高聚物牺牲包层对钢筋混凝土板的爆炸毁伤缓解效应

刘志东 赵小华 方宏远 王高辉 石明生

刘志东, 赵小华, 方宏远, 王高辉, 石明生. 高聚物牺牲包层对钢筋混凝土板的爆炸毁伤缓解效应[J]. 爆炸与冲击, 2023, 43(2): 023301. doi: 10.11883/bzycj-2022-0435
引用本文: 刘志东, 赵小华, 方宏远, 王高辉, 石明生. 高聚物牺牲包层对钢筋混凝土板的爆炸毁伤缓解效应[J]. 爆炸与冲击, 2023, 43(2): 023301. doi: 10.11883/bzycj-2022-0435
LIU Zhidong, ZHAO Xiaohua, FANG Hongyuan, WANG Gaohui, SHI Mingsheng. Damage mitigation effect of polymer sacrificial cladding on reinforced concrete slabs under blast loading[J]. Explosion And Shock Waves, 2023, 43(2): 023301. doi: 10.11883/bzycj-2022-0435
Citation: LIU Zhidong, ZHAO Xiaohua, FANG Hongyuan, WANG Gaohui, SHI Mingsheng. Damage mitigation effect of polymer sacrificial cladding on reinforced concrete slabs under blast loading[J]. Explosion And Shock Waves, 2023, 43(2): 023301. doi: 10.11883/bzycj-2022-0435

高聚物牺牲包层对钢筋混凝土板的爆炸毁伤缓解效应

doi: 10.11883/bzycj-2022-0435
基金项目: 国家自然科学基金(52009126, 51939008);爆破工程湖北省重点实验室开放基金(BL2021-04)
详细信息
    作者简介:

    刘志东(1997- ),男,硕士研究生,lzd18268@163.com

    通讯作者:

    赵小华(1991- ),男,博士,副教授,zhaoxh2014@126.com

  • 中图分类号: O383

Damage mitigation effect of polymer sacrificial cladding on reinforced concrete slabs under blast loading

  • 摘要: 为研究高聚物牺牲包层对钢筋混凝土结构的爆炸毁伤缓解效应,开展了带高聚物牺牲包层钢筋混凝土板的接触爆炸试验,同时设置了普通钢筋混凝土板作为对照组,对比分析了高聚物牺牲包层对钢筋混凝土板毁伤特征的影响。此外,运用AUTODYN软件建立了现场爆炸试验的SPH-FEM耦合模型,通过与试验结果的对比,验证了所建耦合模型的可靠性。在此基础上,通过参数敏感性分析,探究了炸药量和高聚物牺牲包层密度、厚度对带高聚物牺牲包层钢筋混凝土板毁伤特性以及吸能特性的影响。结果表明:接触爆炸下,高聚物牺牲包层能够有效地分散爆炸荷载,缓解爆炸荷载对钢筋混凝土板的冲击作用,具有良好的防护性能;药量在一定范围内增大时,高聚物牺牲包层依然能维持较高的吸能水平,增大包层密度和厚度有利于增强高聚物牺牲包层的吸能特性,包层厚度的变化会造成被保护钢筋混凝土板毁伤模式的改变。
  • 图  1  PU试件的制备流程

    Figure  1.  The preparation process of the PU specimens

    图  2  PU试件

    Figure  2.  PU specimen

    图  3  PU试件的代表性应力-应变曲线

    Figure  3.  Representative stress-strain curve of PU specimen

    图  4  钢筋混凝土板的几何尺寸和钢筋分布

    Figure  4.  Geometry and reinforcement of the RC slab

    图  5  现场试验装置及示意图

    Figure  5.  Field test device and its schematic diagram

    图  6  SPH-FEM耦合模型

    Figure  6.  SPH-FEM coupling model

    图  7  PU-RCS的毁伤特征分布

    Figure  7.  Damage features of PU-RCS

    图  8  RCS的毁伤特征分布

    Figure  8.  Damage features of RCS

    图  9  药量为50 g时PU-RCS的毁伤模式示意图

    Figure  9.  Illustration of damage modes of PU-RCS under 50 g explosive

    图  10  不同网格尺寸的总能量曲线对比

    Figure  10.  Comparison of total energy curves for different element sizes

    图  11  PU-RCS的数值模拟结果与试验结果对比

    Figure  11.  Comparison of the simulation and experimental results of PU-RCS

    图  12  高聚物牺牲包层的数值模拟结果与试验结果对比

    Figure  12.  Comparison of the simulation and experimental results of polymer sacrificial cladding

