密度/(g·cm−3) 弹性模量/GPa 泊松比 屈服应力/MPa 切线模量/GPa 失效应变 受拉钢筋 7.85 200 0.25 524 1.61 0.10 箍筋 7.85 200 0.25 423 1.91 0.08 表 4 修正前的原始参数
Table 4. Original parameters before correction
A B N C T/MPa Sfmax εefmin D1 D2 fs ˙ε0/s−1 0.76 1.6 0.61 0.007 7.12 7.0 0.01 0.04 1.0 − 1 pc/MPa pl/MPa μc μl K1/GPa K2/GPa K3/GPa σc/MPa G/GPa ρ/(g·cm−3) 16.0 800.0 0.001 0.1 85.0 −171.0 208.0 105.0 20.37 2.67 表 5 单向板各方向尺寸变化
Table 5. Dimension change of one-way plate in each direction
长度/mm 宽度/mm 厚度/mm 1 200 400 120 1 500 500 180 1 800 600 240 -
[1] LI J, WU C Q, HAO H. An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads [J]. Materials and Design, 2015, 82: 64–76. DOI: 10.1016/j.matdes.2015.05.045. [2] WANG Y Z, WANG Y B, ZHAO Y Z, et al. Experimental study on ultra-high performance concrete under triaxial compression [J]. Construction and Building Materials, 2020, 263: 120225. DOI: 10.1016/j.conbuildmat.2020.120225. [3] LI J, WU C Q, HAO H, et al. Experimental investigation of ultra-high performance concrete slabs under contact explosions [J]. International Journal of Impact Engineering, 2016, 93: 62–75. DOI: 10.1016/j.ijimpeng.2016.02.007. [4] 杜忠, 胡福. 高延性混凝土(HDC)在抗爆间室中的防护效果评估 [J]. 工程建设与设计, 2019(22): 9–10. DOI: 10.13616/j.cnki.gcjsysj.2019.11.204.DU Z, HU F. Evaluation of the protective effect of high-ductility concrete (HDC) in anti-explosion chamber [J]. Construction and Design for Engineering, 2019(22): 9–10. DOI: 10.13616/j.cnki.gcjsysj.2019.11.204. [5] 辛健. 爆炸作用下RHT模型参数敏感性分析 [J]. 舰船电子工程, 2019, 39(4): 111–113, 122. DOI: 10.3969/j.issn.1672-9730.2019.04.024.XIN J. Sensitivity analysis of RHT model parameters under explosive attack [J]. Ship Electronic Engineering, 2019, 39(4): 111–113, 122. DOI: 10.3969/j.issn.1672-9730.2019.04.024. [6] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C] // Proceeding of the 9th International Symposium, Interaction of the Effects of Munitions with Structures. Berlin: ISIEMS, 1999: 315–322. [7] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7. [8] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C] // 14th International Symposium on Ballistics. Quebec: American Defense Preparedness Association, 1993: 591–600. [9] 杜闯, 宋帅, 张江鹏. 爆炸冲击作用下三种混凝土本构模型对比研究 [J]. 兵器装备工程学报, 2022, 43(11): 49–56. DOI: 10.11809/bqzbgcxb2022.11.007.DU C, SONG S, ZHANG J P. Comparative study on three concrete constitutive models under blast loading [J]. Journal of Ordnance Equipment Engineering, 2022, 43(11): 49–56. DOI: 10.11809/bqzbgcxb2022.11.007. [10] 张凤国, 李恩征. 混凝土撞击损伤模型参数的确定方法 [J]. 弹道学报, 2001, 13(4): 12–16, 23. DOI: 10.3969/j.issn.1004-499X.2001.04.003.ZHANG F G, LI E Z. A method to determine the parameters of the model for concrete impact and damage [J]. Journal of Ballistics, 2001, 13(4): 12–16, 23. DOI: 10.3969/j.issn.1004-499X.2001.04.003. [11] 韩莉, 吴萍. 动荷载作用下混凝土HJC本构模型 [J]. 绿色环保建材, 2018(11): 3–4. DOI: 10.16767/j.cnki.10-1213/tu.2018.11.002. [12] LIU Y, HUANG F L, MA A E. Numerical simulations of oblique penetration into reinforced concrete targets [J]. Computers and Mathematics with Applications, 2011, 61(8): 2168–2171. DOI: 10.1016/j.camwa.2010.09.006. [13] 张志刚, 李姝雅, 瘳红建. 爆炸荷载下碳纤维布加固混凝土板的抗弯性能研究 [J]. 应用力学学报, 2008, 25(1): 150–153.ZHANG Z G, LI S Y, LIAO H J. Flexural resistance of concrete plate strengthened with CFRP under explosive loading [J]. Chinese Journal of Applied Mechanics, 2008, 25(1): 150–153. [14] 张志华, 刘磊, 王亚, 等. 混凝土爆破试验及数值模拟 [J]. 