水下接触爆炸下高聚物层对钢筋混凝土板的防护效果

赵小华 刘树参 方宏远 孙金山 石明生

赵小华, 刘树参, 方宏远, 孙金山, 石明生. 水下接触爆炸下高聚物层对钢筋混凝土板的防护效果[J]. 爆炸与冲击, 2023, 43(12): 125102. doi: 10.11883/bzycj-2023-0033
引用本文: 赵小华, 刘树参, 方宏远, 孙金山, 石明生. 水下接触爆炸下高聚物层对钢筋混凝土板的防护效果[J]. 爆炸与冲击, 2023, 43(12): 125102. doi: 10.11883/bzycj-2023-0033
ZHAO Xiaohua, LIU Shucan, FANG Hongyuan, SUN Jinshan, SHI Mingsheng. Protective effect of polymer layer on reinforced concrete slabs under an underwater contact explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125102. doi: 10.11883/bzycj-2023-0033
Citation: ZHAO Xiaohua, LIU Shucan, FANG Hongyuan, SUN Jinshan, SHI Mingsheng. Protective effect of polymer layer on reinforced concrete slabs under an underwater contact explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125102. doi: 10.11883/bzycj-2023-0033

水下接触爆炸下高聚物层对钢筋混凝土板的防护效果

doi: 10.11883/bzycj-2023-0033
基金项目: 国家自然科学基金(52009126);爆破工程湖北省重点实验室开放基金(BL2021-04)
详细信息
    作者简介:

    赵小华(1991- ),男,博士,副教授,zhaoxh2014@126.com

    通讯作者:

    刘树参(1999- ),男,硕士研究生,lsc63124@163.com

  • 中图分类号: O383; TQ317

Protective effect of polymer layer on reinforced concrete slabs under an underwater contact explosion

  • 摘要: 为研究多孔材料高聚物对水下混凝土结构的抗爆防护性能,对含高聚物防护层的钢筋混凝土板开展了水下爆炸实验,并设置了对照组。利用AUTODYN有限元程序建立了含高聚物防护层的钢筋混凝土板水下爆炸全耦合模型,并通过数值模拟结果与实验的对比,验证了所建模型的可靠性。在此基础上,通过数值模拟,进一步分析了前置钢板对高聚物层防护性能的提升效果。以钢筋混凝土板跨中残余位移为指标,参数化分析了起爆药量和复合结构层厚比对高聚物层水下防护效果的影响规律。结果表明:水下爆炸下,高聚物防护层能够有效降低混凝土结构的毁伤程度;在高聚物层外侧布置钢质薄板,可以更好地发挥高聚物层的吸能效果,对钢筋混凝土板起到更好的防护效果,且当高聚物层与前置钢板层厚度比为20时,防护效果最佳。
  • 图  1  混凝土板尺寸及钢筋布置

    Figure  1.  Sizes of an RC slab and reinforcement layout in it

    图  2  防护层的制作流程

    Figure  2.  Manufacturing procedure of protection layer

    图  3  实验布置

    Figure  3.  Experimental arrangement

    图  4  RC板的实验结果

    Figure  4.  Test results of an RC slab

    图  5  P-RC板的实验结果

    Figure  5.  Test results of a P-RC slab

    图  6  数值模型

    Figure  6.  Numerical model

    图  7  混凝土RHT模型的三个极限面

    Figure  7.  Three limit surfaces of the RHT model for concrete

    图  8  一维楔形体计算模型

    Figure  8.  A one-dimensional calculation model of a wedge-shaped body

    图  9  数值结果与经验公式峰值压力对比

    Figure  9.  Comparison of peak pressures between numerical and experiential results

    图  10  P-RC板实验和数值模拟破坏模式对比

    Figure  10.  Comparison of experimental and simulated failure modes of a P-RC slab

