爆炸荷载下泡沫混凝土分配层最小厚度的计算方法

杨亚 孔祥振 方秦 高矗

杨亚, 孔祥振, 方秦, 高矗. 爆炸荷载下泡沫混凝土分配层最小厚度的计算方法[J]. 爆炸与冲击, 2023, 43(11): 114201. doi: 10.11883/bzycj-2023-0047
引用本文: 杨亚, 孔祥振, 方秦, 高矗. 爆炸荷载下泡沫混凝土分配层最小厚度的计算方法[J]. 爆炸与冲击, 2023, 43(11): 114201. doi: 10.11883/bzycj-2023-0047
YANG Ya, KONG Xiangzhen, FANG Qin, GAO Chu. A calculation method for the minimum thickness of a foam concrete distribution layer under blast load[J]. Explosion And Shock Waves, 2023, 43(11): 114201. doi: 10.11883/bzycj-2023-0047
Citation: YANG Ya, KONG Xiangzhen, FANG Qin, GAO Chu. A calculation method for the minimum thickness of a foam concrete distribution layer under blast load[J]. Explosion And Shock Waves, 2023, 43(11): 114201. doi: 10.11883/bzycj-2023-0047

爆炸荷载下泡沫混凝土分配层最小厚度的计算方法

doi: 10.11883/bzycj-2023-0047
基金项目: 国家自然科学基金(52178515)
详细信息
    作者简介:

    杨 亚(1997- ),男,博士研究生,787997691@qq.com

    通讯作者:

    孔祥振(1988- ),男,博士,副教授,ouckxz@163.com

  • 中图分类号: O385

A calculation method for the minimum thickness of a foam concrete distribution layer under blast load

  • 摘要: 为了研究爆炸荷载下泡沫混凝土分配层的设计厚度,采用LS-DYNA软件建立了一维爆炸波在泡沫混凝土杆中传播衰减的数值模型并经过了实验验证,分析了半无限长和有限长泡沫混凝土杆中爆炸波的传播衰减规律及荷载增强效应产生机理。数值模拟结果表明:三角形爆炸荷载经过足够长的泡沫混凝土杆会衰减为幅值与其平台应力相当的梯形荷载,而当泡沫混凝土杆长度较小时,固定端在更强的反射波作用下将产生荷载增强效应。基于泡沫混凝土杆中的压实情况,将杆分为5个区域,即密实区1、平台区1、弹性区、平台区2和密实区2,其中弹性区的范围随着杆长减小而逐渐缩短;为避免荷载增强效应产生且最大程度降低作用于主体结构上的荷载,定义了平台区1、弹性区和平台区2范围为零时对应的杆长为泡沫混凝土分配层的最小厚度。对爆炸荷载和泡沫混凝土密度的参数敏感性分析表明,最小厚度随爆炸荷载峰值的增大和作用时间的延长而增大,而同一爆炸荷载下低密度泡沫混凝土的最小厚度大于高密度泡沫混凝土的最小厚度。基于数值模拟结果,进一步提出了最小厚度的计算公式。
  • 图  1  激波管装置[27]

    Figure  1.  A shock-tube device[27]

    图  2  荷载时程曲线[27]

    Figure  2.  Incident load-time history curves [27]

    图  3  一维波在泡沫混凝土中传播的有限元模型

    Figure  3.  The finite element model of one-dimensional wave propagation in a foam concrete bar

    图  4  Soil and Foam模型的状态方程[29]

    Figure  4.  Equation of state for the soil and foam model[29]

    图  5  一维应变下泡沫混凝土的应力-应变曲线[27]

    Figure  5.  One-dimensional stress-strain curves of foam concrete[27]

    图  6  经过3种不同长度泡沫混凝土试件作用于结构上的荷载随时间的变化

    Figure  6.  Variation of stress exerted by three foam concrete specimens with different lengths on structure with time

    图  7  简化的三段式应力-应变曲线

    Figure  7.  A simplified three-stage stress-strain curve

    图  8  简化的应力-应变曲线与实验数据对比

    Figure  8.  Comparison of the simplified stress-strain curve with the experimental one

    图  9  基于简化应力-应变曲线模拟得到的荷载与实验数据的对比

    Figure  9.  Comparison of the simulated load-time curves based on the simplified stress-strain curve with the experimental ones

    图  10  一维爆炸波在半无限长泡沫混凝土杆中的传播衰减

    Figure  10.  Propagation of one-dimensional blast wave in a foam concrete bar with semi-infinite length

    图  11  半无限长泡沫混凝土杆的应力和应变峰值分布

    Figure  11.  Distribution of stress and strain peaks in a foam concrete bar with semi-infinite length

