高应变率载荷下纯钛的非连续冲击疲劳失效模型及其微观机理

惠煜中 徐浩嘉 郝宏炜 沈将华

惠煜中, 徐浩嘉, 郝宏炜, 沈将华. 高应变率载荷下纯钛的非连续冲击疲劳失效模型及其微观机理[J]. 爆炸与冲击, 2024, 44(1): 013103. doi: 10.11883/bzycj-2023-0073
引用本文: 惠煜中, 徐浩嘉, 郝宏炜, 沈将华. 高应变率载荷下纯钛的非连续冲击疲劳失效模型及其微观机理[J]. 爆炸与冲击, 2024, 44(1): 013103. doi: 10.11883/bzycj-2023-0073
HUI Yuzhong, XU Haojia, HAO Hongwei, SHEN Jianghua. Discontinuous impact fatigue failure model and microscopic mechanism of pure titanium under high strain-rate loading[J]. Explosion And Shock Waves, 2024, 44(1): 013103. doi: 10.11883/bzycj-2023-0073
Citation: HUI Yuzhong, XU Haojia, HAO Hongwei, SHEN Jianghua. Discontinuous impact fatigue failure model and microscopic mechanism of pure titanium under high strain-rate loading[J]. Explosion And Shock Waves, 2024, 44(1): 013103. doi: 10.11883/bzycj-2023-0073

高应变率载荷下纯钛的非连续冲击疲劳失效模型及其微观机理

doi: 10.11883/bzycj-2023-0073
基金项目: 国家自然科学基金(11802247)
详细信息
    作者简介:

    惠煜中(1995- ),男,博士研究生,huiyuzhong@mail.nwpu.edu.cn

    通讯作者:

    沈将华(1985- ),男,博士,教授,j.shen@nwpu.edu.cn

  • 中图分类号: O383

Discontinuous impact fatigue failure model and microscopic mechanism of pure titanium under high strain-rate loading

  • 摘要: 基于传统的分离式霍普金森拉杆系统,设计了应变控制的冲击疲劳寿命测试实验,研究了冲击疲劳加载下纯钛的微观演化机制及冲击疲劳对材料宏观力学行为的影响。通过对不同冲击疲劳试验阶段的试样开展准静态力学性能测试,借助扫描电子显微镜 (scanning electron microscope, SEM) 和电子背散射衍射 (electron backscatter diffraction, EBSD) 技术表征试样在不同阶段的微观组织以及冲击疲劳失效后的断口形貌,研究纯钛在冲击疲劳失效过程中的循环硬化/软化规律及其微观演化机制。结果表明:通过改变子弹长度可以实现应变控制的冲击疲劳寿命测试;Manson-Coffin疲劳寿命模型可以较好地反映纯钛的冲击疲劳寿命与应变幅值之间的关系;纯钛在冲击疲劳失效过程中表现出循环硬化的现象,这主要是疲劳过程中孪生变形引起的细晶强化和塑性变形引起的应变硬化共同作用的结果,纯钛的冲击疲劳损伤主要表现为变形能力的损失。
  • 图  1  原始材料的初始微观结构组织

    Figure  1.  Initial microstructures of the as-received material

    图  2  应变控制的冲击疲劳实验示意图

    Figure  2.  Schematic diagram of strain-controlled impact fatigue experiment

    图  3  不同长度子弹产生的冲击载荷波形

    Figure  3.  Impact load waveforms of strikers with different lengths

    图  4  准静态拉伸、动态拉伸和应变率跳跃的真实应力-应变曲线

    Figure  4.  True stress-strain curves of quasi-static tensile, dynamic tensile and strain rate jump

    图  5  冲击疲劳断裂后及冲击疲劳不同次数后试样的宏观形貌

    Figure  5.  Macroscopic morphology of the samples after impact fatigue fracture and different times of impact fatigue.