矿冶, 2018, 27(6): 34–37. DOI: 10.3969/j.issn.1005-7854.2018.06.008.ZHANG Z H, LIU L, WANG Y, et al. Blasting experiment and numerical simulation of concrete [J]. Mining and Metallurgy, 2018, 27(6): 34–37. DOI: 10.3969/j.issn.1005-7854.2018.06.008. [15] 任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定 [J]. 振动与冲击, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.18.002.REN G M, WU H, FANG Q, et al. Determinations of HJC constitutive model parameters for normal strength concrete [J]. Journal of Vibration and Shock, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.18.002. [16] 陈睿, 刘杰, 韩旭, 等. 混凝土材料动态本构参数的分阶段计算反求技术 [J]. 爆炸与冲击, 2014, 34(3): 315–321. DOI: 10.11883/1001-1455(2014)03-0315-07.CHEN R, LIU J, HAN X, et al. A multi-stage computational inverse technique for identification of the dynamic constitutive parameters of concrete [J]. Explosion and Shock Waves, 2014, 34(3): 315–321. DOI: 10.11883/1001-1455(2014)03-0315-07. [17] 张社荣, 宋冉, 王超, 等. 碾压混凝土HJC动态本构模型修正及数值验证 [J]. 振动与冲击, 2019, 38(12): 25–31. DOI: 10.13465/j.cnki.jvs.2019.12.004.ZHANG S R, SONG R, WANG C, et al. Modification of a dynamic constitutive model—HJC model for roller-compacted concrete and numerical verification [J]. Journal of Vibration and Shock, 2019, 38(12): 25–31. DOI: 10.13465/j.cnki.jvs.2019.12.004. [18] 熊益波, 陈剑杰, 胡永乐, 等. 混凝土Johnson-Holmquist本构模型关键参数研究 [J]. 工程力学, 2012, 29(1): 121–127.XIONG Y B, CHEN J J, HU Y L, et al. Study on the key parameters of the Johnson-Holmquist constitutive model for concrete [J]. Engineering Mechanics, 2012, 29(1): 121–127. [19] 李鹏. 钢管混凝土柱爆炸作用下试验及动态本构模型研究 [D]. 广州: 广州大学, 2016: 64–71.LI P. Test and dynamic constitutive model study of CFST column under blast load [D]. Guangzhou, Guangdong, China: Guangzhou University, 2016: 64–71. [20] 张若棋, 丁育青, 汤文辉, 等. 混凝土HJC、RHT本构模型的失效强度参数 [J]. 高压物理学报, 2011, 25(1): 15–22. DOI: 10.11858/gywlxb.2011.01.003.ZHANG R Q, DING Y Q, TANG W H, et al. The failure strength parameters of HJC and RHT concrete constitutive models [J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 15–22. DOI: 10.11858/gywlxb.2011.01.003. [21] DU Y X, WEI J, LIU K, et al. Research on dynamic constitutive model of ultra-high performance fiber-reinforced concrete [J]. Construction and Building Materials, 2020, 234: 117386. DOI: 10.1016/j.conbuildmat.2019.117386. [22] 过镇海, 王传志. 多轴应力下混凝土的强度和破坏准则研究 [J]. 土木工程学报, 1991, 24(3): 1–14. DOI: 10.15951/j.tmgcxb.1991.03.001.GUO Z H, WANG C Z. Investigation of strength and failure criterion of concrete under multi-axial stresses [J]. China Civil Engineering Journal, 1991, 24(3): 1–14. DOI: 10.15951/j.tmgcxb.1991.03.001. [23] 仵鹏涛. 三向应力状态下超高性能混凝土材料静态力学性能研究 [D]. 天津: 天津大学, 2019: 40–44. DOI: 10.27356/d.cnki.gtjdu.2019.004796.WU P T. Study of static mechanical properties of ultra-high performance concrete under triaxial stress states [D]. Tianjin, China: Tianjin University, 2019: 40–44. DOI: 10.27356/d.cnki.gtjdu.2019.004796. [24] 薛文. 落锤冲击作用下RC梁的动力响应研究 [D]. 武汉: 华中科技大学, 2016: 42–54.XUE W. Study on dynamic response of RC beams under drop hammer impact [D]. Wuhan, Hubei, China: Huazhong University of Science and Technology, 2016: 42–54. [25] 王志亮, 毕程程, 李鸿儒. 混凝土爆破损伤的SPH-FEM耦合法数值模拟 [J]. 爆炸与冲击, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.WANG Z L, BI C C, LI H R. Numerical simulation of blasting damage in concrete using a coupled SPH-FEM algorithm [J]. Explosion and Shock Waves, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209. [26] 陈星明, 刘彤, 肖正学. 混凝土HJC模型抗侵彻参数敏感性数值模拟研究 [J]. 高压物理学报, 2012, 26(3): 313–318. DOI: 10.11858/gywlxb.2012.03.011.CHEN X M, LIU T, XIAO Z X. Numerical simulation study of parameter sensitivity analysis on concrete HJC model [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 313–318. DOI: 10.11858/gywlxb.2012.03.011. [27] 汪衡, 董静, 顾振中, 等. HJC模型参数对侵彻效应影响度的数值研究 [J]. 