    图  11  冲击波在RC板中的传播过程

    Figure  11.  Propagation process of blast wave in an RC slab

    图  12  冲击波在P-RC板中的传播过程

    Figure  12.  Propagation process of blast wave in a P-RC slab

    图  13  气泡对RC板的毁伤过程

    Figure  13.  Damage process of bubbles on an RC slab

    图  14  气泡对P-RC板的毁伤过程

    Figure  14.  Damage process of bubbles on P-RC slab

    图  15  SP-RC板示意图

    Figure  15.  Schematics of SP-RC slab

    图  16  不同防护层RC板的破坏模式对比

    Figure  16.  Comparison of failure modes of RC slabs with different protective layers

    图  17  试件迎爆面压力峰值分布

    Figure  17.  Distributions of peak pressure at the blast surfaces of P-RC and SP-RC slabs

    图  18  P-RC板和SP-RC板的能量时程曲线

    Figure  18.  Energy-time history curves of P-RC and SP-RC slabs

    图  19  防护层作用原理

    Figure  19.  Protective layer working principle

    图  20  不同药量下RC板的毁伤模式

    Figure  20.  Damage modes of RC slabs with different explosive quantities

    图  21  不同药量下RC板的残余位移

    Figure  21.  Residual displacement of RC slabs under different explosive quantities

    图  22  不同钢板厚度下RC板的毁伤模式

    Figure  22.  Damage modes of RC slabs with different thicknesses of the steel plates

    图  23  不同内芯厚度下RC板的毁伤模式

    Figure  23.  Damage modes of RC slabs with different core thicknesses

    图  24  不同工况下RC板的残余位移

    Figure  24.  Residual displacement of RC slabs under different working conditions

    表  1  试件损伤程度

    Table  1.   Degree of damage to specimens

    试件 迎爆面破坏区域 是否发生冲切破坏 整体性 承载能力
    RC板 140 mm×130 mm 一般 较差
    P-RC板 较好 较好
    下载: 导出CSV

    表  2  混凝土材料参数[19]

    Table  2.   Material parameters of concrete[19]

    密度$ {\rho }_{0} $/(g·cm−3) 体积模量A1/GPa 剪切模量G/GPa 抗压强度fc/MPa 抗拉强度ft/fc 抗剪强度fs/fc
    2.75 35.27 22.06 35 0.1 0.18
    失效面常数A 残余失效面常数B 残余失效面指数M 损伤常数D1 损伤常数D2 侵蚀应变
    1.60 1.60 0.61 0.04 1.00 2.0
    下载: 导出CSV

    表  3  高聚物RHT模型材料参数[15, 21-22]

    Table  3.   Material parameters of RHT model for polymer[15, 21-22]

    密度$ {\rho }_{0} $/(g·cm−3) 体积模量A1/GPa 剪切模量G/MPa 抗压强度fc/MPa 抗拉强度ft/fc 抗剪强度fs/fc
    0.2 2.2 20.78 4.5 0.598 0.694
    失效面常数A 残余失效面常数B 残余失效面指数M 损伤常数D1 损伤常数D2 侵蚀应变
    0.61 1.60 0.61 0.04 1.00 0.60
    下载: 导出CSV

    表  4  炸药材料参数[23]

    Table  4.   Material parameters of explosive[23]

    ρ/(g·cm−3) D/(m·s−1) A/GPa B/GPa ${p_{{\mathrm{CJ}}}}$/GPa R1 R2 ω E/GPa
    1.05 3850 209.70 3.50 3.70 5.76 1.29 0.39 4.20
    下载: 导出CSV

    表  5  复合防护层不同层厚比

    Table  5.   Different layer thickness ratios of composite protective layers

    工况 高聚物层厚度h1/mm 前置钢板厚度h2/mm 层厚比(h1/h2) 工况 高聚物层厚度h1/mm 前置钢板厚度h2/mm 层厚比(h1/h2)
    1 60 2.0 30.0 6 40 3.0 13.3
    2 60 2.5 24.0 7 50 3.0 16.7
    3 60 3.0 20.0 8 70 3.0 23.3
    4 60 3.5 17.1 9 80 3.0 26.7
    5 60 4.0 15.0
    下载: 导出CSV
  • [1] 张社荣, 孔源, 王高辉. 水下和空中爆炸时混凝土重力坝动态响应对比分析 [J]. 振动与冲击, 2014, 33(17): 47–54. DOI: 10.13465/j.cnki.jvs.2014.17.009.

