黏土中爆炸成坑地冲击耦合效应实验研究

时本军 李杰 郭纬 徐天涵 徐小辉 李干 蒋海明

时本军, 李杰, 郭纬, 徐天涵, 徐小辉, 李干, 蒋海明. 黏土中爆炸成坑地冲击耦合效应实验研究[J]. 爆炸与冲击, 2023, 43(6): 065101. doi: 10.11883/bzycj-2022-0445
引用本文: 时本军, 李杰, 郭纬, 徐天涵, 徐小辉, 李干, 蒋海明. 黏土中爆炸成坑地冲击耦合效应实验研究[J]. 爆炸与冲击, 2023, 43(6): 065101. doi: 10.11883/bzycj-2022-0445
SHI Benjun, LI Jie, GUO Wei, XU Tianhan, XU Xiaohui, LI Gan, JIANG Haiming. Experimental study on explosion cratering and coupled ground shock in clay[J]. Explosion And Shock Waves, 2023, 43(6): 065101. doi: 10.11883/bzycj-2022-0445
Citation: SHI Benjun, LI Jie, GUO Wei, XU Tianhan, XU Xiaohui, LI Gan, JIANG Haiming. Experimental study on explosion cratering and coupled ground shock in clay[J]. Explosion And Shock Waves, 2023, 43(6): 065101. doi: 10.11883/bzycj-2022-0445

黏土中爆炸成坑地冲击耦合效应实验研究

doi: 10.11883/bzycj-2022-0445
基金项目: 国家自然科学基金(51679249, 52279120, 12072371, BK20221528)
详细信息
    作者简介:

    时本军(1993- ),男,博士研究生, benjunshi@163.com

    通讯作者:

    李 杰(1981- ),男,博士,教授, lijierf@163.com

  • 中图分类号: O389

Experimental study on explosion cratering and coupled ground shock in clay

  • 摘要: 为获得黏土中爆炸成坑体积与耦合地冲击能量的关系,采用10.5 g TNT厘米级球形炸药球作为爆炸源,在$\varnothing $1500 mm×1490 mm分层式爆炸装置中开展了变埋深条件下的爆炸实验,利用3D扫描设备记录不同埋深下弹坑的真实体积,并通过动态土压力传感器测得地冲击传播衰减规律。实验结果表明:随埋深增大,耦合至黏土中的有效地冲击能量急剧增大,装药中心下方的有效弹坑体积与耦合至黏土中的有效地冲击能量基本呈正比关系,当装药比例埋深与封闭爆炸条件下爆炸空腔半径相当时,耦合至黏土中的有效地冲击能量基本达到饱和。结合实验结果给出了黏土中爆炸耦合地冲击能量分配随装药比例埋深的变化规律,建立了地下爆炸等效封闭当量计算方法,为地下工程抗爆设计提供了理论依据。
  • 图  1  黏土的粒径级配曲线

    Figure  1.  Particle size gradation curve of clay

    图  2  分层式爆炸容器

    Figure  2.  Layered explosion vessel

    图  3  球形爆源

    Figure  3.  Spherical explosion source

    图  4  药球位置及传感器布置

    Figure  4.  Drug package location and sensor arrangement

    图  5  测量采集记录图

    Figure  5.  Measurement acquisition record diagram

    图  6  成坑的俯视与剖面图

    Figure  6.  Overhead view and profile of the crater

    图  7  3D扫描成坑形貌

    Figure  7.  3D scanning into crater morphology

    图  8  可视弹坑实测值与ConWep计算值的对比

    Figure  8.  Comparison of the measured values of the visible burst crater with those computed by ConWep

    图  9  随装药埋深增加有效弹坑的变化规律

    Figure  9.  The change rule of effective crater with the increase of charge depth

    图  10  不同装药比例埋深时实测地冲击应力波形

    Figure  10.  Measured stress waveform of clay at different scaled buried depths

    图  11  不同比例爆心距离处地冲击应力峰值比值随装药比例埋深增加的变化情况

    Figure  11.  Peak of the ground impact stress varied with scaled butied depth charge at different scaled blast center distances

    图  12  不同装药比例埋深时地冲击应力峰值衰减曲线

    Figure  12.  Peak groud impact stress attenuation with scaled blast center distance at different scaled buried depths of charge

    图  13  地下爆炸的三种形式

    Figure  13.  Three types of underground explosion

    图  14  地冲击能量耦合系数随比例埋深的变化

    Figure  14.  Variation of ground impact energy coupling coefficient with scaled burial depth

    图  15  黏土中耦合系数随装药比例埋深变化关系

    Figure  15.  Relationship between coupling coefficient and scaled burial depth in clay

    表  1  装药埋深($h $)及爆心距($R $)设计

    Table  1.   Design of burial depth of charge ($h $) and burst core distance ($R $)

