• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

大质量钨合金动能块高速侵彻超高强度钢靶作用特性

冯晓伟 李俊承 卢永刚 王守乾 卢正操 刘闯 傅丹

郑志军. 学科动态[J]. 爆炸与冲击, 2024, 44(9): 099401. doi: 10.11883/bzycj-2024-0323
引用本文: 冯晓伟, 李俊承, 卢永刚, 王守乾, 卢正操, 刘闯, 傅丹. 大质量钨合金动能块高速侵彻超高强度钢靶作用特性[J]. 爆炸与冲击, 2023, 43(9): 091410. doi: 10.11883/bzycj-2023-0016
FENG XiaoWei, LI Juncheng, LU Yonggang, WANG Shouqian, LU Zhengcao, LIU Chuang, FU Dan. Characteristics of high-mass tungsten alloy kinetic projectile penetrating ultra-high strength steel targets at high velocity[J]. Explosion And Shock Waves, 2023, 43(9): 091410. doi: 10.11883/bzycj-2023-0016
Citation: FENG XiaoWei, LI Juncheng, LU Yonggang, WANG Shouqian, LU Zhengcao, LIU Chuang, FU Dan. Characteristics of high-mass tungsten alloy kinetic projectile penetrating ultra-high strength steel targets at high velocity[J]. Explosion And Shock Waves, 2023, 43(9): 091410. doi: 10.11883/bzycj-2023-0016

大质量钨合金动能块高速侵彻超高强度钢靶作用特性

doi: 10.11883/bzycj-2023-0016
基金项目: 国家自然科学基金(12202424,12141202)
详细信息
    作者简介:

    冯晓伟(1984- ),男,博士,副研究员,xiaowei_feng@126.com

    通讯作者:

    李俊承(1984- ),男,博士,副研究员,uniqueljc@163.com

  • 中图分类号: O383

Characteristics of high-mass tungsten alloy kinetic projectile penetrating ultra-high strength steel targets at high velocity

  • 摘要: 为研究超高强度钢靶抗大质量钨合金动能块的侵彻性能及破坏特性,基于弹道炮开展了215 g圆柱形钨合金动能块高速侵彻半无限超高强度G50钢靶和低强度45钢靶试验,获得了不同速度侵彻下两种钢靶的侵彻深度和成坑体积。试验表明,不同于低强度钢靶的近似圆柱体成坑特性,钨合金动能块侵彻超高强度钢靶时,在靶板内形成了类锥形弹坑,成坑侧面和坑底均有拉伸崩落裂纹;分析了超高强度钢靶的侵彻破坏特性,指出侵彻过程中钨合金动能块局部破碎引起靶板内的卸载拉伸剥落和动能块的侵彻锐化行为联合导致了类锥体弹坑的形成。通过数值模拟验证了超高强度钢靶的高速侵彻破坏机制。
  • 材料的强度依赖于加载测试时的速率,这是因为位错等缺陷的变形移动具有内在的动力学限制。随着变形应变率的增加,更多的强化机制被激发以增加其强度。麻省理工学院研究人员发现,在应变率大于 106 s−1 的微弹道冲击测试中,当温度升高至157 ℃时,铜的强度会增加约30%,纯钛和金中也观察到了这种效应。这种现象是违反直觉的,因为几乎所有材料在正常条件下加热时都会变软。纯金属的这种异常热强化是由于控制变形机制从热激活强化转变为位错的类弹道传输引起的,位错通过声子相互作用受到阻力。这些认识为从高速加工操作到高超音速运输中更准确地模拟和预测材料在各种极端应变率条件下的性能提供了新的思路。