    ZHANG S R, KONG Y, WANG G H. Dynamic responses of a concrete gravity dam subjected to underwater and air explosions [J]. Journal of Vibration and Shock, 2014, 33(17): 47–54. DOI: 10.13465/j.cnki.jvs.2014.17.009.
    [2] 李凌锋, 韦灼彬, 唐廷, 等. 爆炸荷载下沉箱重力式码头模型毁伤效应 [J]. 爆炸与冲击, 2019, 39(1): 012202. DOI: 10.11883/bzycj-2017-0406.

    LI L F, WEI Z B, TANG T, et al. Damage effect of caisson gravity wharf model under explosive loading [J]. Explosion and Shock Waves, 2019, 39(1): 012202. DOI: 10.11883/bzycj-2017-0406.
    [3] YANG G D, WANG G H, LU W B, et al. Cross-section shape effects on anti-knock performance of RC columns subjected to air and underwater explosions [J]. Ocean Engineering, 2019, 181(6): 252–266. DOI: 10.1016/j.oceaneng.2019.04.031.
    [4] ZHAO X H, WANG G H, LU W B, et al. Experimental investigation of RC slabs under air and underwater contact explosions [J]. European Journal of Environmental and Civil Engineering, 2021, 25(1): 190–204. DOI: 10.1080/19648189.2018.1528892.
    [5] 孔祥清, 赵倩, 曲艳东, 等. 空中和水下爆炸时钢筋混凝土板动态响应对比分析 [J]. 科技导报, 2016, 34(18): 279–286.

    KONG X Q, ZHAO Q, QU Y D, et al. Dynamic responses of a concrete slab subjected to air and underwater explosions [J]. Science and Technology Review, 2016, 34(18): 279–286.
    [6] 刘超, 孙启鑫, 李会驰. 近爆作用下钢筋混凝土π梁防护性能的数值模拟 [J]. 振动与冲击, 2022, 41(4): 223–231. DOI: 10.13465/j.cnki.jvs.2022.04.029.

    LIU C, SUN Q X, LI H C. Numerical simulation for protective of reinforced concrete π beams under close-in explosion [J]. Journal of Vibration and Shock, 2022, 41(4): 223–231. DOI: 10.13465/j.cnki.jvs.2022.04.029.
    [7] 石少卿, 张湘冀, 刘颖芳, 等. 硬质聚氨酯泡沫塑料抗爆炸冲击作用的研究 [J]. 振动与冲击, 2005, 24(5): 59–61. DOI: 10.3969/j.issn.1000-3835.2005.05.017.

    SHI S Q, ZHANG X J, LIU Y F, et al. The study on explosion shock resistance of rigid polyurethane foam plastics [J]. Journal of Vibration and Shock, 2005, 24(5): 59–61. DOI: 10.3969/j.issn.1000-3835.2005.05.017.
    [8] 刘佳, 崔传安, 徐畅. 爆炸波在硬质聚氨酯泡沫中的衰减特性模拟 [J]. 兵器装备工程学报, 2017, 38(9): 164–167. DOI: 10.11809/scbgxb2017.09.035.