    图  12  一维爆炸波在500 mm长泡沫混凝土杆中的传播衰减

    Figure  12.  Propagation of one-dimensional blast wave in a foam concrete bar with the length of 500 mm

    图  13  300 mm长泡沫混凝土杆的应力和应变峰值分布

    Figure  13.  Stress and strain peak distribution in a foam concrete bar with the length of 300 mm

    图  14  不同长度泡沫混凝土杆的应力和应变峰值分布

    Figure  14.  Stress and strain peak distribution in foam concrete bars with different lengths

    图  15  一维爆炸波在100 mm长泡沫混凝土杆中的传播衰减

    Figure  15.  Propagation of one-dimensional blast wave in a foam concrete bar with the length of 100 mm

    图  16  泡沫混凝土层最小厚度设计准则

    Figure  16.  Design criteria for the minimum thickness of a foam concrete layer

    图  17  简化的爆炸荷载

    Figure  17.  Simplified blast load

    图  18  泡沫混凝土不同密度等级对应的平台应力区间

    Figure  18.  Plateau stress ranges of foam concretewith different densities

    图  19  4种典型密度泡沫混凝土的应力-应变简化曲线

    Figure  19.  Simplified stress-strain curves of foam concretewith four typical densities

    图  20  爆炸荷载升压时间对泡沫混凝土层最小厚度的影响

    Figure  20.  Influence of rise time of blast load on the minimum thickness of a foam concrete layer

    图  21  爆炸荷载特征系数对泡沫混凝土层最小厚度的影响

    Figure  21.  Influences of blast load characteristic coefficients on the minimum thickness of a foam concrete layer

    图  22  泡沫混凝土密度对最小厚度的影响

    Figure  22.  Influence of density of foam concrete on the minimum thickness

    图  23  t1=0.25 ms时不同密度泡沫混凝土的最小厚度及平台应力

    Figure  23.  The minimum thickness and plateau stress of foamed concrete with different densities when t1=0.25 ms

  • [1] 龙文武. 泡沫混凝土力学性能及其数值模拟 [D]. 湖南衡阳: 南华大学, 2016: 10–21.

    LONG W W. Mechanical properties of foamed concrete and its numerical simulation [D]. Hengyang, Hunan, China: University of South China, 2016: 10–21.
    [2] 谷亚新, 王延钊, 王小萌. 不同工艺泡沫混凝土的研究进展 [J]. 混凝土, 2013(12): 148–152. DOI: 10.3969/j.issn.1002-3550.2013.12.042.

    GU Y X, WANG Y Z, WANG X M. Research progress of foam concrete in different process [J]. Concrete, 2013(12): 148–152. DOI: 10.3969/j.issn.1002-3550.2013.12.042.
    [3] 熊耀清, 姚谦峰. 轻质多孔混凝土受压应力-应变全曲线试验研究 [J]. 四川建筑科学研究, 2010, 36(2): 228–232. DOI: 10.3969/j.issn.1008-1933.2010.02.059.

    XIONG Y Q, YAO Q F. Experimental study on the total stress-strain curve of porous lightweight concrete [J]. Sichuan Building Science, 2010, 36(2): 228–232. DOI: 10.3969/j.issn.1008-1933.2010.02.059.
    [4] 龚独明. 轻质高强泡沫混凝土的制备与性能研究 [D]. 长沙: 长沙理工大学, 2013: 11–35.

    GONG D M. Study on preparation and performance of the light-weight and high-strength foamed concrete [D]. Changsha, Hunan, China: Changsha University of Science and Technology, 2013: 11–35.
    [5] 周明杰, 王娜娜, 赵晓艳, 等. 泡沫混凝土的研究和应用最新进展 [J]. 混凝土, 2009(4): 104–107. DOI: 10.3969/j.issn.1002-3550.2009.04.031.

    ZHOU M J, WANG N N, ZHAO X Y, et al. Latest development of research and application on foam concrete [J]. Concrete, 2009(4): 104–107. DOI: 10.3969/j.issn.1002-3550.2009.04.031.
    [6] 扈士凯, 李应权, 徐洛屹, 等. 国外泡沫混凝土工程应用进展 [J]. 混凝土世界, 2010(4): 48–50. DOI: 10.3969/j.issn.1674-7011.2010.04.012.

    HU S K, LI Y Q, XU L Y, et al. Foam concrete engineering application development abroad [J]. China Concrete, 2010(4): 48–50. DOI: 10.3969/j.issn.1674-7011.2010.04.012.
    [7] 周小华. 承重保温型复合墙体的设计与研究 [D]. 广州: 华南理工大学, 2011: 8–25.