    图  13  爆炸粒子与PU-RCS的相互作用过程

    Figure  13.  Interaction process of explosive particles with PU-RCS

    图  14  RCS跨中截面处应力波的传播过程

    Figure  14.  Stress wave propagation in the mid-span cross-section of RCS

    图  15  PU-RCS跨中截面处应力波的传播过程

    Figure  15.  Stress wave propagation in the mid-span cross-section of PU-RCS

    图  16  不同药量下PU-RCS的毁伤结果

    Figure  16.  Damage results of PU-RCS under different explosive charges

    图  17  不同药量下PU-RCS跨中截面处的毁伤结果

    Figure  17.  Damage results at the mid-span cross-section of PU-RCS under different explosive charges

    图  18  跨中位移与炸药量之间的关系

    Figure  18.  Relationship between the mid-span displacement and explosive charge

    图  19  不同药量下PU和RCS的吸能曲线

    Figure  19.  Energy absorption curves of PU and RCS under different explosive charges

    图  20  不同药量下PU和RCS的吸能占比

    Figure  20.  Energy absorption percentage of PU and RCS under different explosive charges

    图  21  不同PU牺牲包层密度下PU-RCS的毁伤结果

    Figure  21.  Damage results of PU-RCS under different densities of PU sacrificial cladding

    图  22  不同PU牺牲包层密度下PU-RCS跨中截面处的毁伤结果

    Figure  22.  Damage results at the mid-span cross-section of PU-RCS under different densities of PU sacrificial cladding

    图  23  跨中位移与PU牺牲包层密度之间的关系

    Figure  23.  Relationship between the mid-span displacement and the density of PU sacrificial cladding

    图  24  不同牺牲包层密度下PU和RCS的吸能曲线

    Figure  24.  Energy absorption curves of PU and RCS under different densities of PU sacrificial cladding

    图  25  不同牺牲包层密度下PU和RCS的吸能占比

    Figure  25.  Energy absorption percentage of PU and RCS under different densities of PU sacrificial cladding

    图  26  不同PU牺牲包层厚度下PU-RCS的毁伤结果

    Figure  26.  Damage results of PU-RCS under different thicknesses of PU sacrificial cladding

    图  27  不同PU牺牲包层厚度下PU-RCS跨中截面处的毁伤结果

    Figure  27.  Damage results at the mid-span cross-section of PU-RCS under different thicknesses of PU sacrificial cladding

    图  28  不同牺牲包层厚度下PU和RCS的吸能曲线

    Figure  28.  Energy absorption curves of PU and RCS under different thicknesses of PU sacrificial cladding

    图  29  不同牺牲包层厚度下PU和RCS的吸能占比

    Figure  29.  Energy absorption percentage of PU and RCS under different thicknesses of PU sacrificial cladding

    表  1  混凝土材料模型主要参数

    Table  1.   Parameters of the concrete material model

    剪切模量G/GPa体积模量A1/GPa抗压强度fc/MPaft/fcfs/fc失效面常数A
    16.735.27400.060.181.6
    失效面指数N残余失效面常数B残余失效面指数M损伤常数D1损伤常数D2侵蚀应变
    0.611.60.610.041.02.0
    下载: 导出CSV

    表  2  钢筋材料模型主要参数

    Table  2.   Parameters of the reinforcement steel

    密度ρ/(g·cm−3体积模量K/GPa剪切模量G/GPaA/MPaB/MPaCmnTroom/KTmelt/K
    7.8315981.8404232.40.0141.030.263001793
    下载: 导出CSV

