多因素耦合作用对甲烷爆炸特性的影响

刘可心 刘炜 孙亚松

刘可心, 刘炜, 孙亚松. 多因素耦合作用对甲烷爆炸特性的影响[J]. 爆炸与冲击, 2023, 43(3): 032101. doi: 10.11883/bzycj-2022-0352
引用本文: 刘可心, 刘炜, 孙亚松. 多因素耦合作用对甲烷爆炸特性的影响[J]. 爆炸与冲击, 2023, 43(3): 032101. doi: 10.11883/bzycj-2022-0352
LIU Kexin, LIU Wei, SUN Yasong. Influence of multi-factor coupling on methane explosion characteristics[J]. Explosion And Shock Waves, 2023, 43(3): 032101. doi: 10.11883/bzycj-2022-0352
Citation: LIU Kexin, LIU Wei, SUN Yasong. Influence of multi-factor coupling on methane explosion characteristics[J]. Explosion And Shock Waves, 2023, 43(3): 032101. doi: 10.11883/bzycj-2022-0352

多因素耦合作用对甲烷爆炸特性的影响

doi: 10.11883/bzycj-2022-0352
基金项目: 国家自然科学基金(51976173);江苏省自然科学基金(BK20201204);霍英东青年教师基金(161052)
详细信息
    作者简介:

    刘可心(1996- ),男,博士研究生,liukexin0825@mail.nwpu.edu.cn

    通讯作者:

    孙亚松(1986- ),男,博士,副教授,博士生导师,yssun@nwpu.edu.cn

  • 中图分类号: O389;X932

Influence of multi-factor coupling on methane explosion characteristics

  • 摘要: 为了探究多因素耦合作用对甲烷爆炸特性的影响,采用1.2 L圆柱形爆炸装置,结合自主设计和搭建的可燃气体爆炸试验平台,从最大爆炸压力的角度分析了不同当量比φ (0.6~1.4)、初始温度T0 (25~200 ℃)和初始压力p0 (0.1~0.5 MPa)耦合条件对甲烷爆炸特性的影响规律。在此基础上,基于实验获得的最大爆炸压力数据,利用1stOpt构建了甲烷最大爆炸压力与当量比、初始温度和初始压力的非线性回归预测模型。结果表明:在初始温度和初始压力耦合作用下,初始压力越高,初始温度对最大爆炸压力的影响越大;初始温度越高,初始压力对最大爆炸压力的影响越小。在初始压力和当量比耦合作用下,在研究的实验条件范围内,当φ<0.9或φ>1.2时,初始压力越高,最大爆炸压力的变化越显著。在初始温度和当量比耦合作用下,在实验条件范围内,当φ>1.15时,初始温度越高,最大爆炸压力的变化越显著。此外,通过将基于1stOpt预测模型的预测结果与实验测试结果相比较,发现二者之间的相对误差均小于10%,表明该预测模型具有较高的精度和适应性。
  • 图  1  实验系统示意图

    Figure  1.  Schematic diagram of experimental system

    图  2  T0p0pmax的影响

    Figure  2.  Effect of T0 and p0 on pmax

    图  3  T0p0pmax耦合影响

    Figure  3.  Coupling effects of T0 and p0 on pmax

    图  4  p0φpmax的影响

    Figure  4.  Effect of p0 and φ on pmax

    图  5  a13a23Saφ的变化曲线

    Figure  5.  Variation curves of a13, a23 and Sa with φ

    图  6  T0φpmax的影响

    Figure  6.  Effects of T0 and φ on pmax

    图  7  b13b23Sbφ的变化

    Figure  7.  Variation of b13, b23 and Sb with φ

    图  8  最大爆炸压力预测值与实际值的拟合结果

    Figure  8.  Fitting results of predicted values and actual values of maximum explosion pressure