    脆性材料会因快速裂纹而失效。经典断裂力学描述了拉伸裂纹的运动,这些裂纹在尖端的点状区域内将耗散掉被释放的弹性能。在这一框架内,“经典”拉伸裂纹并不能超过瑞利波速度。耶路撒冷希伯来大学研究人员实验利用水凝胶材料,通过实验证明了“超剪切”拉伸裂纹的存在。虽然水凝胶是一种柔性材料,但它的裂纹扩展特性完全遵循脆性材料断裂理论的预测。当水凝胶的拉伸状态超过极限时,拉伸裂纹的扩展速度明显地超过了瑞利波波速。超剪切动力学遵循的原理与指导“经典”裂纹的原理不同;这种断裂模式在临界(与材料相关)施加应变下被激发。这种非经典的拉伸断裂模式颠覆了对断裂力学的传统认知,亟需从理论层面揭示其存在的物理机制。

    北京大学、北京石墨烯研究院、中国科学院力学研究所、武汉大学、中国科学院苏州纳米技术与纳米仿生研究所等研究人员提出了一种高强碳纳米管纤维的多尺度结构优化策略,系统提高了碳纳米管管间作用、纤维取向性、致密性和动态强度。在动态冲击性能的研究中,研究人员利用微尺度高速冲击拉伸实验装置,发现纤维随着拉伸速度的提高发生韧脆失效模式的转变,具有显著的应变率强化效应。当应变率约1400 s−1时,纤维的动态强度达到14 GPa,突破了现有高性能纤维强度。运用强激光诱导的高速横向冲击实验方法,揭示了微米直径纤维单丝在模拟弹道冲击加载下的动力学响应规律,发现由于冲击能量的快速非局域耗散而展现出优异的防护性能,纤维比能量耗散功率远高于凯夫拉等传统防弹纤维。这些发现表明碳纳米管纤维在冲击防护领域具有巨大的应用潜力。

  • 图  1  钨合金动能块及尾翼式加速装置

    Figure  1.  The tungsten alloy projectile and tail-type accelerating device

    图  2  高速侵彻实验布局示意图

    Figure  2.  Sketch of the experiment setup for penetration at high velocity

    图  3  G50靶板固定图

    Figure  3.  The fixation of G50 steel target

    图  4  LNG202G-2型六路电子测时仪与测速靶

    Figure  4.  The electronic time measurement instrument of LNG202G-2 and velocity measurement

    图  5  高速录像布置

    Figure  5.  The layout of high-speed camera system

    图  6  动能块飞行姿态高速录像图

    Figure  6.  High-speed video photography of the kineticprojectile flight posture

    图  7  不同撞击速度下典型靶标的侵彻深度

    Figure  7.  Depths of penetrations of the targets atdifferent impact velocities

    图  8  不同撞击速度下典型靶标的开坑体积

    Figure  8.  Crater volumes of the targets at differentimpact velocities

    图  9  不同侵彻速度下G50钢靶的开坑形貌

    Figure  9.  Photographs of cross sections of G50 steel target after impact by the tungsten alloy projectiles at different velocities

    图  10  不同侵彻速度下45钢靶的开坑形貌

    Figure  10.  Photographs of cross sections of 45 steel target after impact by the tungsten alloy projectiles at different velocities

    图  11  钨合金动能块高速撞击低碳钢靶的侵彻过程示意图

    Figure  11.  Schematica diagrams of the penetration process of low carbon steel target struck by a tungsten alloy projectile

    图  12  钨合金动能块高速撞击G50钢的侵彻过程示意图

    Figure  12.  Schematic diagrams of the penetration process of G50 steel target struck by a tungsten alloy projectile

    图  13  钨合金动能块高速(1 189 m/s)侵彻45钢靶时不同时刻的计算结果

    Figure  13.  Schematic diagrams of the penetration of tungsten alloy projectile into 45 steel at the impactvelocity of 1 189 m/s at different times

    图  14  钨合金动能块高速(1 425 m/s)侵彻G50钢靶时不同时刻的计算结果

    Figure  14.  Schematic diagrams of the penetration of tungsten alloy projectile into G50 steel at the impactvelocity of 1 425 m/s at different times

    图  15  钨合金动能块高速侵彻G50钢靶时表面破坏形貌的对比图

    Figure  15.  Comparison of surface failure modes of G50 targets between simulation and experiment

    图  16  钨合金动能块高速侵彻G50钢靶时破坏形貌的对比图

    Figure  16.  Comparison of crater failure modes of G50 targets between simulation and experiment

