多点同时爆炸对钢筋混凝土方柱构件的毁伤特性

武伟超 夏柳 潘艾刚 王亚飞 王强

武伟超, 夏柳, 潘艾刚, 王亚飞, 王强. 多点同时爆炸对钢筋混凝土方柱构件的毁伤特性[J]. 爆炸与冲击, 2023, 43(12): 125101. doi: 10.11883/bzycj-2023-0025
引用本文: 武伟超, 夏柳, 潘艾刚, 王亚飞, 王强. 多点同时爆炸对钢筋混凝土方柱构件的毁伤特性[J]. 爆炸与冲击, 2023, 43(12): 125101. doi: 10.11883/bzycj-2023-0025
WU Weichao, XIA Liu, PAN Aigang, WANG Yafei, WANG Qiang. Damage characteristics of reinforced concrete square column components under multi-point simultaneous initiating[J]. Explosion And Shock Waves, 2023, 43(12): 125101. doi: 10.11883/bzycj-2023-0025
Citation: WU Weichao, XIA Liu, PAN Aigang, WANG Yafei, WANG Qiang. Damage characteristics of reinforced concrete square column components under multi-point simultaneous initiating[J]. Explosion And Shock Waves, 2023, 43(12): 125101. doi: 10.11883/bzycj-2023-0025

多点同时爆炸对钢筋混凝土方柱构件的毁伤特性

doi: 10.11883/bzycj-2023-0025
详细信息
    作者简介:

    武伟超(1985- ),男,博士,副教授, wuweichao@bit.edu.cn

  • 中图分类号: O383

Damage characteristics of reinforced concrete square column components under multi-point simultaneous initiating

  • 摘要: 为了研究炸药多点协同爆炸对钢筋混凝土方柱构件的毁伤特性、动力响应和破坏机理的影响,设计了柱身单节点、邻面双节点、邻面四节点和全包围四节点4种爆炸试验工况,对4根钢筋混凝土方柱开展爆炸试验。基于试验结果,利用显式动力分析软件LS-DYNA建立了精细化有限元模型,系统分析了炸药中心截面毁伤特性和应力发展时程。研究结果表明:相同爆炸总当量下,炸药节点数量和布置位置对方柱毁伤效果有显著影响;多点爆炸下方柱毁伤效果均大于单点爆炸工况且钢筋混凝土方柱均产生贯穿破坏,邻侧四节点爆炸钢筋混凝土方柱混凝土破坏程度及加速度响应最大;对比邻侧多点爆炸工况发现,炸药节点数量的增加可以有效提高爆炸对方柱的毁伤效应;全包围四节点爆炸工况方柱最早进入全截面高应力状态,并出现4处角部混凝土应力集中,而邻面多点爆炸工况进入全截面高应力状态较晚,仅有3处截面角部混凝土应力集中;单点爆炸时混凝土内部测点应力随到爆心距离增大而减小,而多点爆炸工况下多个爆炸应力波在方柱截面内部耦合叠加,中心混凝土处应力显著增大;受到应力波空间耦合叠加的影响,邻面四节点爆炸工况下方柱截面中心混凝土峰值应力达37.3 MPa,相较其他3个爆炸工况应力增幅达到3.82倍、1.21倍和0.67倍,应力耦合力度增大是导致该工况方柱毁伤最严重的直接原因。
  • 图  1  钢筋混凝土方柱试件尺寸及配筋图(单位为mm)

    Figure  1.  Dimensions and reinforcement drawing of RC square column specimen (unit in mm)

    图  2  钢筋混凝土方柱固定装置

    Figure  2.  A fixing device for RC square columns

    图  3  各构件炸点布置

    Figure  3.  Arrangement of each test piece blowing point

    图  4  方柱1在单点接触爆炸作用下的破坏形态

    Figure  4.  Damage pattern of RC square column 1 under single-point contact explosion load

    图  5  方柱2在两点接触爆炸作用下的破坏形态

    Figure  5.  Damage pattern of RC square column 2 under two-point contact explosion load