    表  1  拟合函数的各项参数

    Table  1.   The parameters of the fitting function

    φz0ABCDFR2
    0.6−0.219 633.175 84 3.84×10−30.121 76−1.57×10−5 1.74×10−40.99346
    0.8 0.012 744.903 38−9.80×10−40.542 77 3.64×10−6−7.00×10−30.99791
    1.0 0.083 444.944 25−2.20×10−31.417 31 9.35×10−6−8.69×10−30.99500
    1.2 0.037 015.772 23−2.54×10−30.464 03 1.06×10−5−8.61×10−30.99542
    1.4−0.053 285.016 48−2.43×10−41.521 04 2.33×10−6−8.38×10−30.99735
    下载: 导出CSV

    表  2  不同公式拟合条件下的评价指标对比

    Table  2.   Comparison of evaluation indicators under different formula fitting conditions

    序号公式R2ξ
    1$ {p_{\max }} = {(0.077\;2 + \varphi )^2}\left[ {\dfrac{{10\;000 + 11\;864.817{p_0} + 7.992{T_0} + 8\;083.171\varphi }}{{659.786 - 179.164{p_0} + 0.536{T_0} + 541.349\varphi }} - {{(3.882 + {p_0})}^2}} \right] $0.99270.08434
    2$ {p_{\max }} = {p_0} - 0.827 + \dfrac{{248.495{p_0} - 0.162{T_0} - 89.858\varphi }}{{126.022 - 35.188{p_0} + 0.452{T_0} - 53.084\varphi }} + 2.351\varphi $0.986230.11560
    3$ {p_{\max }} = (\varphi + 3.309)\left( {{p_0} + \dfrac{{1.430}}{{{T_0}}}} \right) $0.965360.18361
    4$ {p_{\max }} = - 0.428 + 4.568{p_0} - 0.001\;92{T_0} + 0.019\;2\varphi $0.964890.20642
    5$ {p_{\max }} = {p_0}^{1.103}\left( {4.621\varphi + \dfrac{1}{{198.124 - {T_0}}}} \right) $0.920450.29428
    下载: 导出CSV

    表  3  模型预测结果与实验结果对比

    Table  3.   Comparison between the prediction results and the experimental results

    序号p0/MPaT0/℃φpmax/MPa相对误差/%
    实测值预测值
    10.3580.4161.1851.7731.7640.508
    20.1397.0670.9840.6050.5676.281
    30.1581.3760.9910.7480.6789.358
    40.4174.650.8101.9191.7697.817
    50.15195.141.1550.5710.5801.576
    60.35120.160.9191.5641.5272.366
    下载: 导出CSV
  • [1] 李孥, 王建良, 刘睿, 等. 碳中和目标下天然气产业发展的多情景构想 [J]. 天然气工业, 2021, 41(2): 183–192.

    LI N, WANG J L, LIU R, et al. Multi-scenario conception on the development of natural gas industry under the goal of carbon neutrality [J]. Natural Gas Industry, 2021, 41(2): 183–192.
    [2] 李鹭光. 中国天然气工业发展回顾与前景展望 [J]. 天然气工业, 2021, 41(8): 1–11. DOI: 10.3787/j.issn.1000-0976.2021.08.001.

    LI L G. Development of natural gas industry in China: Review and prospect [J]. Natural Gas Industry, 2021, 41(8): 1–11. DOI: 10.3787/j.issn.1000-0976.2021.08.001.
    [3] 周守为, 朱军龙, 单彤文, 等. 中国天然气及LNG产业的发展现状及展望 [J]. 中国海上油气, 2022, 34(1): 1–8. DOI: 10.11935/j.issn.1673-1506.2022.01.001.

    ZHOU S W, ZHU J L, SHAN T W, et al. Development status and outlook of natural gas and LNG industry in China [J]. China Offshore Oil and Gas, 2022, 34(1): 1–8. DOI: 10.11935/j.issn.1673-1506.2022.01.001.
    [4] 任韶然, 李海奎, 李磊兵, 等. 惰性及特种可燃气体对甲烷爆炸特性的影响实验及分析 [J]. 天然气工业, 2013, 33(10): 110–115. DOI: 10.3787/j.issn.1000-0976.2013.10.019.