    图  6  冲击疲劳寿命测试结果与Manson-Coffin模型拟合的对比

    Figure  6.  Comparison between impact fatigue life test results and Manson-Coffin model

    图  7  冲击疲劳不同次数后微观组织的EBSD表征结果

    Figure  7.  EBSD characterization results of microstructure after different times of impact fatigue

    图  8  冲击疲劳后准静态拉伸的真实应力-应变曲线

    Figure  8.  True stress-strain curves of quasi-static tension after impact fatigue

    图  9  屈服强度、抗拉强度和伸长率随冲击次数的变化

    Figure  9.  Changes of yield strength, tensile strength and elongation with impact times

    图  10  冲击疲劳断裂的断口形貌

    Figure  10.  Fracture morphology of impact fatigue fracture

    图  11  冲击疲劳断裂断面收缩率随应变幅值的变化

    Figure  11.  Variation of area reduction of impact fatigue fracture surface with impact strain amplitude

    表  1  不同冲击应变幅值下纯钛的冲击疲劳寿命

    Table  1.   Impact fatigue life of pure titanium under different impact strain amplitudes

    Δεt/2 冲击疲劳寿命/次
    0.017 58 62
    0.023 21 23 25
    0.026 12 16 17
    0.035 10 8 11
    0.051 5 6 7
    0.070 4 4 4
    下载: 导出CSV
  • [1] 刘正, 胡冶昌, 魏志芳. 复进簧冲击疲劳应力响应及其寿命预测 [C] //首届兵器工程大会论文集. 2017: 52–57.
    [2] 希弦. 微观航母之舰载机拦阻钩 [J]. 兵器知识, 2015(3): 72–75. DOI: 10.19437/j.cnki.11-1470/tj.2015.03.016.

    XI X. Arresting hook of carrier-based aircraft on aircraft carrier [J]. Ordnance Knowledge, 2015(3): 72–75. DOI: 10.19437/j.cnki.11-1470/tj.2015.03.016.
    [3] JOHNSON A A, STOREY R J. The impact fatigue properties of iron and steel [J]. Journal of Sound and Vibration, 2007, 308(3/4/5): 458–466. DOI: 10.1016/j.jsv.2007.06.044.
    [4] YANG S S, BAI C Y, YANG Q, et al. Review on impart fatigue of metallic materials and structures [J]. Aeronautical Science & Technology, 2021, 32(2): 1–13. DOI: 10.19452/j.issn1007-5453.2021.02.001.
    [5] JGUCHI K T H, TAIRA S. Failure mechanisms in impact fatigue of metals [J]. Fatigue and Fracture of Engineering Materials and Srrucfures, 1979, 2(2): 165–176. DOI: 10.1111/j.1460-2695.1979.tb01352.x.
    [6] NAKAYAMA H, TANAKA T. Impact fatigue crack growth behaviors of high strength low alloy steel [J]. International Journal of Fracture, 1984, 26(9): 19–24. DOI: 10.1007/BF01152319.
    [7] TANAKA T, KINOSHITA K, NAKAYAMA H. Fatigue crack growth and microscopic crack opening behaviour under impact fatigue load [J]. International Journal of Fatigue, 1989, 11(2): 117–123. DOI: 10.1016/0142-1123(89)90006-6.
    [8] YANG P, LIAO X, ZHU J, et al. High strain-rate low-cycle impact fatigue of a medium-carbon alloy steel [J]. International Journal of Fatigue, 1994, 16(5): 327–330. DOI: 10.1016/0142-1123(94)90270-4.
    [9] ZHANG M, YANG P S, TAN Y X, et al. An observation of crack initiation and early crack growth under impact fatigue loading [J]. Materials Science and Engineering: A, 1999, 271(1/2): 390–394. DOI: 10.1016/S0921-5093(99)00264-6.
    [10] 李会会, 易丹青, 刘会群, 等. 硬质合金冲击疲劳行为的研究 [J]. 硬质合金, 2014, 31(2): 100–111. DOI: 10.3969/j.issn.1003-7292.2014.02.006.