    工况h/(m·kg−1/3)R/(m·kg−1/3)
    1#2#3#4#5#
    1−0.0560.7991.4272.2953.2744.000
    200.7991.4272.2953.2744.000
    30.140.7991.4272.2953.2744.000
    40.370.7991.4272.2953.2744.000
    50.550.7991.4272.2953.2744.000
    61.190.7991.4272.2953.2744.000
    71.460.4791.1552.0683.0463.772
    下载: 导出CSV

    表  2  不同埋深条件下弹坑尺寸数据

    Table  2.   Size data of craters under different burial depths

    工况h/
    (m·kg−1/3)
    rv /
    (m·kg−1/3)
    dv /
    (m·kg−1/3)
    Vv /
    (m3·kg−1)
    ra /
    (m·kg−1/3)
    d/
    (m·kg−1/3)
    V/
    (m3·kg−1)
    1−0.0560.2610.2470.0350.1790.2510.017
    200.2800.2920.0480.1840.2600.018
    30.140.5800.5390.3800.2890.3790.066
    40.370.6820.6850.6670.3400.4160.101
    50.550.8960.7761.3040.4530.4590.197
    61.190.6150.5020.3970.4780.4780.228
    71.46000.0000.4790.4790.230
    注:rvdvVv分别为可视弹坑的半径、深度和体积,radV为有效弹坑的半径、深度和体积。
    下载: 导出CSV

    表  3  黏土中各比例埋深下地冲击应力峰值数据

    Table  3.   Subsurface impact stress peak data of each proportion buried depth in clay

    工况h/
    (m·kg−1/3)
    σpk/MPa工况h/
    (m·kg−1/3)
    σpk/MPa
    1#2#3#4#5#1#2#3#4#5#
    1−0.0560.0470.0150.0190.0110.00250.550.3580.1550.1150.0860.022
    200.0500.0380.0210.0150.00661.190.3340.1560.1260.1150.032
    30.140.1410.0920.0740.0540.01571.461.0800.1960.1240.1000.024
    40.370.1840.1000.0700.0520.014(0.389)(0.166)(0.047)(0.023)(0.015)
    注:(1)1~6炮次1#、2#、3#、4#、5#测点比例距离分别为0.799、1.427、2.295、3.274、4.000;(2)第7炮次1#、2#、3#、4#、5#测点比例距离分别为0.479、1.155、2.068、3.046、3.772;(3)第7炮括号内数据为将第7炮次数据在比例距离0.799、1.427、2.295、3.274、4.000处换算数据。
    下载: 导出CSV

    表  4  不同装药比例埋深条件下拟合参数

    Table  4.   Fitting parameters with different scaled buried depths of charge

    h/(m·kg−1/3)nA$\bar n$A'
    −0.0561.160.0351.14
    0.031
    01.050.0380.041
    0.141.090.1200.123
    0.371.070.1240.148
    0.551.230.2610.258
    1.191.160.2670.258
    1.461.190.2690.260
    下载: 导出CSV
  • [1] ADUSHKIN V V, SPIVAK A. Underground explosions [M]. Lexington: Weston Geophysical Corp, 2015: 431-480.
    [2] Department of the Army. Fundamentals of protective design for conventional weapons: TM5-855-1 [R]. Washington: US Department of the Army, 1986.
    [3] BALADI G Y, NELSON I. Ground shock calculation parameter study: S-71-4 [R]. Mississippi: US Army Waterway Experimental Station, 1974.
    [4] JAMES K. Cense explosion test program: report 2, case 2, explosions in soil [R]. Mississippi: US Army Waterway Experimental Station, 1977.
    [5] 乔登江. 地下核爆炸现象学概论 [M]. 北京: 国防工业出版社, 2002.
    [6] 梁霍夫 Γ M. 岩土中爆炸动力学基础 [M]. 刘光寰, 王明洋, 译. 南京: 工程兵工程学院, 1993.
    [7] YANKELEVSKY D Z, KARINSKI Y S, FELDGUN V R. Re-examination of the shock wave’s peak pressure attenuation in soils [J]. International Journal of Impact Engineering, 2011, 38(11): 864–881. DOI: 10.1016/j.ijimpeng.2011.05.011.
    [8] 穆朝民, 任辉启, 辛凯, 等. 变埋深条件下土中爆炸成坑效应 [J]. 解放军理工大学学报(自然科学版), 2010, 11(2): 112–116. DOI: 10.3969/j.issn.1009-3443.2010.02.003.

    MU C M, REN H Q, XIN K, et al. Effects of crater formed by explosion in soils [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(2): 112–116. DOI: 10.3969/j.issn.1009-3443.2010.02.003.
    [9] 穆朝民, 任辉启, 李永池, 等. 变埋深条件下饱和土爆炸能量耦合系数的试验研究 [J]. 岩土力学, 2010, 31(5): 1574–1578. DOI: 10.16285/j.rsm.2010.05.006.