    图  6  RC方柱试件3在四点接触爆炸作用下的破坏形态

    Figure  6.  Damage patterns of RC square column 3 under four-point contact explosion load

    图  7  RC方柱试件4在四点接触爆炸作用下的破坏形态

    Figure  7.  Damage patterns of RC square column 4 under four-point contact explosion load

    图  8  RC方柱试件的爆坑边界对比

    Figure  8.  Comparison of explosion pit boundaries of RC square column specimens

    图  9  RC方柱试件的最大毁伤长度及水平位移对比

    Figure  9.  Comparison of the maximum collapse lengths and horizontal displacements among RC square column specimens

    图  10  RC方柱试件1中3个加速度计的布置位置及相应测点测得的加速度时程曲线

    Figure  10.  Layout positions of three accelerometers and acceleration-time curves measured at the corresponding points for RC square column 1

    图  11  不同工况下RC方柱试件加速度时程曲线

    Figure  11.  Acceleration versus time data of RC square column specimens under different working conditions

    图  12  钢筋混凝土方柱有限元模型

    Figure  12.  A finite element model of the RC square column

    图  13  试件4损伤模拟结果

    Figure  13.  Simulated damage of specimen 4

    图  14  加速度数值模拟结果与试验结果的对比

    Figure  14.  Comparison of simulated and test accelerations

    图  15  方柱0.3 m高度截面不同时刻的毁伤

    Figure  15.  Damage in the columns at the height of 0.3 m at different times

    图  16  截面应力测点的分布

    Figure  16.  Distribution of stress measuring points in the cross-section

    图  17  截面内测点的应力时程曲线

    Figure  17.  Stress time histories of the measuring points in the cross-section

    表  1  钢筋混凝土方柱试验方案

    Table  1.   Test schemes for RC square columns

    试件编号炸点数量/个炸点布置试验药量/kg
    11左侧2.0×1
    22左侧+前侧1.0×2
    342×左侧+2×前侧0.5×4
    44前侧+右侧+后侧+左侧0.5×4
    下载: 导出CSV

    表  2  混凝土力学性能测试参数

    Table  2.   Testing parameters for mechanical properties of concrete

    密度/(kg·m−3 泊松比 抗压强度/MPa 最大失效主应变
    2500 0.16 31.0 0.1
    下载: 导出CSV

    表  3  钢筋力学性能测试参数

    Table  3.   Test parameters for mechanical properties of rebar

    钢筋种类密度/(kg·m−3)弹性模量/GPa切线模量/GPa泊松比屈服强度/MPa
    纵筋78502062.060.3485
    箍筋78502062.060.3425
    下载: 导出CSV

    表  4  空气材料和状态方程计算参数

    Table  4.   Material and equation-of-state parameters of air

    密度/(kg·m−3) C0 C1 C2 C3 C4 C5 C6 E/(J·m−3) V
    1.29 0 0 0 0 0.4 0.4 0 2.5×105 1
    下载: 导出CSV

    表  5  炸药材料参数和状态方程参数

    Table  5.   Material and equation-of-state parameters of explosive

    初始密度/(kg·m−3)爆速/(m·s−1)A/GPaB/GPaR1R2pCJ/GPaωE0/(J·m−3)V
    1 6958425854.52.0494..61.3529.50.38.5×1091
    下载: 导出CSV
  • [1] 徐露萍, 李邦贵, 胡米. 国外高效毁伤技术简析 [J]. 飞航导弹, 2010(12): 71–75. DOI: 10.16338/j.issn.1009-1319.2010.12.013.

    XU L P, LI B G, HU M. A brief analysis of foreign high-efficiency destruction technologies [J]. Aerodynamic Missile Journal, 2010(12): 71–75. DOI: 10.16338/j.issn.1009-1319.2010.12.013.
    [2] 陈伟, 陈瑶. 多强度点火具的设计及试验研究 [J]. 军械工程学院学报, 2016, 28(3): 35–37. DOI: 10.3969/j.issn.1008-2956.2016.03.007.