    表  1  G50钢的主要材料性能参数[15]

    Table  1.   Mechanical properties of G50 steel[15]

    密度/(kg·m−3)屈服强度/MPa抗拉强度/MPa延伸率/%洛氏硬度
    7850≥1330≥16601045
    下载: 导出CSV

    表  2  G50钢靶的侵彻毁伤特性

    Table  2.   The penetration failure characteristics of the G50 steel targets at different impact velocities

    撞击速度/(m∙s−1) 开孔直径/mm 穿深/mm 侵彻弹道容积/cm3
    848 60 22 33
    1075 70 32 54
    1329 43 52 86
    1425 47 50 97
    1455 65 53 87
    下载: 导出CSV

    表  3  45钢靶的侵彻毁伤特性

    Table  3.   The penetration failure characteristics of the 45 steel targets at different impact velocities

    撞击速度/( m∙s−1) 开孔直径/mm 穿深/mm 侵彻弹道容积/cm3
    689 29 34 17
    1023 31 52 28
    1189 34 66 39
    1357 37 72 47
    下载: 导出CSV

    表  4  弹靶材料的Johnson-Cook参数

    Table  4.   Johnson-Cook model parameters ofprojectile and targets

    材料 A/MPa B/MPa n c m Tmelt/K
    G50钢 1445 1326 0.356 0.005 1.12 1793
    45钢 496 434 0.307 0.008 0.80 1793
    93W 1197 580 0.050 0.025 1.90 1730
    下载: 导出CSV

    表  5  弹靶材料的Grüneisen状态方程参数

    Table  5.   Grüneisen state equation parameters ofprojectile and targets

    材料c/(m∙s−1)S1S2S3γ0A
    G50钢4280.01.990002.1700.46
    45钢4280.01.990002.1700.46
    93W4066.21.368001.7360.46
    下载: 导出CSV

    表  6  45钢的侵彻深度数值模拟结果

    Table  6.   Numerical simulation results of DOP of 45 steel

    撞击速度/( m∙s−1)试验穿深/mm模拟穿深/mm侵深误差/%
    6893425.325.6
    10235249.54.95
    11896668.94.41
    13577276.76.46
    下载: 导出CSV

    表  7  G50钢的侵彻深度数值模拟结果

    Table  7.   Numerical simulation results oof DOP of G50 steel

    撞击速度/( m∙s−1)试验穿深/mm模拟穿深/mm侵深误差/%
    8482224.611.7
    10753237.517.1
    13295245.911.7
    14255052.34.53
    14555353.50.94
    下载: 导出CSV
  • [1] HOHLER V, STILP A J. Penetration of steel and high density rods in semi-infinite steel targets [C]//Proceedings of the 3rd International Symposium on Ballistics. Karlsruhe, 1977: 23–25.
    [2] SCHÄER F K, HERRWERTH M, HIERMAIER S J, et al. Shape effects in hypervelocity impact on semi-infinite metallic targets [J]. International Journal of Impact Engineering, 2001, 26(1): 699–711. DOI: 10.1016/s0734-743x(01)00115-4.
    [3] DUAN Z Q, LI S X, HUANG D W. Microstructures and adiabatic shear bands formed by ballistic impact in steels and tungsten alloy [J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(12): 1119–1126. DOI: 10.1046/j.1460-2695.2003.00705.x.
    [4] MARTINEAU R L, PRIME M B, DUFFEY T. Penetration of HSLA-100 steel with tungsten carbide spheres at striking velocities between 0.8 and 2.5 km/s [J]. International Journal of Impact Engineering, 2004, 30(5): 505–520. DOI: 10.1016/S0734-743X(03)00080-0.
    [5] 谭多望, 李翔, 温殿英, 等. 球形钨合金破片终点弹道性能实验研究 [J]. 爆炸与冲击, 2003, 23(5): 425–429.

