组合多孔介质与氮气幕协同抑制瓦斯爆炸实验研究

王健 余靖宇 凡子尧 郑立刚 刘贵龙 赵永贤

王健, 余靖宇, 凡子尧, 郑立刚, 刘贵龙, 赵永贤. 组合多孔介质与氮气幕协同抑制瓦斯爆炸实验研究[J]. 爆炸与冲击, 2023, 43(10): 105402. doi: 10.11883/bzycj-2022-0562
引用本文: 王健, 余靖宇, 凡子尧, 郑立刚, 刘贵龙, 赵永贤. 组合多孔介质与氮气幕协同抑制瓦斯爆炸实验研究[J]. 爆炸与冲击, 2023, 43(10): 105402. doi: 10.11883/bzycj-2022-0562
WANG Jian, YU Jingyu, FAN Ziyao, ZHENG Ligang, LIU Guilong, ZHAO Yongxian. Experimental study on the synergistic suppression of gas explosion by combined porous media and nitrogen curtain[J]. Explosion And Shock Waves, 2023, 43(10): 105402. doi: 10.11883/bzycj-2022-0562
Citation: WANG Jian, YU Jingyu, FAN Ziyao, ZHENG Ligang, LIU Guilong, ZHAO Yongxian. Experimental study on the synergistic suppression of gas explosion by combined porous media and nitrogen curtain[J]. Explosion And Shock Waves, 2023, 43(10): 105402. doi: 10.11883/bzycj-2022-0562

组合多孔介质与氮气幕协同抑制瓦斯爆炸实验研究

doi: 10.11883/bzycj-2022-0562
基金项目: 河南理工大学青年骨干教师资助计划(2022XQG-16);河南理工大学创新科技团队(T2021-4);国家自然科学基金(51974107)
详细信息
    作者简介:

    王 健(1982- ),男,博士,副教授,wjhpu@hpu.edu.cn

  • 中图分类号: O389

Experimental study on the synergistic suppression of gas explosion by combined porous media and nitrogen curtain

  • 摘要: 为探究组合多孔介质与氮气幕抑制瓦斯爆炸的协同作用,在自主设计的爆炸管道内开展了爆炸实验。氮气幕距离点火位置0.9 m。实验选择的组合多孔介质是由孔隙密度为10 ppi的泡沫铁镍与20、30、40 ppi的泡沫铁镍形成的组合体,以及10 ppi的泡沫铁镍与20、40 ppi的泡沫铜组成的组合体。研究表明:合理改变多孔介质的组合能提升与氮气幕共同抑制瓦斯爆炸的效果;第一层使用泡沫铁镍和第二层使用泡沫铜的组合显著削减火焰到达多孔介质时的强度,降低超压峰值,同时能够防止刚度低的泡沫铜形变而造成淬熄失败;抑爆效果最佳的组合为孔隙密度为10 ppi的泡沫铁镍与40 ppi的泡沫铜形成的组合多孔介质。
  • 图  1  实验系统

    Figure  1.  Experimental system

    图  2  组合多孔介质抑制作用下的火焰传播图像

    Figure  2.  Flame propagation images under the suppression of the combined porous media

    图  3  不同组合多孔介质的火焰前锋位置-时间曲线

    Figure  3.  The curve of flame front position versus time for different combinations of porous media

    图  4  不同组合多孔介质的火焰传播速度-位置曲线

    Figure  4.  Velocity-position curves of flame propagation fordifferent combinations of porous media

    图  5  不同组合多孔介质的爆炸超压-时间曲线

    Figure  5.  Variation curves of explosion overpressure with time for different combinations of porous media

    图  6  抑制机理示意图

    Figure  6.  Schematic diagram of suppression mechanism

    图  7  多孔介质上下游超压对比

    Figure  7.  Comparison of upstream and downstream overpressure of porous media

    表  1  实验工况

    Table  1.   Experimental conditions

    工况 第一层 第二层
    孔隙密度/ppi 材质 孔隙密度/ppi 材质
    F10F10 10 Fe-Ni 10 Fe-Ni
    F10F20 10 Fe-Ni 20 Fe-Ni
    F10F30 10 Fe-Ni 30 Fe-Ni
    F10F40 10 Fe-Ni 40 Fe-Ni
    F10C20 10 Fe-Ni 20 Cu
    F10C40 10 Fe-Ni 40 Cu
    下载: 导出CSV
  • [1] 张俊卿. 城市天然气管道泄露危害及预防措施 [J]. 中国新技术新产品, 2020(10): 141–142. DOI: 10.13612/j.cnki.cntp.2020.10.061.

    ZHANG J Q. City gas pipeline leakage hazards and preventive measures [J]. New Technology & New Products of China, 2020(10): 141–142. DOI: 10.13612/j.cnki.cntp.2020.10.061.
    [2] 张迎新, 吴强, 刘传海, 等. 惰性气体N2/CO2抑制瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.