    LIU J, CUI C A, XU C. Simulation of explosive wave attenuation characteristics in rigid polyurethane foam [J]. Journal of Ordnance Equipment Engineering, 2017, 38(9): 164–167. DOI: 10.11809/scbgxb2017.09.035.
    [9] CODINA R, AMBROSINI D, BORBÓN B F. Alternatives to prevent the failure of RC members under close-in blast loadings [J]. Engineering Failure Analysis, 2016, 60(2): 96–106. DOI: 10.1016/j.engfailanal.2015.11.038.
    [10] KOSTOPOULOS V, KALIMERIS G D, GIANNAROS E. Blast protection of steel reinforced concrete structures using composite foam-core sacrificial cladding [J]. Composites Science and Technology, 2022: 109330. DOI: 10.1016/J.COMPSCITECH.2022.109330.
    [11] 夏志成, 张建亮, 王曦浩, 等. 钢板夹芯防爆墙防护效应的影响因素 [J]. 工程爆破, 2016, 22(6): 1–7. DOI: 10.3969/j.issn.1006-7051.2016.06.001.

    XIA Z C, ZHANG J L, WANG X H, et al. Influencing factors of protective effect of steel plate sandwich explosion proof wall [J]. Engineering Blasting, 2016, 22(6): 1–7. DOI: 10.3969/j.issn.1006-7051.2016.06.001.
    [12] 邹广平, 孙杭其, 唱忠良, 等. 聚氨酯/钢夹芯结构爆炸载荷下动力学响应的数值模拟 [J]. 爆炸与冲击, 2015, 35(6): 907–912. DOI: 10.11883/1001-1455(2015)06-0907-06.

    ZOU G P, SUN H Q, CHANG Z L, et al. Numerical simulation on dynamic response of polyurethane/steel sandwich structure under blast loading [J]. Explosion and Shock Waves, 2015, 35(6): 907–912. DOI: 10.11883/1001-1455(2015)06-0907-06.
    [13] 李姝妍, 王在成, 毛亮, 等. 活性破片战斗部用缓冲结构应力衰减特性研究 [J]. 兵器材料科学与工程, 2020, 43(5): 43–49. DOI: 10.14024/j.cnki.1004-244x.20200701.001.

    LI S Y, WANG Z C, MAO L, et al. Study on stress attenuation characteristics of buffer structure of reactive fragment warhead [J]. Ordnance Material Science and Engineering, 2020, 43(5): 43–49. DOI: 10.14024/j.cnki.1004-244x.20200701.001.
    [14] 刘宏杰, 王伟力, 苗润, 等. 基于环形切割串联战斗部隔爆结构的优化设计 [J]. 弹箭与制导学报, 2019, 39(4): 73–76. DOI: 10.15892/j.cnki.djzdxb.2019.04.018.

    LIU H J, WANG W L, MIAO R, et al. Optimization design of flameproof structure based on annular cutting tandem warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(4): 73–76. DOI: 10.15892/j.cnki.djzdxb.2019.04.018.
    [15] WANG Z Y, DU M R, FANG H Y, et al. Influence of different corrosion environments on mechanical properties of a roadbed rehabilitation polyurethane grouting material under uniaxial compression [J]. Construction and Building Materials, 2021, 301: 124092. DOI: 10.1016/J.CONBUILDMAT.2021.124092.
    [16] 林沛元, 郭潘峰, 郭成超, 等. 钢板、高聚物、土不同材料界面剪切特性试验研究[J]. 岩土工程学报, 2023,45(1): 1–11.

    LIN P Y, GUO P F, GUO C C, et al. Experimental study on interfacial shear properties of steel plate, polymer and soil [J]. Chinese Journal of Geotechnical Engineering, 2023,45(1): 1–11.
    [17] 孙文彬. 钢筋混凝土板的爆炸荷载试验研究 [J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(2): 217–220. DOI: 10.3969/j.issn.1008-0562.2009.02.016.