    TAN D W, LI X, WEN D Y, et al. Experimental investigation of terminal effects of spherical tungsten fragments [J]. Explosion and Shock Waves, 2003, 23(5): 425–429.
    [6] 徐豫新, 王树山, 伯雪飞, 等. 钨合金球形破片对低碳钢的穿甲极限 [J]. 振动与冲击, 2011, 30(5): 192–195. DOI: 10.3969/j.issn.1000-3835.2011.05.040.

    XU Y X, WANG S S, BO X F, et al. Armor-piercing ultimate of tungsten alloy spherical fragment against low-carbon steel [J]. Journal of Vibration and Shock, 2011, 30(5): 192–195. DOI: 10.3969/j.issn.1000-3835.2011.05.040.
    [7] 徐豫新, 任杰, 王树山. 钨球正撞击下低碳钢板的极限贯穿厚度研究 [J]. 北京理工大学学报, 2017, 37(6): 551–556. DOI: 10.15918/j.tbit1001-0645.2017.06.001.

    XU Y X, REN J, WANG S S. Research on perforation limit thickness of low carbon steel plates impacted normally by tungsten spheres [J]. Transactions of Beijing Institute of Technology, 2017, 37(6): 551–556. DOI: 10.15918/j.tbit1001-0645.2017.06.001.
    [8] 赵晓旭, 王树山, 徐豫新, 等. 钨球高速侵彻低碳钢板成坑直径的计算模型 [J]. 北京理工大学学报, 2015, 35(12): 1217–1221. DOI: 10.15918/j.tbit1001-0645.2015.12.002.

    ZHAO X X, WANG S S, XU Y X, et al. Crater diameter calculation model of tungsten sphere impacting low carbon steel plate at high velocity [J]. Transactions of Beijing Institute of Technology, 2015, 35(12): 1217–1221. DOI: 10.15918/j.tbit1001-0645.2015.12.002.
    [9] 赵小峰. 破片质量对钨合金破片侵彻威力的影响 [J]. 科学技术与工程, 2020, 20(10): 3967–3971. DOI: 10.3969/j.issn.1671-1815.2020.10.025.

    ZHAO X F. Impact of fragment mass on the penetration capacity of tungsten alloy fragment [J]. Science Technology and Engineering, 2020, 20(10): 3967–3971. DOI: 10.3969/j.issn.1671-1815.2020.10.025.
    [10] 王雪, 智小琦, 徐锦波, 等. 球形破片侵彻多层板弹道极限的量纲分析 [J]. 高压物理学报, 2019, 33(6): 065102. DOI: 10.11858/gywlxb.20190757.

    WANG X, ZHI X Q, XU J B, et al. Dimensional analysis of ballistic limit of spherical fragments penetrating multi-layer plate [J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065102. DOI: 10.11858/gywlxb.20190757.
    [11] 刘铁磊, 徐豫新, 王晓锋, 等. 钨合金球形破片侵彻低碳钢的弹道极限速度计算模型 [J]. 兵工学报, 2022, 43(4): 768–779. DOI: 10.12382/bgxb.2021.0448.

    LIU T L, XU Y X, WANG X F, et al. Ballistic limit calculation model of tungsten alloy spherical fragments penetrating into low carbon steel plate [J]. Acta Armamentarii, 2022, 43(4): 768–779. DOI: 10.12382/bgxb.2021.0448.
    [12] 张健, 徐豫新, 刘铁磊, 等. 钨球对高硬度钢斜侵彻效应 [J]. 爆炸与冲击, 2022, 42(2): 023302. DOI: 10.11883/bzycj-2021-0427.

    ZHANG J, XU Y X, LIU T L, et al. Oblique penetration effect of a tungsten ball on high hardness steel [J]. Explosion and Shock Waves, 2022, 42(2): 023302. DOI: 10.11883/bzycj-2021-0427.
    [13] 王猛, 黄德武, 荣光, 等. 装甲板弹坑底部冠状裂纹的观测与分析 [J]. 兵工学报, 2009, 30(12): 1579–1583. DOI: 10.3321/j.issn:1000-1093.2009.12.003.