    表  3  炸药材料模型主要参数

    Table  3.   Parameters of the explosive

    ρ/(g·cm−3E/(GJ·m−3)A/GPaB/GPaR1R2$\omega $
    1.056.0209.73.55.761.290.39
    下载: 导出CSV

    表  4  高聚物材料模型主要参数

    Table  4.   Parameters of the polymer material model

    密度/(g·cm−3屈服强度/MPa最大拉伸应力/MPa剪切模量/MPa杨氏模量/MPa侵蚀应变
    0.22.041.7718.735.80.3
    下载: 导出CSV

    表  5  试验后试件的毁伤结果

    Table  5.   Damage resuls of the specimens after the tests

    试件炸药量/g牺牲包层板面损伤区域直径/cm损伤区最大深度/cm裂纹数量/条
    PU-RCS50迎爆面10<0.50
    背爆面13<0.813
    RCS50迎爆面1510
    背爆面25410
    下载: 导出CSV

    表  6  模拟结果和试验结果参数对比

    Table  6.   Parameters comparison of the simulation and experimental results

    方法 迎爆面破坏直径/cm背爆面破坏直径/cm迎爆面最大毁伤深度/cm背爆面最大毁伤深度/cm背爆面裂纹数量
    试验1013<0.5<0.813
    模拟10.712.5<0.6<0.516
    吻合度93.46%96.15%81.25%
    下载: 导出CSV
  • [1] 赵春风, 何凯城, 卢欣, 等. 弧形双钢板混凝土组合板抗爆性能数值研究 [J]. 爆炸与冲击, 2022, 42(2): 025101. DOI: 10.11883/bzycj-2021-0205.

    ZHAO C F, HE K C, LU X, et al. Numerical study of blast resistance of curved steel-concrete-steel composite slabs [J]. Explosion and Shock Waves, 2022, 42(2): 025101. DOI: 10.11883/bzycj-2021-0205.
    [2] 赵春风, 卢欣, 何凯城, 等. 单钢板混凝土剪力墙抗爆性能研究 [J]. 爆炸与冲击, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.

    ZHAO C F, LU X, HE K C, et al. Blast resistance property of concrete shear wall with single-side steel plate [J]. Explosion and Shock Waves, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.
    [3] 赵春风, 何凯城, 卢欣, 等. 双钢板混凝土组合板抗爆性能分析 [J]. 爆炸与冲击, 2021, 41(9): 095102. DOI: 10.11883/bzycj-2020-0291.

    ZHAO C F, HE K C, LU X, et al. Analysis on the blast resistance of steel concrete composite slab [J]. Explosion and Shock Waves, 2021, 41(9): 095102. DOI: 10.11883/bzycj-2020-0291.
    [4] WU C Q, SHEIKH H. A finite element modelling to investigate the mitigation of blast effects on reinforced concrete panel using foam cladding [J]. International Journal of Impact Engineering, 2013, 55: 24–33. DOI: 10.1016/j.ijimpeng.2012.11.006.
    [5] REBELO H B, LECOMPTE D, CISMASIU C, et al. Experimental and numerical investigation on 3D printed PLA sacrificial honeycomb cladding [J]. International Journal of Impact Engineering, 2019, 131: 162–173. DOI: 10.1016/j.ijimpeng.2019.05.013.
    [6] BOHARA R P, LINFORTH S, GHAZLAN A, et al. Performance of an auxetic honeycomb-core sandwich panel under close-in and far-field detonations of high explosive [J]. Composite Structures, 2022, 280: 114907. DOI: 10.1016/j.compstruct.2021.114907.
    [7] 范东宇, 苏彬豪, 彭辉, 等. 多孔泡沫牺牲层的动态压溃及缓冲吸能机理研究 [J]. 力学学报, 2022, 54(6): 1630–1640. DOI: 10.6052/0459-1879-22-047.

