一种适用于复杂加载状态下微喷射物质面密度测量的Asay膜方法

王维荣 陈书杨 王学军 赵信文 黄世璋 李欣竹 吴强

王维荣, 陈书杨, 王学军, 赵信文, 黄世璋, 李欣竹, 吴强. 一种适用于复杂加载状态下微喷射物质面密度测量的Asay膜方法[J]. 爆炸与冲击, 2024, 44(3): 034101. doi: 10.11883/bzycj-2023-0089
引用本文: 王维荣, 陈书杨, 王学军, 赵信文, 黄世璋, 李欣竹, 吴强. 一种适用于复杂加载状态下微喷射物质面密度测量的Asay膜方法[J]. 爆炸与冲击, 2024, 44(3): 034101. doi: 10.11883/bzycj-2023-0089
WANG Weirong, CHEN Shuyang, WANG Xuejun, ZHAO Xinwen, HUANG Shizhang, LI Xinzhu, WU Qiang. An improved Asay foil method for measuring areal density of ejecta under complex loading conditions[J]. Explosion And Shock Waves, 2024, 44(3): 034101. doi: 10.11883/bzycj-2023-0089
Citation: WANG Weirong, CHEN Shuyang, WANG Xuejun, ZHAO Xinwen, HUANG Shizhang, LI Xinzhu, WU Qiang. An improved Asay foil method for measuring areal density of ejecta under complex loading conditions[J]. Explosion And Shock Waves, 2024, 44(3): 034101. doi: 10.11883/bzycj-2023-0089

一种适用于复杂加载状态下微喷射物质面密度测量的Asay膜方法

doi: 10.11883/bzycj-2023-0089
详细信息
    作者简介:

    王维荣(1988- ),男,博士,副研究员,wwr1988@caep.cn

    通讯作者:

    黄世璋(1989- ),男,博士,助理研究员,sz_huang@foxmail.com

  • 中图分类号: O384

An improved Asay foil method for measuring areal density of ejecta under complex loading conditions

  • 摘要: 为了解决传统Asay膜方法不适用于复杂加卸载条件下微喷射物质面密度测量的问题,采用光子多普勒速度计(photonic Doppler velocimetry, PDV)测量微喷射物质速度结合传统Asay膜方法的膜速曲线发展了测试复杂加载条件下微喷射面密度的新方法。采用数值实验和轻气炮实验对新方法进行了分析和评估。针对3种典型微喷射物质速度分布情况,利用数值实验分析评估了实际应用场景下因PDV给出的微喷物速度偏离理论值对面密度测量的影响,通过对PDV给出的微喷物速度线性插值处理,可确保新方法与理论值测量偏差小于20%。通过轻气炮加载预置粉末样品实验对比评估了新方法和传统方法的测量效果,采用2种方法分别处理同一发实验数据,结果显示,新方法相较于传统Asay膜方法的测量偏差小于20%。
  • 图  1  Asay膜法微喷测量原理

    Figure  1.  The principle of the traditional Asay foil ejecta diagnostic

    图  2  典型二次加载微喷射速度示意图

    Figure  2.  Schematic of ejecta velocity under double shock loading

    图  3  微喷物质与Asay膜作用过程示意图

    Figure  3.  Schematic of ejecta impacting the Asay foil

    图  4  微喷颗粒冲击Asay膜响应示意图

    Figure  4.  Schematics of ejecta particles impacting the Asay foil

    图  5  基于PDV测速的Asay膜实验示意图

    Figure  5.  Schematic of the improved Asay foil experiment based on PDV velocity measurement

    图  6  数值实验获得的微喷射分布

    Figure  6.  Ejecta particles distributions obtained from numerical experiments

    图  7  数值实验数据

    Figure  7.  Numerical experiment data

    图  8  指数分布条件下Asay膜数值实验数据处理结果及相对偏差分析

    Figure  8.  Numerical experiment data processing results and deviation analysis using the new Asay foil method for exponential distribution of ejecta

    图  9  反指数分布条件下Asay膜数值实验数据处理结果及相对偏差分析

    Figure  9.  Numerical experiment data processing results and deviation analysis using the new Asay foil method for anti-exponential distribution of ejecta

    图  10  线性分布条件下Asay膜数值实验数据处理结果及偏差分析

    Figure  10.  Numerical experiment data processing results and deviation analysisusing the new Asay foil method for linear distribution of ejecta

    图  11  模拟实际测试条件Asay膜数值实验结果与理论偏差分析

    Figure  11.  Analysis of numerical experimental results and theoretical deviation of Asay foil under simulated actual test conditions

    图  12  实验Asay膜测速频谱信号和PDV测速频谱信号

    Figure  12.  Asay foil velocity spectrum signal and PDV velocity spectrum signal in experiment

    图  13  两种Asay膜数据处理方法实验结果及相对偏差

    Figure  13.  Comparison of experimental results and relative deviation of two Asay foil data processing methods

    表  1  不同数值实验条件下的数据处理参数

    Table  1.   Data processing parameters under different numerical experiment conditions