    SUN W B. Experimental studies on reinforced concrete (RC) slabs subjected to blast loads [J]. Journal of Liaoning Technical University (Natural Science), 2009, 28(2): 217–220. DOI: 10.3969/j.issn.1008-0562.2009.02.016.
    [18] WANG Z Q, LU Y, HAO H, et al. A full coupled numerical analysis approach for buried structures subjected to subsurface blast [J]. Computers & Structures, 2005, 83(4/5): 339–356. DOI: 10.1016/j.compstruc.2004.08.014.
    [19] WANG W, ZhANG D, LU F Y, et al. Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion [J]. Engineering Failure Analysis, 2013, 27. DOI: 10.1016/j.engfailanal.2012.07.010.
    [20] 赵浩楠, 方宏远, 赵小华, 等. 接触爆炸作用下高聚物复合板毁伤特性分析 [J]. 爆炸与冲击, 2023, 43(5): 052201. DOI: 10.11883/bzycj-2022-0161.

    HAO H N, FANG H Y, ZHAO X H, et al. Analysis on the blast resistance of polymer composite slabs under contact explosions [J]. Explosion and Shock Waves, 2023, 43(5): 052201. DOI: 10.11883/bzycj-2022-0161.
    [21] LI M J, DU M R, WANG F M, et al. Study on the mechanical properties of polyurethane (PU) grouting material of different geometric sizes under uniaxial compression [J]. Construction and Building Materials, 2020, 259: 119797. DOI: 10.1016/j.conbuildmat.2020.119797.
    [22] 石明生. 高聚物注桨材料特性与堤坝定向劈裂注桨机理研究[D]. 大连: 大连理工大学, 2011: 22–61.
    [23] LIU Z D, ZHAO X H, LIU D, et al. Comparative study on blast damage features of reinforced concrete slabs with polyurethane sacrificial cladding based on different numerical simulation methods [J]. Polymers, 2022, 14(18): 3857. DOI: 10.3390/polym14183857.
    [24] 杨广栋, 王高辉, 李麒, 等. 爆炸冲击下水底隧道的动态响应及毁伤模式研究 [J]. 振动与冲击, 2022, 41(4): 150–158. DOI: 10.13465/j.cnki.jvs.2022.04.020.

    YANG G D, WANG G H, LI Q, et al. Dynamic response and damage patterns of underwater tunnel subjected to blast loads [J]. Journal of Vibration and Shock, 2022, 41(4): 150–158. DOI: 10.13465/j.cnki.jvs.2022.04.020.
    [25] 郑欣颖, 李海涛, 张弛, 等. 乳化炸药水下爆炸载荷输出特性实验研究 [J]. 高压物理学报, 2022, 36(4): 045101. DOI: 10.11858/gywlxb.20220502.

    ZHENG X Y, LI H T, ZHANG C, et al. Experimental study on load output characteristics of emulsified explosive in underwater explosion [J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 045101. DOI: 10.11858/gywlxb.20220502.
    [26] 孙远翔, 田俊宏, 张之凡, 等. 含铝炸药近场水下爆炸冲击波的实验及数值模拟 [J]. 振动与冲击, 2020, 39(14): 171–178, 193. DOI: 10.13465/j.cnki.jvs.2020.14.025.

    SUN Y X, TIAN J H, ZHANG Z F, et al. Experiment and numerical simulation study on the near-field underwater explosion of aluminized explosive [J]. Journal of Vibration and Shock, 2020, 39(14): 171–178, 193. DOI: 10.13465/j.cnki.jvs.2020.14.025.
    [27] 赵春风, 何凯城, 卢欣, 等. 弧形双钢板混凝土组合板抗爆性能数值研究 [J]. 爆炸与冲击, 2022, 42(2): 025101. DOI: 10.11883/bzycj-2021-0205.

    ZHAO C F, HE K C, LU X, et al. Numerical study of blast resistance of curved steel-concrete-steel composite slabs [J]. Explosion and Shock Waves, 2022, 42(2): 025101–. DOI: 10.11883/bzycj-2021-0205.
    [28] ZHAO L, YU H T, YUAN Y, et al. Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures [J]. Construction and Building Materials, 2015, 94(9): 710–718. DOI: 10.1016/j.conbuildmat.2015.07.076.
  • 加载中
图(24) / 表(5)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  49
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 修回日期:  2023-11-05
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回