撞击姿态对构型弹体非正侵彻多层间隔钢靶弹道特性的影响规律

杨璞 李继承 陈建良 张斌 何丽灵 陈刚

杨璞, 李继承, 陈建良, 张斌, 何丽灵, 陈刚. 撞击姿态对构型弹体非正侵彻多层间隔钢靶弹道特性的影响规律[J]. 爆炸与冲击, 2023, 43(9): 091407. doi: 10.11883/bzycj-2022-0571
引用本文: 杨璞, 李继承, 陈建良, 张斌, 何丽灵, 陈刚. 撞击姿态对构型弹体非正侵彻多层间隔钢靶弹道特性的影响规律[J]. 爆炸与冲击, 2023, 43(9): 091407. doi: 10.11883/bzycj-2022-0571
YANG Pu, LI Jicheng, CHEN Jianliang, ZHANG Bin, HE Liling, CHEN Gang. Influence rule of impact attitude on trajectory characteristics of warhead’s non-normally penetration into multi-layer spaced steel target[J]. Explosion And Shock Waves, 2023, 43(9): 091407. doi: 10.11883/bzycj-2022-0571
Citation: YANG Pu, LI Jicheng, CHEN Jianliang, ZHANG Bin, HE Liling, CHEN Gang. Influence rule of impact attitude on trajectory characteristics of warhead’s non-normally penetration into multi-layer spaced steel target[J]. Explosion And Shock Waves, 2023, 43(9): 091407. doi: 10.11883/bzycj-2022-0571

撞击姿态对构型弹体非正侵彻多层间隔钢靶弹道特性的影响规律

doi: 10.11883/bzycj-2022-0571
基金项目: 四川省自然科学基金杰出青年基金(2023NSFSC1913);中国工程物理研究院创新与发展基金(CX20210031)
详细信息
    作者简介:

    杨 璞(1989- ),女,硕士,助理研究员,yangp_caep@sina.com

    通讯作者:

    李继承(1984- ),男,博士,副研究员,lijc401@caep.cn

  • 中图分类号: O385

Influence rule of impact attitude on trajectory characteristics of warhead’s non-normally penetration into multi-layer spaced steel target

  • 摘要: 为深入认识构型弹体非正侵彻多层间隔靶板的弹道偏转规律,结合数值模拟和理论分析,研究了构型弹体在不同撞击姿态下侵彻多层间隔钢靶的弹道特性,其中引入弹体侧向接触力和侧向偏转力矩等参量,着重分析撞击着角和攻角对弹道特性的影响规律。结果表明:构型弹体非正侵彻过程中,在纵向发生阶梯式速度衰减,但变化较小;同时,由于穿靶过程中受到侧向接触力及其偏转力矩的作用,在侧向产生显著弹道偏转。撞击着角决定弹体所受外载荷的非对称程度,着角越大,弹体偏转越严重;撞击攻角则主要影响弹肩穿靶时的径向速度和弹尾穿靶时的触靶位置,二者共同影响弹道轨迹,因而存在使弹体偏转程度发生转折的临界攻角。相比于侵彻单层靶,构型弹体非正侵彻多层间隔靶板的显著特点为弹道偏转存在累积效应,且侵彻前一靶板的弹道偏转情况显著影响到侵彻后一靶板时的弹靶作用特征,进而导致弹道偏转与弹靶接触力互相耦合。相关研究对预测构型弹体侵彻多层间隔靶板性能、优化弹体构型和撞击姿态等具有较好的指导价值。
  • 图  1  构型弹非正侵彻4层间隔钢靶有限元几何模型

    Figure  1.  Finite element model of warhead non-normal penetration into four layers spaced steel targets

    图  2  构型弹体非正侵彻着角和攻角的定义

    Figure  2.  Definition of oblique angle and attacking angle in the non-normal penetration

    图  3  弹体非正侵彻多层间隔钢靶的弹道偏转过程

    Figure  3.  Trajectory deflection process during the non-normal penetration into multi-layer spaced steel target

    图  4  构型弹体运动和载荷参量的变化历程

    Figure  4.  Variation of motion and load parameters of the warhead during penetration