    FAN D Y, SU B H, PENG H, et al. Research on dynamic crushing and mechanism of mitigation and energy absorption of cellular sacrificial layers [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1630–1640. DOI: 10.6052/0459-1879-22-047.
    [8] ZHAO H L, YU H T, YUAN Y, et al. Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures [J]. Construction and Building Materials, 2015, 94(9): 710–718. DOI: 10.1016/j.conbuildmat.2015.07.076.
    [9] WANG Z Y, DU M R, FANG H Y, et al. Influence of different corrosion environments on mechanical properties of a roadbed rehabilitation polyurethane grouting material under uniaxial compression [J]. Construction and building materials, 2021, 301: 124092. DOI: 10.1016/j.conbuildmat.2021.124092.
    [10] FANG H Y, LI B, WANG F M, et al. The mechanical behaviour of drainage pipeline under traffic load before and after polymer grouting trenchless repairing [J]. Tunnelling and Underground Space Technology, 2018, 74(4): 185–194. DOI: 10.1016/j.tust.2018.01.018.
    [11] 王复明, 李曼珺, 方宏远, 等. 黄河大堤高聚物防渗墙稳定性分析 [J]. 人民黄河, 2019, 41(10): 48–52,86. DOI: 10.3969/j.issn.1000-1379.2019.10.009.

    WANG F M, LI M J, FANG H Y, et al. Analysis of polymer cut-off wall of yellow river dyke [J]. Yellow River, 2019, 41(10): 48–52,86. DOI: 10.3969/j.issn.1000-1379.2019.10.009.
    [12] FANG H Y, SU Y J, DU X M, et al. Experimental and numerical investigation on repairing effect of polymer grouting for settlement of high-speed railway unballasted track [J]. Applied Sciences, 2019, 9(21): 4496. DOI: 10.3390/app9214496.
    [13] WANG Y H, LU J Y, ZHAI X M, et al. Response of energy absorbing connector with polyurethane foam and multiple pleated plates under impact loading [J]. International Journal of Impact Engineering, 2019, 133: 103356. DOI: 10.1016/j.ijimpeng.2019.103356.
    [14] WANG Y H, ZHANG B Y, LU J Y, et al. Quasi-static crushing behaviour of the energy absorbing connector with polyurethane foam and multiple pleated plates [J]. Engineering Structures, 2020, 211: 110404. DOI: 10.1016/j.engstruct.2020.110404.
    [15] JAMIL A, GUAN Z W, CANTWELL W J, et al. Blast response of aluminium/thermoplastic polyurethane sandwich panels: experimental work and numerical analysis [J]. International Journal of Impact Engineering, 2019, 127: 31–40. DOI: 10.1016/j.ijimpeng.2019.01.003.
    [16] 张勇. 聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析 [J]. 爆炸与冲击, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.

    ZHANG Y. Testingand numerical simulation of the antiknock energy absorption of polyurethane foam aluminum composite structure [J]. Explosion and Shock Waves, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.
    [17] 杨广栋, 王高辉, 李麒, 等. 爆炸冲击下水底隧道的动态响应及毁伤模式研究 [J]. 振动与冲击, 2022, 41(4): 150–158. DOI: 10.13465/j.cnki.jvs.2022.04.020.

    YANG G D, WANG G H, LI Q, et al. Dynamic response and damage patterns of underwater tunnel subjected to blast loads [J]. Journal of Vibration and Shock, 2022, 41(4): 150–158. DOI: 10.13465/j.cnki.jvs.2022.04.020.
    [18] 王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.

    WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
    [19] 甘露, 陈力, 宗周红, 等. 近距离爆炸比例爆距的界定标准及荷载模型 [J]. 爆炸与冲击, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.

    GAN L, CHEN L, ZONG Z H, et al. Definition of scaled distance of close-in explosion and blast load calculation model [J]. Explosion and Shock Waves, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.
  • 加载中
图(29) / 表(6)
计量
  • 文章访问数:  734
  • HTML全文浏览量:  91
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2022-11-04
  • 网络出版日期:  2022-11-17
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回