    CHEN W, CHEN Y. Study on the design of multi-strength igniter in warhead and its testing [J]. Journal of Ordnance Engineering College, 2016, 28(3): 35–37. DOI: 10.3969/j.issn.1008-2956.2016.03.007.
    [3] 张树凯, 王科伟, 谢佳良, 等. 线内非同步起爆对战斗部毁伤效能的影响 [J]. 火炸药学报, 2022, 45(1): 73–80. DOI: 10.14077/j.issn.1007-7812.202109013.

    ZHANG S K, WANG K W, XIE J L, et al. Effect of in-line asynchronous initiation on warhead damage efficiency [J]. Chinese Journal of Explosives and Propellants, 2022, 45(1): 73–80. DOI: 10.14077/j.issn.1007-7812.202109013.
    [4] 郭美芳, 范宁军. 多模式战斗部与起爆技术分析研究 [J]. 探测与控制学报, 2005, 27(1): 31–34,61. DOI: 10.3969/j.issn.1008-1194.2005.01.009.

    GUO M F, FAN N J. The study on a multimode warhead and the initiation technology [J]. Journal of Detection and Control, 2005, 27(1): 31–34,61. DOI: 10.3969/j.issn.1008-1194.2005.01.009.
    [5] 李良琦, 李晓红, 高彬彬. 国外高效毁伤战斗部弹体关键制造技术综述 [J]. 国防制造技术, 2013(5): 22–27. DOI: 10.3969/j.issn.1674-5574.2013.05.007.

    LI L Q, LI X H, GAO B B. Key manufacturing technologies of foreign high efficiency damage warhead casing [J]. Defense Manufacturing Technology, 2013(5): 22–27. DOI: 10.3969/j.issn.1674-5574.2013.05.007.
    [6] 沈慧铭. 多点起爆方式作用机理及其在战斗部中的应用研究 [D]. 南京: 南京理工大学, 2018.

    SHEN H M. Research on action mechanism of multi-point initiation way and its application in warhead [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology, 2018.
    [7] 李营, 吴卫国, 朱海清, 等. 爆炸冲击波与破片对RC桥的耦合毁伤研究 [J]. 爆破, 2016, 33(2): 142–148. DOI: 10.3963/j.issn.1001-487X.2016.02.028.

    LI Y, WU W G, ZHU H Q, et al. Damage characteristics of RC bridge under combined effects of blast shock wave and fragments loading [J]. Blasting, 2016, 33(2): 142–148. DOI: 10.3963/j.issn.1001-487X.2016.02.028.
    [8] 闫仁宝. 半封闭空间内爆轰波与电弧相互耦合特性及应用研究 [D]. 南宁: 广西大学, 2014. DOI: 10.7666/d.D523740.

    YAN R B. Research on characteristics and application of explosion shock waves with mutual coupling arc in semi-closed space [D]. Nanning, Guangxi, China: Guangxi University, 2014. DOI: 10.7666/d.D523740.
    [9] PHILLIPS J S, BRATTON J L. Ground shock analysis of the multiple burst experiments: ADA 088510 [R]. Springfield: NITS, 1978.
    [10] RUETENIK J R, HOBBS N P, SMILEY R F. Calculation of multiple burst interactions for six simultaneous explosions of 120 Ton ANFO charges: ADA 091978 [R]. Springfield: NITS, 1979.
    [11] KMETYK L N, YARRINGTON P. Ground shock from multiple earth penetrator bursts: effects for hexagonal weapon arrays: SAND 90-0485 [R]. Albuquerque: Sandia National Lobs, 1990.
    [12] 柴晨, 白春华, 赵星宇, 等. 多点爆轰超压场仿真计算 [J]. 兵器装备工程学报, 2022, 43(7): 128–133,184. DOI: 10.11809/bqzbgcxb2022.07.019.