    REN S R, LI H K, LI L B, et al. An experimental study of effects of inert and special flammable gases on methane’s explosion characteristic [J]. Natural Gas Industry, 2013, 33(10): 110–115. DOI: 10.3787/j.issn.1000-0976.2013.10.019.
    [5] MITU M, BRANDES E. Influence of pressure, temperature and vessel volume on explosion characteristics of ethanol/air mixtures in closed spherical vessels [J]. Fuel, 2017, 203: 460–468. DOI: 10.1016/j.fuel.2017.04.124.
    [6] 丁以斌, 高伟. 当量比和初压对二甲醚-空气爆炸特性的影响研究 [J]. 安全与环境学报, 2021, 21(5): 2076–2080. DOI: 10.13637/j.issn.1009-6094.2020.0347.

    DING Y B, GAO W. Effect of the equivalence ratio and the initial pressure on the particular features of the dimethyl ether-air explosion [J]. Journal of Safety and Environment, 2021, 21(5): 2076–2080. DOI: 10.13637/j.issn.1009-6094.2020.0347.
    [7] 梁运涛, 曾文. 激波诱导瓦斯爆炸的动力学特性及影响因素 [J]. 爆炸与冲击, 2010, 30(4): 370–376. DOI: 10.11883/1001-1455(2010)04-0370-07.

    LIANG Y T, ZENG W. Kinetic characteristics and influencing factors of gas explosion induced by shock wave [J]. Explosion and Shock Waves, 2010, 30(4): 370–376. DOI: 10.11883/1001-1455(2010)04-0370-07.
    [8] 余明高, 孔杰, 王燕, 等. 不同浓度甲烷-空气预混气体爆炸特性的试验研究 [J]. 安全与环境学报, 2014, 14(6): 85–90. DOI: 10.13637/j.issn.1009-6094.2014.06.021.

    YU M G, KONG J, WANG Y, et al. Experiment study on explosion characteristic features of the methane-air pre-mixture at different concentrations [J]. Journal of Safety and Environment, 2014, 14(6): 85–90. DOI: 10.13637/j.issn.1009-6094.2014.06.021.
    [9] 王文涛, 程扬帆, 姚雨乐, 等. 当量比对乙炔/空气爆炸特性和火焰速度的影响 [J]. 中南大学学报(自然科学版), 2022, 53(2): 433–442.

    WANG W T, CHENG Y F, YAO Y L, et al. Effects of equivalence ratios on explosion characteristics and flame speeds of acetylene/air mixture [J]. Journal of Central South University (Science and Technology), 2022, 53(2): 433–442.
    [10] TRAN M V, SCRIBANO G, CHONG C T, et al. Simulation of explosion characteristics of syngas/air mixtures [J]. Energy Procedia, 2018, 153: 131–136. DOI: 10.1016/j.egypro.2018.10.024.
    [11] 王华, 邓军, 葛岭梅. 初始压力对矿井可燃性气体爆炸特性的影响 [J]. 煤炭学报, 2011, 36(3): 423–428. DOI: 10.13225/j.cnki.jccs.2011.03.026.

    WANG H, DENG J, GE L M. Influence of initial pressure on explosion characteristics of flammable gases in coal mine [J]. Journal of China Coal Society, 2011, 36(3): 423–428. DOI: 10.13225/j.cnki.jccs.2011.03.026.
    [12] HUANG L, WANG Y, PEI S, et al. Effect of elevated pressure on the explosion and flammability limits of methane-air mixtures [J]. Energy, 2019, 186: 115840. DOI: 10.1016/j.energy.2019.07.170.
    [13] CUI G, LI Z, YANG C. Experimental study of flammability limits of methane / air mixtures at low temperatures and elevated pressures [J]. Fuel, 2016, 181(1): 1074–1080.
    [14] 高娜, 胡毅亭, 张延松. 初始温度对甲烷-空气爆炸压力影响的试验研究 [J]. 爆破器材, 2016, 45(3): 26–30. DOI: 10.3969/j.issn.1001-8352.2016.03.006.