    图  5  构型弹体偏转角度的变化历程

    Figure  5.  Variation of attitude angle of warhead during the penetration

    图  6  构型弹体偏转角速度的变化历程

    Figure  6.  Variation of angular velocity of warhead during the penetration

    图  7  构型弹体壳体侧向接触力的变化历程

    Figure  7.  Variation of lateral contact force on the warhead shell during penetration

    图  8  构型弹体侵彻靶1过程中不同时刻的弹靶作用状态

    Figure  8.  Interaction condition between warhead and target at different moments during the penetration process into the first target plate

    图  9  弹体侧向接触力作用点与弹体质心之间的位移示意图

    Figure  9.  Schematic diagram of displacement between the load position of lateral contact force and the warhead centroid

    图  10  构型弹体壳体侧向偏转力矩的变化历程

    Figure  10.  Variation of angular moment on the warhead shell during penetration

    图  11  不同撞击着角条件下构型弹体偏转角度的变化历程

    Figure  11.  Variation of attitude angle of warhead during penetration under different oblique angles

    图  12  不同撞击着角条件下构型弹体侧向接触力和侧向偏转力矩变化历程

    Figure  12.  Variations of lateral contact force and the corresponding angular moment on the warhead during the penetration under different oblique angles

    图  13  斜侵彻靶板时的弹体速度分解示意图

    Figure  13.  Schematic diagram of warhead velocity decomposition during the penetration process

    图  14  不同撞击攻角条件下构型弹体最终偏转角度

    Figure  14.  Final attitude angle values of the warhead under different oblique angles

    图  15  不同撞击攻角条件下构型弹体偏转角的变化历程

    Figure  15.  Variation of attitude angle of warhead during the penetration under different attacking angles

    图  16  不同撞击攻角条件下构型弹体所受侧向接触力及其偏转力矩的变化历程

    Figure  16.  Variations of lateral contact force and the corresponding angular moment on the warhead during the penetration under different attacking angles

    图  17  不同撞击攻角条件下构型弹体侵彻靶1时弹尾与靶板相互作用状态的对比

    Figure  17.  Comparison of the interaction condition between warhead tail and target during penetration process into the first target plate under different attacking angles

    图  18  不同撞击攻角条件下构型弹体侵彻靶2时弹尾与靶板相互作用状态的对比

    Figure  18.  Comparison of the interaction condition between warhead tail and target during penetration process into the second target plate under different attacking angles

    图  19  正攻角条件下构型弹体偏转角的变化历程

    Figure  19.  Variation of attitude angle of warhead during the penetration under positive attacking angles

    图  20  正攻角条件下构型弹体所受侧向接触力及其偏转力矩的变化历程

    Figure  20.  Variations of lateral contact force and the corresponding angular moment on the warhead during the penetration under positive attacking angles

    图  21  正攻角条件下弹肩穿靶阶段速度分解示意图

    Figure  21.  Schematic diagram of warhead velocity decomposition during penetration process of warhead nose under a positive attacking angle

    图  22  负攻角和零攻角条件下构型弹体偏转角的变化历程

    Figure  22.  Variation of attitude angle of warhead during penetration under negative attacking angles and with no attacking angle

    图  23  负攻角和零攻角条件下构型弹体所受侧向接触力及其偏转力矩的变化历程

    Figure  23.  Variations of lateral contact force and the corresponding angular moment on the warhead during the penetration under negative attacking angles and with no attacking angle

    图  24  负攻角条件下弹肩穿靶阶段速度分解示意图

    Figure  24.  Schematic diagram of warhead velocity decomposition during penetration process of warhead nose under a negative attacking angle

    表  1  材料Johnson-Cook模型参数

    Table  1.   Johnson-Cook model parameters of materials

    材料ρ/(kg·m−3)E/GPaµcV/(J·kg−1·K−1)Tr/KTm/K$\dot \varepsilon $/s−1A/MPaB/MPanC
    G50钢7 6202050.28 469.03001 76511 4451 3260.3560.005
    TC4钛4 4281100.31 560.03001 87811 0981 0920.9300.014
    921A钢7 8502050.28 400.93001 7651 760 5000.5300.014
    PBX1 900 120.301 559.0 300 5401 15 101.0000.200
    材料mS1ac0/(m·s−1)γ0D1D2D3D4D5
    G50钢1.121.990 0.464 2802.00 0.10 0.76 1.5700
    TC4钛1.101.028 0.905 1301.23 –0.09 0.76 0.48 0.014 3.87
    921A钢1.131.990 0.464 2802.00 1.20 0.27000
    PBX0.602.38002 5651.1000000
    下载: 导出CSV