    ZHOU X H. Design and research on load-bearing and thermal insulation sandwich composite wall [D]. Guangzhou, Guangdong, China: South China University of Technology, 2011: 8–25.
    [8] 丁曼. 防水性泡沫混凝土研究 [D]. 长沙: 湖南大学, 2011: 10–14.

    DING M. A study on the property of foam concrete with water repellents [D]. Changsha, Hunan, China: Hunan University, 2011: 10–14.
    [9] 吴江龙, 周新刚. 钢丝网泡沫混凝土轻质墙板 [J]. 新型建筑材料, 1998, 25(5): 36–37.

    WU J L, ZHOU X G. Steel mesh foam concrete lightweight wallboard [J]. New Building Material, 1998, 25(5): 36–37.
    [10] 何书明. 泡沫混凝土本构关系的研究 [D]. 长春: 吉林建筑大学, 2014: 5–10.

    HE S M. Study on the constitutive relationship of foam concrete [D]. Changchun, Jilin, China: Jilin Jianzhu University, 2014: 5–10.
    [11] 刘子全, 王波, 李兆海, 等. 泡沫混凝土的研究开发进展 [J]. 混凝土, 2008(12): 24–26. DOI: 10.3969/j.issn.1002-3550.2008.12.008.

    LIU Z Q, WANG B, LI Z H, et al. Research and development progress on foamed concrete [J]. Concrete, 2008(12): 24–26. DOI: 10.3969/j.issn.1002-3550.2008.12.008.
    [12] 郭宁. 新型泡沫混凝土复合砌块的应用研究 [D]. 长沙: 长沙理工大学, 2013: 6–8.

    GUO N. A research on the use of new form of mixed sandwich foam concrete block [D]. Changsha, Hunan, China: Changsha University of Science and Technology, 2013: 6–8.
    [13] ZHAO H L, YU H T, YUAN Y, et al. Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures [J]. Construction and Building Materials, 2015, 94: 710–718. DOI: 10.1016/j.conbuildmat.2015.07.076.
    [14] WU C Q, SHEIKH H. A finite element modelling to investigate the mitigation of blast effects on reinforced concrete panel using foam cladding [J]. International Journal of Impact Engineering, 2013, 55: 24–33. DOI: 10.1016/j.ijimpeng.2012.11.006.
    [15] 董永香, 黄晨光, 段祝平. 多层介质对应力波传播特性影响分析 [J]. 高压物理学报, 2005, 19(1): 59–65. DOI: 10.11858/gywlxb.2005.01.011.

    DONG Y X, HUANG C G, DUAN Z P. Analysis on the influence of multi-layered media on stress wave propagation [J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 59–65. DOI: 10.11858/gywlxb.2005.01.011.
    [16] 赵凯. 分层防护层对爆炸波的衰减和弥散作用研究 [D]. 合肥: 中国科学技术大学, 2007: 2–8.

    ZHAO K. The attenuation and dispersion effects on explosive wave of layered protective engineering [D]. Hefei, Anhui, China: University of Science and Technology of China, 2007: 2–8.
    [17] SHEN J, REN X J. Experimental investigation on transmission of stress waves in sandwich samples made of foam concrete [J]. Defence Technology, 2013, 9(2): 110–114. DOI: 10.3969/j.issn.1672-002X.2013.02.007.
    [18] 李砚召, 王肖钧, 吴祥云, 等. 分配层分层结构对核爆炸荷载的防护效果试验研究 [J]. 中国科学技术大学学报, 2009, 39(9): 931–935.

    LI Y Z, WANG X J, WU X Y, et al. Test study on layered structure’s defense effect of distribution layer against nuclear explosive loadings [J]. Journal of University of Science and Technology of China, 2009, 39(9): 931–935.
    [19] 张景飞, 冯明德, 陈金刚. 泡沫混凝土抗爆性能的试验研究 [J]. 混凝土, 2010(10): 10–12. DOI: 10.3969/j.issn.1002-3550.2010.10.004.

    ZHANG J F, FENG M D, CHEN J G. Study on the knock characteristic of foam concrete [J]. Concrete, 2010(10): 10–12. DOI: 10.3969/j.issn.1002-3550.2010.10.004.
    [20] 高全臣, 刘殿书, 王代华, 等. 泡沫混凝土复合防护结构的抗爆性能试验研究 [C]//第六届全国工程结构安全防护学术会议论文集. 北京: 中国力学学会, 2007: 120–123.