    面密度
    分布情况
    t1/μst2/μsve1/(m·s−1)ve2/(m·s−1)
    Me,l=10 mg/cm2Me,l=20 mg/cm2Me,l=40 mg/cm2Me,l=10 mg/cm2Me,l=20 mg/cm2Me,l=40 mg/cm2
    指数02.9503.3553.7852772.702460.832426.112393.23
    反指数00.0460.1010.2402649.992644.862639.212625.85
    线性00.2680.5871.2512649.992620.402588.022528.43
    下载: 导出CSV

    表  2  两种Asay膜数据处理方法使用的参数

    Table  2.   Parameters used in two different Asay foil data processing methods

    方法 l/mm t0/μs mf/(mg·cm−2) t1/μs t2/μs ve1/(m·s−1) ve2/(m·s−1)
    传统Asay膜法 19.5 28.33 156
    新Asay膜法1 156 34.05 39.33 4180 2026
    新Asay膜法2 156 34.05 39.33 4380 1826
    新Asay膜法3 156 34.05 39.33 3980 2226
    下载: 导出CSV
  • [1] WALSH J M, SHREFFLER R G, WILLIG F J. Limiting conditions for jet formation in high velocity collisions [J]. Journal of Applied Physics, 1953, 24(3): 349–359. DOI: 10.1063/1.1721278.
    [2] ZELLNER M B, GROVER M, HAMMERBERG J E, et al. Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces [J]. Journal of Applied Physics, 2007, 102(1): 013522. DOI: 10.1063/1.2752130.
    [3] ZELLNER M B, DIMONTE G, GERMANN T C, et al. Influence of shockwave profile on ejecta [J]. AIP Conference Proceedings, 2009, 1195(1): 1047–1050. DOI: 10.1063/1.3294980.
    [4] BUTTLER W T, ORÓ D M, OLSON R T, et al. Second shock ejecta measurements with an explosively driven two-shockwave drive [J]. Journal of Applied Physics, 2014, 116(10): 103519. DOI: 10.1063/1.4895053.
    [5] ASAY J R, BERTHOLF L D. Model for estimating the effects of surface roughness on mass ejection from shocked materials: SAND-78-1256 [R]. Albuquerque: Sandia National Laboratory, 1978. DOI: 10.2172/6793637.
    [6] BUTTLER W T, SCHULZE R K, CHARONKO J J, et al. Understanding the transport and break up of reactive ejecta [J]. Physica D: Nonlinear Phenomena, 2021, 415: 132787. DOI: 10.1016/j.physd.2020.132787.
    [7] ASAY J R, MIX L P, PERRY F C. Ejection of material from shocked surfaces [J]. Applied Physics Letters, 1976, 29(5): 284–287. DOI: 10.1063/1.89066.
    [8] ASAY J R. Thick-plate technique for measuring ejecta from shocked surfaces [J]. Journal of Applied Physics, 1978, 49(12): 6173–6175. DOI: 10.1063/1.324545.
    [9] 马云, 汪小松, 李欣竹, 等. ASAY膜法测量微物质喷射总质量不确定度的初步实验研究 [J]. 高压物理学报, 2006, 20(2): 207–210. DOI: 10.11858/gywlxb.2006.02.016.

    MA Y, WANG X S, LI X Z, et al. Study of the uncertainty of the ejected mass measured by ASAY foil method [J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 207–210. DOI: 10.11858/gywlxb.2006.02.016.
    [10] BELL D J, ROUTLEY N R, WHITEMAN G, et al. The development of a smaller Asay foil diagnostic [J]. AIP Conference Proceedings, 2018, 1979(1): 080001. DOI: 10.1063/1.5044843.
    [11] MCCLUSKEY C W, WILKE M D, ANDERSON W W, et al. Asay window: a new spall diagnostic [J]. Review of Scientific Instruments, 2006, 77(11): 113902. DOI: 10.1063/1.2336753.
    [12] CHEN Y T, HONG R K, CHEN H Y, et al. An improved Asay window technique for investigating the micro-spall of an explosively-driven tin [J]. Review of Scientific Instruments, 2017, 88(1): 013904. DOI: 10.1063/1.4973699.
    [13] KARKHANIS V, RAMAPRABHU P, BUTTLER W T, et al. Ejecta production from second shock: numerical simulations and experiments [J]. Journal of Dynamic Behavior of Materials, 2017, 3(2): 265–279. DOI: 10.1007/s40870-017-0091-9.
    [14] WILLIAMS R J R, GRAPES C C. Simulation of double-shock ejecta production [J]. Journal of Dynamic Behavior of Materials, 2017, 3(2): 291–299. DOI: 10.1007/s40870-017-0107-5.
    [15] WENG J D, TAN H, HU S L, et al. New all-fiber velocimeter [J]. Review of Scientific Instruments, 2005, 76(9): 093301. DOI: 10.1063/1.2008989.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  29
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-12
  • 修回日期:  2024-01-19
  • 网络出版日期:  2023-12-18
  • 刊出日期:  2024-03-14

目录

    /

    返回文章
    返回