    表  2  构型弹体撞击工况

    Table  2.   Warhead impact cases

    工况 分析要素 着角/(°) 攻角/(°) 撞击速度/(m·s−1)
    1 着角 10 0 800
    2 着角 20 0 800
    3 着角 30 0 800
    4 攻角 20 –4 800
    5 攻角 20 –3 800
    6 攻角 20 –2 800
    7 攻角 20 –1 800
    8 攻角 20 1 800
    9 攻角 20 2 800
    10 攻角 20 3 800
    11 攻角 20 4 800
    下载: 导出CSV

    表  3  不同撞击着角条件下弹肩即将穿过靶1时刻弹体的速度分量大小

    Table  3.   Velocity component values at the moment when the warhead nose passes through the first target plate under different oblique angles

    着角/(°)$v_\perp $/(m·s−1)v///(m·s−1)
    10771.1136.0
    20735.8267.8
    30678.1391.5
    下载: 导出CSV

    表  4  正攻角条件下弹肩穿靶阶段弹体的速度分量

    Table  4.   Velocity component values at the moment when the warhead nose passes through the target plateunder positive attacking angles

    攻角/( °)vx/(m·s−1)vr/(m·s−1)
    2782.527.3
    3781.941.0
    4781.154.6
    下载: 导出CSV

    表  5  负攻角和零攻角条件下弹肩穿靶阶段弹体速度分量

    Table  5.   Velocity component values at the moment when the warhead nose passes through the target plate under negative attacking angles and with no attacking angle

    攻角/(°)vx/(m·s−1)vr/(m·s−1)
    –4781.154.6
    –3781.941.0
    –2782.527.3
    –1782.913.7
    0783.00
    下载: 导出CSV
  • [1] 徐峰, 周心桃, 李德聪, 等. 国外典型航母目标特性探析 [J]. 舰船科学技术, 2018, 40(9): 151–157. DOI: 10.3404/j.issn.1672-7649.2018.09.030.

    XU F, ZHOU X T, LI D C, et al. Analysis of the target characteristics of foreign typical aircraft carrier [J]. Ship Science and Technology, 2018, 40(9): 151–157. DOI: 10.3404/j.issn.1672-7649.2018.09.030.
    [2] GOLDSMITH W. Review non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22: 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
    [3] ANDERSON J C. Analytical models for penetration mechanics: a review [J]. International Journal of Impact Engineering, 2017, 108: 3–26. DOI: 10.1016/j.ijimpeng.2017.03.018.
    [4] 段卓平, 李淑睿, 马兆芳, 等. 刚性弹体斜侵彻贯穿混凝土靶的姿态偏转理论模型 [J]. 爆炸与冲击, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.

    DUAN Z P, LI S R, MA Z F, et al. Analytical model for attitude deflection of rigid projectile during oblique perforation of concrete targets [J]. Explosion and Shock Waves, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.
    [5] WU H, PENG Y, KONG X Z. Notes on projectile impact analyses [M]. Singapore: Springer Press, 2020. DOI: 10.1007/978-981-13-3253-1.
    [6] 陈小伟. 穿甲/侵彻力学的理论建模与分析 [M]. 北京: 科学出版社, 2020.
    [7] 刘泓甫, 黄风雷, 白志玲, 等. 刚性弹体带攻角斜侵彻贯穿混凝土靶板的理论模型研究 [J]. 兵工学报, 2023, 44(8): 2381–2390. DOI: 10.12382/bgxb.2022.0423.

    LIU H F, HUANG F L, BAI Z L, et al. Analytical model research on penetration of rigid projectile into concrete target with oblique and attacking angle [J]. Acta Armamentarii, 2023, 44(8): 2381–2390. DOI: 10.12382/bgxb.2022.0423.
    [8] 董永香, 冯顺山, 段相杰. 弹丸斜侵彻多层金属间隔靶特性研究 [J]. 中北大学学报 (自然科学版), 2010, 31(3): 221–226. DOI: 10.3969/j.issn.1673-3193.2010.03.004.

