初始空腔体积率对约束HMX基PBX-3炸药慢烤相变的影响

胡平超 李涛 刘仓理 傅华

胡平超, 李涛, 刘仓理, 傅华. 初始空腔体积率对约束HMX基PBX-3炸药慢烤相变的影响[J]. 爆炸与冲击, 2023, 43(6): 062301. doi: 10.11883/bzycj-2022-0489
引用本文: 胡平超, 李涛, 刘仓理, 傅华. 初始空腔体积率对约束HMX基PBX-3炸药慢烤相变的影响[J]. 爆炸与冲击, 2023, 43(6): 062301. doi: 10.11883/bzycj-2022-0489
HU Pingchao, LI Tao, LIU Cangli, FU Hua. Effect of initial void ratio on phase transition of confined HMX-based PBX-3 under slow cook-off[J]. Explosion And Shock Waves, 2023, 43(6): 062301. doi: 10.11883/bzycj-2022-0489
Citation: HU Pingchao, LI Tao, LIU Cangli, FU Hua. Effect of initial void ratio on phase transition of confined HMX-based PBX-3 under slow cook-off[J]. Explosion And Shock Waves, 2023, 43(6): 062301. doi: 10.11883/bzycj-2022-0489

初始空腔体积率对约束HMX基PBX-3炸药慢烤相变的影响

doi: 10.11883/bzycj-2022-0489
详细信息
    作者简介:

    胡平超(1985- ),男,博士研究生,高级工程师,zunyihupc@163.com

    通讯作者:

    傅 华(1978- ),男,博士,研究员,fmyfuhua@163.com

  • 中图分类号: O381;TJ55

Effect of initial void ratio on phase transition of confined HMX-based PBX-3 under slow cook-off

  • 摘要: 为了认识慢烤过程中初始空腔体积率对HMX基PBX-3炸药热致相变以及点火响应特性的影响,设计了小尺寸强约束慢烤实验装置。在相同温升速率下,开展了空腔体积率分别为1.0%、4.2%和13.8%的约束PBX-3炸药慢烤实验,获得了炸药内部不同位置以及约束壳体表面的温度演变历程,对炸药中HMX相变过程、初始空腔体积率对HMX相变影响的机制、HMX相变进程对点火反应温度的影响进行了详细分析。结果表明:初始空腔体积率越小,HMX相变吸热表现出的温度平台持续时间越短,点火时刻约束壳体表面的温度越高。分析认为初始空腔体积率越小,慢烤加热至HMX相变温度时刻,PBX-3炸药受到的热应力越大,延缓了慢烤过程中β-HMX转化为δ-HMX的相变进程;由于δ-HMX的热感度更高,慢烤实验过程中HMX的相变进程越慢,δ-HMX放热分解反应引起的热量积累越慢,炸药点火反应时刻约束壳体的温度越高。
  • 图  1  慢烤实验装置结构及热电偶分布

    Figure  1.  Slow cook-off experimental setup and layout of thermocouples

    图  2  慢烤实验装置实物图

    Figure  2.  Photo of slow cook-off experimental setup

    图  3  不同初始空腔体积率下PBX-3炸药相变吸热温度特征

    Figure  3.  Endothermic characters of PBX-3 phase transition at different initial void ratios

    图  4  不同初始空腔体积率下PBX-3炸药内部的温度历程

    Figure  4.  Temperature evolution in PBX-3 at different initial void ratios

  • [1] 田勇, 李敬明. 弹药安全的新发展: 安全弹药刍议 [J]. 含能材料, 2017, 25(2): 91–93. DOI: 10.11943/j.issn.1006-9941.2017.02.00X.

    TIAN Y, LI J M. New development of ammunition safety: robust munitions [J]. Chinese Journal of Energetic Materials, 2017, 25(2): 91–93. DOI: 10.11943/j.issn.1006-9941.2017.02.00X.
    [2] 戴湘晖, 王可慧, 沈子楷, 等. 侵彻弹体快速烤燃安全特性实验研究 [J]. 爆炸与冲击, 2020, 40(9): 092301. DOI: 10.11883/bzycj/2020-0016.

    DAI X H, WANG K H, SHEN Z K, et al. Experiment of fast cook-off safety characteristic for penetrator [J]. Explosion and Shock Waves, 2020, 40(9): 092301. DOI: 10.11883/bzycj/2020-0016.
    [3] 戴湘晖, 段建, 沈子楷, 等. 侵彻弹体慢速烤燃响应特性实验研究 [J]. 兵工学报, 2020, 41(2): 291–297. DOI: 10.3969/j.issn.1000-1093.2020.02.010.

    DAI X H, DUAN J, SHEN Z K, et al. Experiment of slow cook-off response characteristics of penetrator [J]. Acta Armamentarii, 2020, 41(2): 291–297. DOI: 10.3969/j.issn.1000-1093.2020.02.010.
    [4] 沈飞, 王胜强, 王辉. 不同约束条件下HMX基含铝炸药的慢烤响应特性 [J]. 火炸药学报, 2019, 42(4): 385–390. DOI: 10.14077/j.issn.1007-7812.2019.04.012.

    SHEN F, WANG S Q, WANG H. Slow cook-off response characteristics of HMX-based aluminized explosive under different constraint conditions [J]. Chines Journal of Explosive and Propellants, 2019, 42(4): 385–390. DOI: 10.14077/j.issn.1007-7812.2019.04.012.
    [5] 沈飞, 王胜强, 王辉. HMX基含铝炸药装药慢烤缓释结构设计及验证 [J]. 含能材料, 2019, 27(10): 861–866. DOI: 10.11943/CJEM2018273.