    ZHANG Y X, WU Q, LIU C H, et al. Experimental study on coal mine gas explosion suppression with inert gas N2/CO2 [J]. Explosion and Shock Waves, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.
    [3] 余明高, 韦贝贝, 郑凯. N2与CO2对合成气爆炸特性影响的实验研究 [J]. 爆炸与冲击, 2019, 39(6): 065401. DOI: 10.11883/bzycj-2018-0131.

    YU M G, WEI B B, ZHENG K. Effect of inert gas addition on syngas explosion [J]. Explosion and Shock Waves, 2019, 39(6): 065401. DOI: 10.11883/bzycj-2018-0131.
    [4] ZHENG K, YANG X F, YU M G, et al. Effect of N2 and CO2 on explosion behavior of syngas/air mixtures in a closed duct [J]. International Journal of Hydrogen Energy, 2019, 44(51): 28044–28055. DOI: 10.1016/j.ijhydene.2019.09.053.
    [5] 胡洋, 吴秋遐, 庞磊, 等. 惰性气体抑制瓦斯爆燃火焰传播特性实验研究 [J]. 中国安全生产科学技术, 2021, 17(11): 72–78. DOI: 10.11731/j.issn.1673-193x.2021.11.011.

    HU Y, WU Q X, PANG L, et al. Experimental study on flame propagation characteristics of gas explosion suppression by inert gas [J]. Journal of Safety Science and Technology, 2021, 17(11): 72–78. DOI: 10.11731/j.issn.1673-193x.2021.11.011.
    [6] 刘洋, 李展, 方秦, 等. 惰性气体和水蒸气对长直空间燃气爆炸超压及其振荡的抑制作用 [J]. 高压物理学报, 2021, 35(5): 055201. DOI: 10.11858/gywlxb.20200654.

    LIU Y, LI Z, FANG Q, et al. Inert gas and water vapor suppressing overpressure and its oscillation of gas explosion in long straight space [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055201. DOI: 10.11858/gywlxb.20200654.
    [7] ZHUANG C J, WANG Z R, ZHANG K, et al. Explosion suppression of porous materials in a pipe-connected spherical vessel [J]. Journal of Loss Prevention in the Process Industries, 2020, 65: 104106. DOI: 10.1016/j.jlp.2020.104106.
    [8] DUAN Y L, WANG S, YANG Y L, et al. Experimental study on methane explosion characteristics with different types of porous media [J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104370. DOI: 10.1016/j.jlp.2020.104370.
    [9] SHAO H, WANG C, YU H K. Effect of copper foam on explosion suppression at different positions in the pipe [J]. Powder Technology, 2020, 360: 695–703. DOI: 10.1016/j.powtec.2019.09.078.
    [10] JIN K Q, WANG Q S, DUAN Q L, et al. Effect of ignition position on premixed hydrogen-air flame quenching behaviors under action of metal wire mesh [J]. Fuel, 2021, 289: 119750. DOI: 10.1016/j.fuel.2020.119750.
    [11] JIN K Q, DUAN Q L, CHEN J Y, et al. Experimental study on the influence of multi-layer wire mesh on dynamics of premixed hydrogen-air flame propagation in a closed duct [J]. International Journal of Hydrogen Energy, 2017, 42(21): 14809–14820. DOI: 10.1016/j.ijhydene.2017.03.232.
    [12] JIN K Q, WANG Q S, DUAN Q L, et al. Effect of single-layer wire mesh on premixed methane/air flame dynamics in a closed pipe [J]. International Journal of Hydrogen Energy, 2020, 45(56): 32664–32675. DOI: 10.1016/j.ijhydene.2020.08.159.
    [13] 王燕, 程义伸, 曹建亮, 等. 核-壳型KHCO3/赤泥复合粉体的甲烷抑爆特性 [J]. 煤炭学报, 2017, 42(3): 653–658. DOI: 10.13225/j.cnki.jccs.2016.0434.

    WANG Y, CHENG Y S, CAO J L, et al. Suppression characteristics of KHCO3/red-mud composite powders with core-shell structure on methane explosion [J]. Journal of China Coal Society, 2017, 42(3): 653–658. DOI: 10.13225/j.cnki.jccs.2016.0434.
    [14] 王亚军, 徐秀艳, 秦宪礼. 煤粉对泡沫金属抑制爆炸火焰波性能的影响规律 [J]. 煤炭学报, 2017, 42(11): 2885–2891. DOI: 10.13225/j.cnki.jccs.2017.0476.

    WANG Y J, XU X Y, QIN X L. Study on the influence regulation after adding coal dust for inhibition of flame wave of gas explosion by foam metal [J]. Journal of China Coal Society, 2017, 42(11): 2885–2891. DOI: 10.13225/j.cnki.jccs.2017.0476.
    [15] 王亚军, 吴征艳, 赵红梅, 等. 煤粉对泡沫金属抑制爆炸火焰传播速度的影响分析 [J]. 煤矿安全, 2019, 50(11): 180–184. DOI: 10.13347/j.cnki.mkaq.2019.11.042.