    DONG Y X, FENG S S, DUAN X J. Oblique penetration characteristics of multi-layered spaced targets by steel projectiles [J]. Journal of North University of China (Natural Science Edition), 2010, 31(3): 221–226. DOI: 10.3969/j.issn.1673-3193.2010.03.004.
    [9] 王金涛, 余文力, 王涛, 等. SPH算法在长杆弹侵彻多层间隔靶中的应用 [J]. 爆炸与冲击, 2011, 31(5): 533–539. DOI: 10.11883/1001-1455(2011)05-0533-07.

    WANG J T, YU W L, WANG T, et al. Smoothed particle hydrodynamics algorithm applied in numerical simulation of layered metal targets impacted by long-rod projectile [J]. Explosion and Shock Waves, 2011, 31(5): 533–539. DOI: 10.11883/1001-1455(2011)05-0533-07.
    [10] 黄岐, 周彤, 白洋, 等. 弹丸变攻角侵彻间隔靶弹道极限研究 [J]. 兵工学报, 2016, 37(S2): 251–257.

    HUANG Q, ZHOU T, BAI Y, et al. Ballistic performance of projectile penetrating large-spaced multi-layer plates at variable angle-of-attack [J]. Acta Armamentarri, 2016, 37(S2): 251–257.
    [11] IQBAL M, SENTHIL K, MADHU V, et al. Oblique impact on single, layered and spaced mild steel targets by 7.62 AP projectiles [J]. International Journal of Impact Engineering, 2017, 110: 26–38. DOI: 10.1016/j.ijimpeng.2017.04.011.
    [12] 程伟, 熊国松, 李伟兵, 等. 俯仰角速度对弹丸侵彻多层靶弹道影响 [J]. 含能材料, 2021, 29(12): 1192–1198. DOI: 10.11943/CJEM2021033.

    CHENG W, XIONG G S, LI W B, et al. Influence of the pitch angular velocity on the ballistic trajectory of projectiles penetrating into multi-layered target [J]. Chinese Journal of Energetic Materials, 2021, 29(12): 1192–1198. DOI: 10.11943/CJEM2021033.
    [13] 张立建, 郭洪卫, 吕永柱, 等. 两种侵彻载荷下装药结构动态响应特性数值模拟 [J]. 现代防御技术, 2021, 49(5): 111–117. DOI: 10.3969/j.issn.1009-086x.2021.05.015.

    ZHANG L J, GUO H W, LV Y Z, et al. Numerical simulation of dynamic response characteristic of charge structure under two types of penetration loads [J]. Modern Defence Technology, 2021, 49(5): 111–117. DOI: 10.3969/j.issn.1009-086x.2021.05.015.
    [14] 成丽蓉, 汪德武, 贺元吉, 等. 弹体斜侵彻多层间隔混凝土薄靶姿态偏转机理研究 [J]. 北京理工大学学报, 2022, 42(10): 1009–1016. DOI: 10.15918/j.tbit1001-0645.2021.299.

    CHENG L R, WANG D W, HE Y J, et al. Effect of projectile oblique penetrating into multi-layered thin concrete slabs on attitude deflection [J]. Transactions of Beijing Institute of Technology, 2022, 42(10): 1009–1016. DOI: 10.15918/j.tbit1001-0645.2021.299.
    [15] 马兆芳, 段卓平, 欧卓成, 等. 弹体斜侵彻多层间隔混凝土靶实验和数值模拟 [J]. 北京理工大学学报, 2016, 36(10): 1001–1005. DOI: 10.15918/j.tbit1001-0645.2016.10.003.

    MA Z F, DUAN Z P, OU Z C, et al. Experimental and simulative research on projectile oblique penetration into concrete targets with multi-layered space structure [J]. Transactions of Beijing Institute of Technology, 2016, 36(10): 1001–1005. DOI: 10.15918/j.tbit1001-0645.2016.10.003.
    [16] 吴普磊, 李鹏飞, 董平, 等. 攻角对弹体斜侵彻多层混凝土靶弹道偏转影响的数值模拟及试验验证 [J]. 火炸药学报, 2018, 41(2): 202–207. DOI: 10.14077/j.issn.1007-7812.2018.02.017.