    SHEN F, WANG S Q, WANG H. Slow release structure design and verification of HMX-based aluminized explosive charge under slow cook-off condition [J]. Chinese Journal of Energetic Materials, 2019, 27(10): 861–866. DOI: 10.11943/CJEM2018273.
    [6] WEESE R K, BURNHAM A K. Coefficient of thermal expansion of the beta and delta polymorphs of HMX [J]. Propellants, Explosives, Pyrotechnics, 2005, 30(5): 344–350. DOI: 10.1002/prep.200500024.
    [7] HERRMANN M, ENGEL W, EISENREICH N. Thermal expansion, transitions, sensitivities and burning rates of HMX [J]. Propellants, Explosives, Pyrotechnics, 1992(17): 190–195. DOI: 10.1002/prep.19920170409.
    [8] URTIEW P A, FORBES J W, TARVER C M, et al. Shock sensitivity of LX-04 containing delta phase HMX at elevated temperatures [J]. AIP Conference Proceedings, 2004, 706(1): 1053–1056. DOI: 10.1063/1.1780419.
    [9] KANESHIGE M J, RENLUND A M, SCHMITT R G, et al. Cook-off experiments for model validation at Sandia National Labortories [C]//Proceeding of the 12th International Detonation Symposium. San Diego, California, USA: Office of Naval Research, 2002: 1181–1190.
    [10] WARDELL J F, MAIENSCHEIN J L. The scaled thermal explosion experiment [C]//Proceedings of the 12th International Conference Symposium. San Diego, California, USA: U.S. Department of Energy, 2002.
    [11] WILLEY T M, LAUDERBACH L, GAGLIARDI F, et al. The mesoscale evolution of voids in HMX-based explosives during heating through the β-δ phase transition [C]//Proceeding of the 15th International Detonation Symposium. 2014: 1266–1270.
    [12] PETERSON P D, MANG J T, ASAY B W. Quantitative analysis of damage in an octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazonic-based composite explosive subjected to a linear thermal gradient [J]. Journal of Applied Physics, 2005, 97: 093507. DOI: 10.1063/1.1879072.
    [13] TAPPAN A S, RENLUND A M, GIESKE J H, et al. Raman spectroscopic and ultrasonic measurements to monitor the HMX β-δ phase transition: SAND99-2667C [R]// Office of Scientific & Technical Information Technical Reports. San Diego, California, USA: Office of Scientific and Technical Information, U.S. Department of Energy, 1999.
    [14] BOWLAN P, SMILOWITZ L, HENSON B F, et al. Study of the kinetics of solid-solid phase transitions in HMX [J]. AIP Conference Proceedings, 2018, 1979(1): 150005. DOI: 10.1063/1.5044961.
    [15] HENSON B F, SMILOWITZ L, ASAY B W, et al. The β-δ phase transition in the energetic nitramine octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine: thermodynamics [J]. Journal of Chemical Physics, 2002, 117(8): 3780–3788. DOI: 10.1063/1.1495398.
    [16] RENLUND A M , TAPPAN A S , MILLER J C . LDRD final report : Raman spectroscopic measurements to monitor the HMX beta-delta phase transition: SAND2000-2927 [R]. Albuquerque, New Mexico, USA: Sandia National Laboratories, 2000. DOI: 10.2172/975257.
    [17] HOBBS M L, KANESHIGE M J, ERIKSON W W. Modeling the measured effect of a nitroplasticizer (BDNPA/F) on cookoff of a plastic bonded explosive (PBX 9501) [J]. Combustion and Flame, 2016, 173: 132–150. DOI: 10.1016/j.combustflame.2016.08.014.
    [18] 胡惟佳, 吴艳青, 黄风雷. 烤燃作用下的HMX单晶各向异性力学响应及相变 [J]. 含能材料, 2018, 26(1): 86–93. DOI: 10.11943/j.issn.1006-9941.2018.01.011.

    HU W J, WU Y Q, HUANG F L. Anisotropic mechanical response and phase transition of cooked HMX [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 86–93. DOI: 10.11943/j.issn.1006-9941.2018.01.011.
    [19] 马欣, 陈朗, 鲁峰, 等. 烤燃条件下HMX/TATB基混合炸药多步热分解反应计算 [J]. 爆炸与冲击, 2014, 34(1): 67–74. DOI: 10.11883/1001-1455(2014)01-0067-08.

    MA X, CHEN L, LU F, et al. Calculation on multi-step thermal decomposition of HMX-and TATB-based composite explosive under cook-off conditions [J]. Explosion and Shock Waves, 2014, 34(1): 67–74. DOI: 10.11883/1001-1455(2014)01-0067-08.
    [20] 肖游, 智小琦, 王琦, 等. 多种复合炸药装药的慢烤特性及其机理 [J]. 高压物理学报, 2022, 36(2): 025201. DOI: 10.11858/gywlxb.20210871.

    XIAO Y, ZHI X Q, WANG Q, et al. Characteristics and mechanism of slow cook-off of composite explosive charges [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025201. DOI: 10.11858/gywlxb.20210871.
    [21] NICHOLS A L. Coupled thermal/chemical/mechanical modeling of insensitive explosives in thermal environments: UCRL-JC-117237-Rev-1 [R]. 1995.
  • 加载中
图(4)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  60
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 修回日期:  2023-03-16
  • 网络出版日期:  2023-03-23
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回