    GAO N, HU Y T, ZHANG Y S. Experimental research on methane-air mixtures explosion pressure under normal and elevated initial temperatures [J]. Explosive Materials, 2016, 45(3): 26–30. DOI: 10.3969/j.issn.1001-8352.2016.03.006.
    [15] CAMMAROTA F, DI BENEDETTO A, RUSSO P, et al. Experimental analysis of gas explosions at non-atmospheric initial conditions in cylindrical vessel [J]. Process Safety and Environmental Protection, 2010, 88(5): 341–349. DOI: 10.1016/j.psep.2010.05.001.
    [16] 李润之, 司荣军. 低温环境下甲烷爆炸流场特性模拟 [J]. 爆炸与冲击, 2015, 35(6): 901–906. DOI: 10.11883/1001-1455(2015)06-0901-06.

    LI R Z, SI R J. Simulation study of flow field characteristics of gas explosion in low temperature environment [J]. Explosion and Shock Waves, 2015, 35(6): 901–906. DOI: 10.11883/1001-1455(2015)06-0901-06.
    [17] MITTAL M. Explosion pressure measurement of methane-air mixtures in different sizes of confinement [J]. Journal of Loss Prevention in the Process Industries, 2017, 46: 200–208. DOI: 10.1016/j.jlp.2017.02.022.
    [18] KUNDU S, ZANGANEH J, MOGHTADERI B. A review on understanding explosions from methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 507–523. DOI: 10.1016/j.jlp.2016.02.004.
    [19] 余明高, 阳旭峰, 郑凯, 等. 障碍物对甲烷/氢气爆炸特性的影响 [J]. 爆炸与冲击, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.

    YU M G, YANG X F, ZHENG K, et al. Effect of obstacles on explosion characteristics of methane/hydrogen [J]. Explosion and Shock Waves, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.
    [20] BAI C, CHANG X, ZHANG B. Impacts of turbulence on explosion characteristics of methane-air mixtures with different fuel concentration [J]. Fuel, 2020, 271: 117610. DOI: 10.1016/j.fuel.2020.117610.
    [21] AL-MAIDI A A H, RODIONOV Y V, NIKITIN D V, et al. Analysis of the characteristics of natural gas as fuel for vehicles and agricultural tractors [J]. Plant Archives, 2019, 19(1): 1213–1218.
    [22] 任韶然, 黄丽娟, 张亮, 等. 高压高温甲烷-空气混合物爆炸极限试验 [J]. 中国石油大学学报(自然科学版), 2019, 43(6): 98–103.

    REN S R, HUANG L J, ZHANG L, et al. Experiment on explosion limits of methane-air mixtures at high pressure and high temperature [J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2019, 43(6): 98–103.
    [23] DAHOE A E, ZEVENBERGEN J F, LEMKOWITZ S M, et al. Dust explosions in spherical vessels: The role of flame thickness in the validity of the ‘cube-root law’ [J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1): 33–44. DOI: 10.1016/0950-4230(95)00054-2.
    [24] 高娜, 张延松, 胡毅亭. 温度、压力对甲烷-空气混合物爆炸极限耦合影响的实验研究 [J]. 爆炸与冲击, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06.

    GAO N, ZHANG Y S, HU Y T. Experimental study on methane-air mixtures explosion limits at normal and initial temperatures and pressures [J]. Explosion and Shock Waves, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06.
    [25] 喻健良, 姚福桐, 于小哲, 等. 高温和高压对乙烷在氧气中爆炸极限影响的实验研究 [J]. 爆炸与冲击, 2019, 39(12): 122101. DOI: 10.11883/bzycj-2018-0381.

    YU J L, YAO F T, YU X Z, et al. Experimental study on the influence of high temperature and high pressure on the upper limit of explosion of ethane in oxygen [J]. Explosion and Shock Waves, 2019, 39(12): 122101. DOI: 10.11883/bzycj-2018-0381.
    [26] 赵衡阳. 气体和粉尘爆炸原理[M]. 北京: 北京理工大学出版社, 1996.
    [27] DANSON F M, ROWLAND C S. Training a neural network with a canopy reflectance model to estimate crop leaf area index [J]. International Journal of Remote Sensing, 2003, 24(23): 4891–4905. DOI: 10.1080/0143116031000070319.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  123
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-10
  • 修回日期:  2022-11-05
  • 网络出版日期:  2022-11-11
  • 刊出日期:  2023-03-05

目录

    /

    返回文章
    返回