    WU P L, LI P F, DONG P, et al. Numerical simulation and experimental verification on the influence of angle of attack on ballistic deflection of oblique penetrating multi-layer concrete targets for projectile [J]. Chinese Journal of Explosives and Propellants, 2018, 41(2): 202–207. DOI: 10.14077/j.issn.1007-7812.2018.02.017.
    [17] 李鹏飞, 吕永柱, 周涛, 等. 弹头形状对侵彻多层靶弹道的影响 [J]. 含能材料, 2021, 29(2): 124–131. DOI: 10.11943/CJEM2020291.

    LI P F, LV Y Z, ZHOU T, et al. Influence of warhead shape on the trajectory of penetrating multilayer target [J]. Chinese Journal of Energetic Materials, 2021, 29(2): 124–131. DOI: 10.11943/CJEM2020291.
    [18] 杜华池, 张先锋, 刘闯, 等. 弹体斜侵彻多层间隔钢靶的弹道特性 [J]. 兵工学报, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.

    DU H C, ZHANG X F, LIU C, et al. Trajectory characteristics of projectile obliquely penetrating into steel target with multi-layer space structure [J]. Acta Armamentarii, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.
    [19] 李鹏程, 张先锋, 刘 闯, 等. 攻角和入射角对弹体侵彻混凝土薄靶弹道特性影响规律研究 [J]. 爆炸与冲击, 2022, 42(11): 113302. DOI: 10.11883/bzycj-2021-0435.

    LI P C, ZHANG X F, LIU C, et al. Study on the influence of attack angle and incident angle on ballistic characteristics of projectiles penetration into thin concrete targets [J]. Explosion and Shock Waves, 2022, 42(11): 113302. DOI: 10.11883/bzycj-2021-0435.
    [20] HANG Y, SHANG F, GAO S, et al. A miniature and low-power-consumption stress measurement system for embedded explosive in multilayer target penetration [J]. Shock and Vibration, 2020: 5294607. DOI: 10.1155/2020/5294607.
    [21] 张萌昭, 周涛, 郭洪福, 等. 侵彻多层间隔靶板装药损伤特性研究 [J]. 兵器装备工程学报, 2021, 42(12): 92–97. DOI: 10.11809/bqzbgcxb2021.12.013.

    ZHANG M Z, ZHOU T, GUO H F, et al. Experimental study of charge damage in multi-layer target penetration process [J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 92–97. DOI: 10.11809/bqzbgcxb2021.12.013.
    [22] Jane’s IHS Markit. BLU-109/B penetrator [J]. Jane’s Air-Launched Weapons, 2019.
    [23] 邓佳杰, 张先锋, 陈东东, 等. 串联随进弹侵彻预开孔靶弹道轨迹的数值模拟 [J]. 兵工学报, 2016, 37(5): 808–816. DOI: 10.3969/j.issn.1000-1093.2016.05.006.

    DENG J J, ZHANG X F, CHEN D D, et al. Numerical simulation of the trajectory of travelling projectile penetrating into pre-drilled target [J]. Acta Armamentarii, 2016, 37(5): 808–816. DOI: 10.3969/j.issn.1000-1093.2016.05.006.
    [24] 张斌, 李继承, 陈建良, 等. 构型弹体跌落冲击载荷及结构响应特性 [J]. 爆炸与冲击, 2023, 43(3): 033201. DOI: 10.11883/bzycj-2022-0098.

    ZHANG B, LI J C, CHEN J L, et al. Loading characteristics and structural response of warhead during the drop impact [J]. Explosion and Shock Waves, 2023, 43(3): 033201. DOI: 10.11883/bzycj-2022-0098.
    [25] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperature [C] // Proceedings of the Seventh International Symposium of Ballistics. Hague, Netherlands: International Ballistics Committee, 1983: 541–547.
    [26] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures, and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [27] 王礼立, 胡时胜, 杨黎明, 等. 材料动力学 [M]. 合肥: 中国科学技术大学出版社, 2017.
    [28] 田杰, 胡时胜. G50钢动态力学性能的实验研究 [J]. 工程力学, 2006, 23(6): 107–109. DOI: 10.3969/j.issn.1000-4750.2006.06.019.