    WANG Y J, WU Z Y, ZHAO H M, et al. Analysis of influence of pulverized coal on flame propagation velocity of foam metal [J]. Safety in Coal Mines, 2019, 50(11): 180–184. DOI: 10.13347/j.cnki.mkaq.2019.11.042.
    [16] 裴蓓, 韦双明, 陈立伟, 等. CO2-超细水雾对CH4/Air初期爆炸特性的影响 [J]. 爆炸与冲击, 2019, 39(2): 025402. DOI: 10.11883/bzycj-2018-0147.

    PEI B, WEI S M, CHEN L W, et al. Effect of CO2-ultrafine water mist on initial explosion characteristics of CH4/Air [J]. Explosion and Shock Waves, 2019, 39(2): 025402. DOI: 10.11883/bzycj-2018-0147.
    [17] 余明高, 杨勇, 裴蓓, 等. N2双流体细水雾抑制管道瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(2): 194–200. DOI: 10.11883/1001-1455(2017)02-0194-07.

    YU M G, YANG Y, PEI B, et al. Experimental study of methane explosion suppression by nitrogen twin-fluid water mist [J]. Explosion and Shock Waves, 2017, 37(2): 194–200. DOI: 10.11883/1001-1455(2017)02-0194-07.
    [18] PEI B, LI J, WANG Y, et al. Synergistic inhibition effect on methane/air explosions by N2-twin-fluid water mist containing sodium chloride additive [J]. Fuel, 2019, 253: 361–368. DOI: 10.1016/j.fuel.2019.05.035.
    [19] 郭成成, 王飞, 刘红威, 等. 惰性气体-细水雾抑制瓦斯爆炸对比分析 [J]. 煤矿安全, 2018, 49(6): 164–167. DOI: 10.13347/j.cnki.mkaq.2018.06.043.

    GUO C C, WANG F, LIU H W, et al. Comparative analysis of gas explosion suppression by water mist of inert gas [J]. Safety in Coal Mines, 2018, 49(6): 164–167. DOI: 10.13347/j.cnki.mkaq.2018.06.043.
    [20] 温小萍, 郭志东, 王发辉, 等. 一维多孔介质和超细水雾协同抑制瓦斯爆炸试验 [J]. 安全与环境学报, 2020, 20(2): 539–547. DOI: 10.13637/j.issn.1009-6094.2019.0114.

    WEN X P, GUO Z D, WANG F H, et al. Experimental approach to the synergistic inhibition of the gas explosion through the one-D porous media and the ultrafine water mist [J]. Journal of Safety and Environment, 2020, 20(2): 539–547. DOI: 10.13637/j.issn.1009-6094.2019.0114.
    [21] 裴蓓, 韦双明, 余明高, 等. 气液两相介质抑制管道甲烷爆炸协同增效作用 [J]. 煤炭学报, 2018, 43(11): 3130–3136. DOI: 10.13225/j.cnki.jccs.2018.0064.

    PEI B, WEI S M, YU M G, et al. Synergistic inhibition effect on methane explosion in pipeline by gas-liquid two-phase medium [J]. Journal of China Coal Society, 2018, 43(11): 3130–3136. DOI: 10.13225/j.cnki.jccs.2018.0064.
    [22] 魏春荣. 多孔材料对瓦斯爆炸抑制作用研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012. DOI: 10.7666/d.D416500.
    [23] CLANET C, SEARBY G. On the “tulip flame” phenomenon [J]. Combust Flame, 1996, 105(1/2): 225–238. DOI: 10.1016/0010-2180(95)00195-6.
    [24] 张晓萍. 基于多孔结构的泡沫金属散热器性能研究 [D]. 西安: 西安电子科技大学, 2021. DOI: 10.27389/d.cnki.gxadu.2021.002167.
    [25] CHEN P, HUANG F J, SUN Y D, et al. Effects of metal foam meshes on premixed methane-air flame propagation in the closed duct [J]. Journal of Loss Prevention in the Process Industries, 2017, 47: 22–28. DOI: 10.1016/j.jlp.2017.02.015.
    [26] CUI Y Y, WANG Z R, ZHOU K B, et al. Effect of wire mesh on double-suppression of CH4/air mixture explosions in a spherical vessel connected to pipelines [J]. Journal of Loss Prevention in the Process Industries, 2017, 45: 69–77. DOI: 10.1016/j.jlp.2016.11.017.
    [27] 段玉龙, 王硕, 贺森, 等. 多孔材料下气体爆炸转扩散燃烧的特性研究 [J]. 爆炸与冲击, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009.

    DUAN Y L, WANG S, HE S, et al. Characteristics of gas explosion to diffusion combustion under porous materials [J]. Explosion and Shock Waves, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  40
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-17
  • 修回日期:  2023-05-25
  • 刊出日期:  2023-10-27

目录

    /

    返回文章
    返回