    MU C M, REN H Q, LI Y C, et al. Experiment study of explosion energy coupling coefficient with different burial depths in saturated soils [J]. Rock and Soil Mechanics, 2010, 31(5): 1574–1578. DOI: 10.16285/j.rsm.2010.05.006.
    [10] 施鹏, 邓国强, 杨秀敏, 等. 土中爆炸地冲击能量分布研究 [J]. 爆炸与冲击, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05.

    SHI P, DENG G Q, YANG X M, et al. Study on ground shock energy distribution of explosion in soil [J]. Explosion and Shock Waves, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05.
    [11] 叶亚齐, 任辉启, 李永池, 等. 砂质黏土中不同深度爆炸自由场地冲击参数预计方法研究 [J]. 岩石力学与工程学报, 2011, 30(9): 1918–1923.

    YE Y Q, REN H Q, LI Y C, et al. Study of prediction of ground shock parameters in free field at different depths of burst in sandy clay [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1918–1923.
    [12] 赵红玲, 侯爱军, 童怀峰, 等. 石灰岩中不同埋深爆炸自由场直接地冲击参数的预计方法 [J]. 爆炸与冲击, 2011, 31(3): 290–294. DOI: 10.11883/1001-1455(2011)03-0290-05.

    ZHAO H L, HOU A J, TONG H F, et al. Prediction method of the direct ground shock parameters of explosion at different buried depths in free field of limestone [J]. Explosion and Shock Waves, 2011, 31(3): 290–294. DOI: 10.11883/1001-1455(2011)03-0290-05.
    [13] 何翔, 吴祥云, 李永池, 等. 石灰岩中爆炸成坑和地冲击传播规律的试验研究 [J]. 岩石力学与工程学报, 2004, 23(5): 725–729. DOI: 10.3321/j.issn:1000-6915.2004.05.004.

    HE X, WU X Y, LI Y C, et al. Testing study on crater formed by explosion and propagation laws of ground shock in limestone [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(5): 725–729. DOI: 10.3321/j.issn:1000-6915.2004.05.004.
    [14] JAMES K. Cense explosion test program: report 1, case 1, explosions in sandstone [R]. Mississippi: U S Army Waterway Experimental Station, 1977.
    [15] Department of the Army. Structures to resist the effects of accidental explosions: TM 5-1300 [R]. Washington: US Department of the Army, 1990.
    [16] 李晓军, 张殿臣, 李清献, 等. 常规武器破坏效应与工程防护技术 [M]. 洛阳: 总参工程兵科研三所, 2001.
    [17] 李重情, 穆朝民, 石必明. 变埋深条件下混凝土中爆炸应力传播规律的研究 [J]. 振动与冲击, 2017, 36(6): 140–145. DOI: 10.13465/j.cnki.jvs.2017.06.021.

    LI Z Q, MU C M, SHI B M. Investigate on shock stress propagation in concrete at different depths under blasting [J]. Journal of Vibration and Shock, 2017, 36(6): 140–145. DOI: 10.13465/j.cnki.jvs.2017.06.021.
    [18] LEONG E C, ANAND S, CHEONG H K, et al. Re-examination of peak stress and scaled distance due to ground shock [J]. International Journal of Impact Engineering, 2007, 34(9): 1487–1499. DOI: 10.1016/j.ijimpeng.2006.10.009.
    [19] 中华人民共和国住房和城乡建设部. GB/T 50123—2019 土工试验方法标准 [S]. 北京: 中国计划出版社, 2019: 16–59.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB/T 50123—2019 Standard for geotechnical testing method [S]. Beijing: China Planning Press, 2019: 16–59.
    [20] KRAUTHAMMER T. Modern protective structures [M]. Boca: CRC Press, 2008.
    [21] DAVID H W. User’s guide for microcomputer programs CONWEP and FUNPRO: applications of TMS-855-1, “fundamentals of protective design for conventional weapons”: AD-A195867 [R]. 1988.
    [22] 徐天涵. 钻地核爆地冲击效应与防护研究 [D]. 南京: 中国人民解放军陆军工程大学, 2021: 41–79.
    [23] HASKELL N A. Analytic approximation for the elastic radiation from a contained underground explosion [J]. Journal of Geophysical Research, 1967, 72(10): 2583–2587. DOI: 10.1029/JZ072i010p02583.
    [24] 王明洋, 李杰. 爆炸与冲击中的非线性岩石力学问题Ⅲ: 地下核爆炸诱发工程性地震效应的计算原理及应用 [J]. 岩石力学与工程学报, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.

    WANG M Y, LI J. Nonlinear mechanics problems in rock explosion and shock. Part Ⅲ: The calculation principle of engineering seismic effects induced by underground nuclear explosion and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.
    [25] SHISHKIN N I. Seismic efficiency of a contact explosion and a high-velocity impact [J]. Journal of Applied Mechanics and Technical Physics, 2007, 48(2): 145–152. DOI: 10.1007/s10808-007-0019-6.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  89
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2023-02-20
  • 网络出版日期:  2023-03-22
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回