    WANG M, HUANG D W, RONG G, et al. Observation and analysis of coronary cracks beneath the crater in armor-plate [J]. Acta Armamentarii, 2009, 30(12): 1579–1583. DOI: 10.3321/j.issn:1000-1093.2009.12.003.
    [14] 北京跟踪与通信技术研究所. 美动能拦截弹的发展现状和趋势分析 [J]. 科技情报快讯, 2010, 2: 1–25. DOI: 10.3969/j.issn.1009-086X.2008.04.006.

    Beijing Institute of Tracking and Communication Technology. Current technology and development trend of American kinetic missions [J]. Science and Technology Intelligence News, 2010, 2: 1–25. DOI: 10.3969/j.issn.1009-086X.2008.04.006.
    [15] 中国人民解放军总装备部. 28CrMnSiNi4MoNb钢棒规范: GJB 8545−2015 [S]. 2015.

    People’s Liberation Army General Armaments Department. Specification for 28CrMnSiNi4MoNb steel bars: GJB 8545−2015 [S]. 2015.
    [16] FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid [J]. Journal of Applied Mechanics, 1988, 55(2): 275–279. DOI: 10.1115/1.3173672.
    [17] 李金泉. 穿甲侵彻机理及绝热剪切带特性研究 [D]. 南京: 南京理工大学, 2005. DOI: 10.7666/d.y1001823.

    LI J Q. Study of armour-piercing mechanism and adiabatic shear banding characteristic [D]. Nanjing: Nanjing University of Science and Technology, 2005. DOI: 10.7666/d.y1001823.
    [18] 段占强, 丛美华, 苏会和, 等. 45#钢高速冲击穿孔的显微组织 [J]. 材料研究学报, 2001, 15(4): 403–408. DOI: 10.3321/j.issn:1005-3093.2001.04.005.

    DUAN Z Q, CONG M H, SU H H, et al. Microstructure investigation of the penetration bore of 45# steel in high speed impacting [J]. Chinese Journal of Materials Research, 2001, 15(4): 403–408. DOI: 10.3321/j.issn:1005-3093.2001.04.005.
    [19] 李金泉, 黄德武, 段占强, 等. 穿甲侵彻过程中靶板内绝热剪切带特性及形成原因分析 [J]. 兵工学报, 2005, 26(1): 60–63. DOI: 10.3321/j.issn:1000-1093.2005.01.013.

    LI J Q, HUANG D W, DUAN Z Q, et al. Analysis on adabiatic shear band characteristic and cause of formation in process of penetration in armor [J]. Acta Armamentarii, 2005, 26(1): 60–63. DOI: 10.3321/j.issn:1000-1093.2005.01.013.
    [20] ROHR I, NAHME H, THOMA K, et al. Material characterisation and constitutive modelling of a tungsten-sintered alloy for a wide range of strain rates [J]. International Journal of Impact Engineering, 2008, 35(8): 811–819. DOI: 10.1016/j.ijimpeng.2007.12.006.
    [21] 王可慧, 张颖, 段建, 等. G50钢的力学性能实验研究 [J]. 兵工学报, 2009, 30(S2): 247–250.

    WANG K H, ZHANG Y, DUAN J, et al. Experimental research on the mechanical properties of G50 alloy steel [J]. Acta Armamentarii, 2009, 30(S2): 247–250.
    [22] 王猛, 黄德武, 曲家惠, 等. 钨合金杆式弹侵彻45#钢变形失效行为的数值分析 [J]. 塑性工程学报, 2012, 19(2): 102–106. DOI: 10.3969/j.issn.1007-2012.2012.02.021.

    WANG M, HUANG D W, QU J H, et al. Simulation on the deformation and fracture of long-rod projectile of tungsten alloy penetrating into 45# steel [J]. Journal of Plasticity Engineering, 2012, 19(2): 102–106. DOI: 10.3969/j.issn.1007-2012.2012.02.021.
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  530
  • HTML全文浏览量:  164
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-16
  • 修回日期:  2023-05-21
  • 网络出版日期:  2023-06-21
  • 刊出日期:  2023-09-11

目录

/

返回文章
返回