    TIAN J, HU S S. Research of dynamic mechanical behaviors of G50 steel [J]. Engineering Mechanics, 2006, 23(6): 107–109. DOI: 10.3969/j.issn.1000-4750.2006.06.019.
    [29] 陈刚, 陈忠富, 陶俊林, 等. TC4动态力学性能研究 [J]. 实验力学, 2005, 20(4): 605–609. DOI: 10.3969/j.issn.1001-4888.2005.04.019.

    CHEN G, CHEN Z F, TAO J L, et al. Study on plastic constitutive relationship parameters of TC4 titanium [J]. Journal of Experimental Mechanics, 2005, 20(4): 605–609. DOI: 10.3969/j.issn.1001-4888.2005.04.019.
    [30] MEYER JR H W, KLEPONIS D S. Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration [J]. International Journal of Impact Engineering, 2001, 26: 509–521. DOI: 10.1016/S0734-743X(01)00107-5.
    [31] 李继承, 陈小伟, 陈刚. 921A钢纯剪切帽状试件在SHPB试验中的动态变形 [J]. 爆炸与冲击, 2010, 30(3): 239–246. DOI: 10.11883/1001-1455(2010)03-0239-08.

    LI J C, CHEN X W, CHEN G. Dynamic deformations of 921A steel pure shear hat-shaped specimen in SHPB tests [J]. Explosion and Shock Waves, 2010, 30(3): 239–246. DOI: 10.11883/1001-1455(2010)03-0239-08.
    [32] 李继承, 陈小伟, 陈刚. 921A钢纯剪切帽状试件绝热剪切变形的数值模拟 [J]. 爆炸与冲击, 2010, 30(4): 361–369. DOI: 10.11883/1001-1455(2010)04-0361-09.

    LI J C, CHEN X W, CHEN G. Numerical simulations on adiabatic shear deformations of 921A steel pure shear hat-shaped specimens [J]. Explosion and Shock Waves, 2010, 30(4): 361–369. DOI: 10.11883/1001-1455(2010)04-0361-09.
    [33] 魏强, 黄西成, 陈刚, 等. 高聚物粘结炸药动态损伤破坏的数值刻画 [J]. 兵工学报, 2019, 40(7): 1381–1389. DOI: 10.3969/j.issn.1000-1093.2019.07.007.

    WEI Q, HUANG X C, CHEN G, et al. Numerical characterization of dynamic damage of PBX explosive [J]. Acta Armamentarii, 2019, 40(7): 1381–1389. DOI: 10.3969/j.issn.1000-1093.2019.07.007.
    [34] 胡偲, 吴艳青, 黄风雷. 高温下带金属壳PBX炸药低速撞击敏感性数值模拟 [J]. 爆炸与冲击, 2019, 39(4): 041403. DOI: 10.11883/bzycj-2017-0254.

    HU C, WU Y Q, HUANG F L. Numerical simulation of confined PBX charge under low velocity impact at high temperature [J]. Explosion and Shock Waves, 2019, 39(4): 041403. DOI: 10.11883/bzycj-2017-0254.
    [35] 陈小伟, 李维, 宋成. 细长尖头刚性弹对金属靶板的斜侵彻/穿甲分析 [J]. 爆炸与冲击, 2005, 25(5): 393–399. DOI: 10.11883/1001-1455(2005)05-0393-07.

    CHEN X W, LI W, SONG C. Oblique penetration/perforation of metallic plates by rigid projectiles with slender bodies and sharp noses [J]. Explosion and Shock Waves, 2005, 25(5): 393–399. DOI: 10.11883/1001-1455(2005)05-0393-07.
  • 加载中
图(24) / 表(5)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  54
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-29
  • 录用日期:  2023-07-10
  • 修回日期:  2023-05-30
  • 网络出版日期:  2023-07-19
  • 刊出日期:  2023-09-11

目录

    /

    返回文章
    返回