兵器装备工程学报, 2020, 41(3): 200–204. DOI: 10.11809/bqzbgcxb2020.03.040.WANG H, DONG J, GU Z Z, et al. Numerical study on the effect of HJC model parameters on penetration [J]. Journal of Ordnance Equipment Engineering, 2020, 41(3): 200–204. DOI: 10.11809/bqzbgcxb2020.03.040. [28] 胡志豪. 超高性能混凝土的气体渗透性能研究 [D]. 长沙: 湖南大学, 2021: 49–51. DOI: 10.27135/d.cnki.ghudu.2021.001461.HU Z H. Experimental study on gas permeability of ultra-high performance concrete [D]. Changsha, Hunan, China: Hunan University, 2021: 49–51. DOI: 10.27135/d.cnki.ghudu.2021.001461. [29] 王政. 弹靶侵彻动态响应的理论与数值分析 [D]. 上海: 复旦大学, 2005: 39–40. [30] BEISSEL S R, JOHNSON G R. An abrasion algorithm for projectile mass loss during penetration [J]. International Journal of Impact Engineering, 2000, 24(2): 103–116. DOI: 10.1016/S0734-743X(99)00146-3. [31] 严少华, 钱七虎, 周早生, 等. 高强混凝土及钢纤维高强混凝土高压状态方程的实验研究 [J]. 解放军理工大学学报, 2000, 1(6): 49–53. DOI: 10.7666/j.issn.1009-3443.20000610.YAN S H, QIAN Q H, ZHOU Z S, et al. Experimental study of equation of state for high-strength concrete and high-strength fiber concrete [J]. Journal of PLA University of Science and Technology, 2000, 1(6): 49–53. DOI: 10.7666/j.issn.1009-3443.20000610. [32] 孙玉祥, 王杰, 武海军, 等. 混凝土高压状态方程实验与数值模拟研究 [J]. 爆炸与冲击, 2020, 40(12): 121401. DOI: 10.11883/bzycj-2020-0002.SUN Y X, WANG J, WU H J, et al. Experiment and simulation on high-pressure equation of state for concrete [J]. Explosion and Shock Waves, 2020, 40(12): 121401. DOI: 10.11883/bzycj-2020-0002. [33] 高乐. 活性粉末混凝土高压状态方程研究 [D]. 广州: 广州大学, 2011: 51–53.GAO L. Research on high pressure equation of RPC [D]. Guangzhou, Guangdong, China: Guangzhou University, 2011: 51–53. [34] 唐鸽, 江少恩, 巫顺超, 等. 用Hugoniot数据计算高压状态方程 [J]. 强激光与粒子束, 2009, 21(11): 1737–1740.TANG G, JIANG S E, WU S C, et al. Deducing equation of state under high pressure from Hugoniot data [J]. High Power Laser and Particle Beams, 2009, 21(11): 1737–1740. [35] 蒋国平, 焦楚杰, 肖波齐. 高强混凝土气体炮试验与高压状态方程研究 [J]. 物理学报, 2012, 61(2): 026701. DOI: 10.7498/aps.61.026701.JIANG G P, JIAO C J, XIAO B Q. High-pressure state equation of high strength concrete investigated with the gas gun experiment [J]. Acta Physica Sinica, 2012, 61(2): 026701. DOI: 10.7498/aps.61.026701. [36] 孙其然, 李芮宇, 赵亚运, 等. HJC模型模拟钢筋混凝土侵彻实验的参数研究 [J]. 工程力学, 2016, 33(8): 248–256. DOI: 10.6052/j.issn.1000-4750.2014.12.1094.SUN Q R, LI R Y, ZHAO Y Y, et al. Investigation on parameters of HJC model applied to simulate perforation experiments of reinforced concrete [J]. Engineering Mechanics, 2016, 33(8): 248–256. DOI: 10.6052/j.issn.1000-4750.2014.12.1094. [37] 林琛, 徐建军, 杨晋伟, 等. 基于HJC模型的钢筋混凝土侵彻仿真失效准则与参数 [J]. 探测与控制学报, 2017, 39(2): 100–105.LIN C, XU J J, YANG J W, et al. The failure criterions and parameters of HJC model based perforation simulation [J]. Journal of Detection and Control, 2017, 39(2): 100–105. [38] 石少卿, 康建功, 汪敏, 等. ANSYS/LS-DYNA在爆炸与冲击领域内的工程应用 [M]. 北京: 中国建筑工业出版社, 2011. [39] 汪维, 张舵, 卢芳云, 等. 方形钢筋混凝土板的近场抗爆性能 [J]. 爆炸与冲击, 2012, 32(3): 251–258. DOI: 10.11883/1001-1455(2012)03-0251-08.WANG W, ZHANG D, LU F Y, et al. Anti-explosion performances of square reinforced concrete slabs under close-in explosions [J]. Explosion and Shock Waves, 2012, 32(3): 251–258. DOI: 10.11883/1001-1455(2012)03-0251-08. [40] LIN X S. Numerical simulation of blast responses of ultra-high performance fibre reinforced concrete panels with strain-rate effect [J]. Construction and Building Materials, 2018, 176: 371–382. DOI: 10.1016/j.conbuildmat.2018.05.066. -