    GAO Q C, LIU D S, WANG D H, et al. Experimental study on anti-knock performance of foam concrete composite protective structure [C]//Proceedings of the 6th National Academic Conference on Safety Protection of Engineering Structures. Beijing, China: Chinese Society of Theoretical and Applied Mechanics, 2007: 120–123.
    [21] 杜玉兰, 王代华, 刘殿书, 等. 含泡沫混凝土层复合结构抗爆性能试验研究 [C]//首届全国水工抗震防灾学术会议论文集. 北京: 中国水力发电工程学会, 2006: 85–89.

    DU Y L, WANG D H, LIU D S, et al. Experimental research on the characteristics of anti-blast compound structures including foam concrete [C]//Proceedings of the First National Academic Conference on Earthquake Resistance and Disaster Prevention of Hydraulic Engineering. Beijing: China Society for Hydropower Engineering, 2006: 85–89.
    [22] 王代华, 刘殿书, 杜玉兰, 等. 含泡沫吸能层防护结构爆炸能量分布的数值模拟研究 [J]. 爆炸与冲击, 2006, 26(6): 562–567. DOI: 10.11883/1001-1455(2006)06-0562-06.

    WANG D H, LIU D S, DU Y L, et al. Numerical simulation of anti-blasting mechanism and energy distribution of composite protective structure with foam concrete [J]. Explosion and Shock Waves, 2006, 26(6): 562–567. DOI: 10.11883/1001-1455(2006)06-0562-06.
    [23] 唐德高, 王昆明, 贺虎成, 等. 泡沫混凝土回填层在坑道中的耗能作用 [J]. 解放军理工大学学报(自然科学版), 2006, 7(4): 365–370. DOI: 10.3969/j.issn.1009-3443.2006.04.013.

    TANG D G, WANG K M, HE H C, et al. Energy dissipation mechanism of foamed concrete backfill layers in underground tunnels [J]. Journal of PLA University of Science and Technology, 2006, 7(4): 365–370. DOI: 10.3969/j.issn.1009-3443.2006.04.013.
    [24] SKEWS B W, ATKINS M D, SEITZ M W. The impact of a shock wave on porous compressible foams [J]. Journal of Fluid Mechanics, 1993, 253: 245–265. DOI: 10.1017/S0022112093001788.
    [25] HANSSEN A G, ENSTOCK L, LANGSETH M. Close-range blast loading of aluminium foam panels [J]. International Journal of Impact Engineering, 2002, 27(6): 593–618. DOI: 10.1016/S0734-743X(01)00155-5.
    [26] 周宏元, 李永胜, 王小娟, 等. 地冲击作用下基于泡沫混凝土的地下结构柔性防护 [J]. 北京工业大学学报, 2020, 46(6): 533–539. DOI: 10.11936/bjutxb2020010013.

    ZHOU H Y, LI Y S, WANG X J, et al. Flexible protection of underground structures with foam concrete subjected to ground shocks [J]. Journal of Beijing University of Technology, 2020, 46(6): 533–539. DOI: 10.11936/bjutxb2020010013.
    [27] NIAN W M, SUBRAMANIAM K V L, ANDREOPOULOS Y. Experimental investigation on blast response of cellular concrete [J]. International Journal of Impact Engineering, 2016, 96: 105–115. DOI: 10.1016/j.ijimpeng.2016.05.021.
    [28] LI Q M, MENG H. Attenuation or enhancement-a one-dimensional analysis on shock transmission in the solid phase of a cellular material [J]. International Journal of Impact Engineering, 2002, 27(10): 1049–1065. DOI: 10.1016/S0734-743X(02)00016-7.
    [29] HALLQUIST J. LS-DYNA keyword user's manual, version: 970 [M]. Livermore, USA: Livermore Software Technology Corporation, 2003.
    [30] LEE M Y, BRONOWSKI D R, HARDY R D. Laboratory constitutive characterization of cellular concrete: SAND2004-1030 [R]. Albuquerque, USA: Sandia National Laboratories, 2004. DOI: 10.2172/918757.
    [31] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. 2nd ed. Cambridge, UK: Cambridge University Press, 1997: 110–122. DOI: 10.1017/CBO9781139878326.
    [32] 中华人民共和国住房和城乡建设部. 泡沫混凝土: JG/T 266–2011 [S]. 北京: 中国标准出版社, 2011: 2–11.

    Ministry of Housing and Urban-Rural Development of the Peopleʼs Republic of China. Foamed concrete: JG/T 266–2011 [S]. Beijing, China: Standards Press of China, 2011: 2–11.
  • 加载中
图(23)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  54
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-18
  • 修回日期:  2023-07-13
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2023-11-17

目录

    /

    返回文章
    返回