    LI H H, YI D Q, LIU H Q, et al. Research on impact fatigue behaviour of cemented carbide [J]. Cemented Carbide, 2014, 31(2): 100–111. DOI: 10.3969/j.issn.1003-7292.2014.02.006.
    [11] 陈鼎, 姚亮, 陈振华, 等. WC-Co类硬质合金的低周冲击疲劳性能研究 [J]. 稀有金属与硬质合金, 2017, 45(3): 71–76. DOI: CNKI:SUN:XYJY.0.2017-03-014.

    CHEN D, YAO L, CHEN Z H, et al. Study on low cycle impact fatigue performance of WC-Co cemented carbides [J]. Rare Metals and Cemented Carbides, 2017, 45(3): 71–76. DOI: CNKI:SUN:XYJY.0.2017-03-014.
    [12] STANTON L B. The resistance of materials to impact [J]. Proceedings of the Institute of Mechanical Engineers, 1908: 889–919. DOI: 10.1243/PIME_PROC_1908_075_019_02.
    [13] JOHNSON D J. The impact fatigue properties of pearlitic plain carbon steels [J]. Fatigue of and Fracture Engineering Materials and Structures, 1981, 4(3): 279–285. DOI: 10.1111/j.1460-2695.1981.tb01125.x.
    [14] JOHNSON A A. The low cycle impact fatigue properties of pearlitic plain carbon steels [J]. Fatigue and Fracture of Engineering Mateirals and Structures, 1985, 8(3): 287–294. DOI: 10.1111/j.1460-2695.1985.tb00428.x.
    [15] 张遥辉. 钢铁材料冲击疲劳行为综述 [J]. 中国设备工程, 2020(6): 211–216. DOI: 10.3969/j.issn.1671-0711.2020.06.131.

    ZHANG Y H. Overview of impact fatigue behavior of steel materials [J]. China Plant Engineering, 2020(6): 211–216. DOI: 10.3969/j.issn.1671-0711.2020.06.131.
    [16] SUN Q, LIU X R, LIANG K. Impact fatigue life prediction for notched specimen of steel AerMet100 subjected to high strain rate loading [J]. International Journal of Applied Mechanics, 2018, 10(3): 1850030. DOI: 10.1142/s1758825118500308.
    [17] WANG B W, QIAN C C, BAI C Y, et al. Study on impact fatigue test and life prediction method of TC18 titanium alloy [J]. International Journal of Fatigue, 2023, 168: 1–17. DOI: 10.1016/j.ijfatigue.2022.107391.
    [18] GAO P F, LEI Z N, LI Y K, et al. Low-cycle fatigue behavior and property of TA15 titanium alloy with tri-modal microstructure [J]. Materials Science and Engineering: A, 2018, 736: 1–11. DOI: 10.1016/j.msea.2018.08.080.
    [19] 张欠欠, 刘晓燕, 雷罗, 等. 工业纯钛的室温低周疲劳行为 [J]. 塑性工程学报, 2019, 26(2): 219–224. DOI: 10.3969/j.issn.1007-2012.2019.02.029.

    ZHANG Q Q, LIU X Y, LUO L, et al. Low-cycle fatigue behavior of commercially pure titanium at room temperature [J]. Journal of Plasticity Engineering, 2019, 26(2): 219–224. DOI: 10.3969/j.issn.1007-2012.2019.02.029.
    [20] CHANG L, LV C, KITAMURA T, et al. Slip dominated planar anisotropy of low cycle fatigue behavior of commercially pure titanium [J]. Materials Science and Engineering: A, 2022, 854(9):143807. DOI: 10.1016/j.msea.2022.143807.
    [21] SONG X P, CHEN G L, GU H C. Low cycle fatigue behavior of commercial purity titanium in liquid nitrogen [J]. International Journal of Fatigue, 2002, 24: 49–56. DOI: 10.1016/S0142-1123(01)00047-0.
    [22] ABDUL-LATIF A. Continuum damage model for low-cycle fatigue of metals: an overview [J]. International Journal of Damage Mechanics, 2021, 30(7): 1036–1078. DOI: 10.1177/1056789521991620.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  38
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-01
  • 修回日期:  2023-07-20
  • 网络出版日期:  2023-11-16
  • 刊出日期:  2024-01-11

目录

    /

    返回文章
    返回