    CHAI C, BAI C H, ZHAO X Y, et al. Simulation calculation of multipoint detonation overpressure field [J]. Journal of Ordnance Equipment Engineering, 2022, 43(7): 128–133,184. DOI: 10.11809/bqzbgcxb2022.07.019.
    [13] 胡宏伟, 王健, 冯海云, 等. 多点水中阵列爆炸冲击波的传播特性 [J]. 含能材料, 2021, 29(5): 370–380. DOI: 10.11943/CJEM2021026.

    HU H W, WANG J, FENG H Y, et al. The propagation characteristics of shock wave for muti-charge underwater array explosion [J]. Chinese Journal of Energetic Materials, 2021, 29(5): 370–380. DOI: 10.11943/CJEM2021026.
    [14] 冯海云, 胡宏伟, 肖川, 等. 两点阵列爆炸威力场分布及增益研究 [J]. 火炸药学报, 2020, 43(3): 345–350. DOI: 10.14077/j.issn.1007-7812.201911014.

    FENG H Y, HU H W, XIAO C, et al. Research on the blast power field distribution and gain of two-point array explosion [J]. Chinese Journal of Explosives and Propellants, 2020, 43(3): 345–350. DOI: 10.14077/j.issn.1007-7812.201911014.
    [15] 林尚剑, 王金相, 马腾, 等. 水下多点爆炸冲击波叠加效应研究 [J]. 兵工学报, 2020, 41(S1): 39–45. DOI: 10.3969/j.issn.1000-1093.2020.S1.006.

    LIN S J, WANG J X, MA T, et al. Superimposed effect of shock waves of underwater explosion [J]. Acta Armamentarii, 2020, 41(S1): 39–45. DOI: 10.3969/j.issn.1000-1093.2020.S1.006.
    [16] 顾文彬, 孙百连, 阳天海, 等. 浅层水中沉底爆炸冲击波相互作用数值模拟 [J]. 解放军理工大学学报(自然科学版), 2003, 4(6): 64–68. DOI: 10.3969/j.issn.1009-3443.2003.06.015.

    GU W B, SUN B L, YANG T H, et al. Numerical simulation of explosive shockwave interaction in shallow-layer water [J]. Journal of PLA University of Science and Technology, 2003, 4(6): 64–68. DOI: 10.3969/j.issn.1009-3443.2003.06.015.
    [17] 院素静, 杨凯, 刘泽瑞, 等. 近距离爆炸作用下RC桥墩毁伤模式及其轴力效应数值模拟 [J]. 东南大学学报(自然科学版), 2023, 53(1): 76–85. DOI: 10.3969/j.issn.1001-0505.2023.01.010.

    YUAN S J, YANG K, LIU Z R, et al. Numerical simulation of damage mode and axial load effect of RC bridge columns under close-in explosion [J]. Journal of Southeast University (Natural Science Edition), 2023, 53(1): 76–85. DOI: 10.3969/j.issn.1001-0505.2023.01.010.
    [18] 吴昊, 林城. 两层单跨缩尺RC框架结构外爆炸试验数值模拟 [J]. 建筑科学与工程学报, 2022, 39(3): 111–126. DOI: 10.19815/j.jace.2021.07016.

    WU H, LIN C. Numerical simulation on external explosion experiments of two-story single-span scaled RC frame structure [J]. Journal of Architecture and Civil Engineering, 2022, 39(3): 111–126. DOI: 10.19815/j.jace.2021.07016.
    [19] 孙珊珊, 赵均海, 贺拴海, 等. 爆炸荷载下钢管混凝土墩柱的动力响应研究 [J]. 工程力学, 2018, 35(5): 27–35,74. DOI: 10.6052/j.issn.1000-4750.2017.03.0246.

    SUN S S, ZHAO J H, HE S H, et al. Dynamic response of concrete-filled steel tube piers under blast loadings [J]. Engineering Mechanics, 2018, 35(5): 27–35,74. DOI: 10.6052/j.issn.1000-4750.2017.03.0246.
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  50
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-31
  • 修回日期:  2023-09-20
  • 网络出版日期:  2023-09-20
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回