墨鱼骨结构的力学行为及其应变率效应

蒋钰婷 钟东海 方泽辉 丁圆圆 周风华

蒋钰婷, 钟东海, 方泽辉, 丁圆圆, 周风华. 墨鱼骨结构的力学行为及其应变率效应[J]. 爆炸与冲击, 2024, 44(4): 043102. doi: 10.11883/bzycj-2023-0142
引用本文: 蒋钰婷, 钟东海, 方泽辉, 丁圆圆, 周风华. 墨鱼骨结构的力学行为及其应变率效应[J]. 爆炸与冲击, 2024, 44(4): 043102. doi: 10.11883/bzycj-2023-0142
JIANG Yuting, ZHONG Donghai, FANG Zehui, DING Yuanyuan, ZHOU Fenghua. Mechanical behavior of cuttlebone structure and its strain rate effect[J]. Explosion And Shock Waves, 2024, 44(4): 043102. doi: 10.11883/bzycj-2023-0142
Citation: JIANG Yuting, ZHONG Donghai, FANG Zehui, DING Yuanyuan, ZHOU Fenghua. Mechanical behavior of cuttlebone structure and its strain rate effect[J]. Explosion And Shock Waves, 2024, 44(4): 043102. doi: 10.11883/bzycj-2023-0142

墨鱼骨结构的力学行为及其应变率效应

doi: 10.11883/bzycj-2023-0142
基金项目: 国家自然科学基金(11702152);浙江省自然科学基金(LY21A020005)
详细信息
    作者简介:

    蒋钰婷(1997- ),女,硕士研究生,jiangyuting0721@163.com

    通讯作者:

    丁圆圆(1987- ),男,博士,副教授,dingyuanyuan@nbu.edu.cn

  • 中图分类号: O347.3

Mechanical behavior of cuttlebone structure and its strain rate effect

  • 摘要: 墨鱼骨是一种墨鱼内部产生的生物矿化壳,通过调节壳内的气液比从而实现墨鱼的深浅浮动,同时满足轻质和高刚度的力学特性,使墨鱼能够很好地适应深海环境,所以墨鱼骨是一种典型的高比刚度的多孔材料。为探究墨鱼骨结构的力学性能,通过Instron材料试验机和分离式Hopkinson压杆实验装置,对墨鱼骨在不同加载应变率下的力学行为进行研究。研究结果表明,墨鱼骨在准静态加载下,其应力-应变曲线呈现典型的三阶段变化模式,即弹性段、平台段和压实段,具有很好地吸能缓冲作用;随着加载应变率的提高,墨鱼骨的初始压溃应力和平台应力也随之增加,表明墨鱼骨材料对加载应变率存在很强的敏感性。进一步分析不同生长方向的墨鱼骨在准静态压缩下的力学行为,结果表明随着生长方向的增加,墨鱼骨结构的刚度和吸能性能都得到了弱化,从而揭示了墨鱼骨材料压缩行为的各项异性。
  • 图  1  墨鱼骨结构

    Figure  1.  Cuttlefish bone structure

    图  2  生长方向不同的墨鱼骨试样

    Figure  2.  Cuttlefish bone samples with different growth directions

    图  3  墨鱼骨的扫描电子显微镜图像

    Figure  3.  Scanning electron microscope image of cuttlefish bone

    图  4  加载平台及试件放置示意图

    Figure  4.  Schematic diagram of loading platform and specimen placement

    图  5  当加载应变率为10−3 s−1时不同生长方向墨鱼骨试样的应力-应变曲线

    Figure  5.  Stress-strain curves of cuttlefish bone specimens with different growth directions under compression strain-rate of 10−3 s−1

    图  6  当加载应变率为10−3 s−1时墨鱼骨试样的变形模式

    Figure  6.  Deformation mode of cuttlefish bone under compression strain-rate of 10−3 s−1

    图  7  墨鱼骨试样在不同应变率下的压缩应力-应变曲线

    Figure  7.  Compressive stress-strain curves of cuttlefish bone specimens under different strain rates

    图  8  在加载应变率10−3 s−1条件下墨鱼骨试样的应力-应变曲线和比吸能曲线

    Figure  8.  Stress-strain curve and specific energy absorption of cuttlefish bone samples under compressive strain-rate of 10−3 s−1

    图  9  在加载应变率10−3 s−1条件下墨鱼骨试样的应力-应变曲线和吸能效率曲线

    Figure  9.  Stress-strain curve and energy absorption efficiency of cuttlefish bone samples under compressive strain-rate of 10−3 s−1

    图  10  不同仿生材料的有效比吸能对比

    Figure  10.  Comparison of effective specific energy absorption of different bio-inspired materials

    图  11  直撞式霍普金森杆装置示意图

    Figure  11.  Schematic diagram of direct impact Hopkinson pressure bar

    图  12  不同加载气压下的应变率变化曲线

    Figure  12.  Variation curves of strain rate under different loading pressure

    图  13  不同加载应变率下的墨鱼骨动态应力-应变曲线

    Figure  13.  Dynamic stress-strain curves of cuttlebone under different loading strain rates

    图  14  墨鱼骨在动态试验下的破碎过程

    Figure  14.  Crushing process of cuttlefish bone under dynamic test

    图  15  在不同压缩应变率下墨鱼骨试样的应力-应变曲线

    Figure  15.  Stress-strain curves of cuttlebone samples under different loading strain rates

    图  16  加载应变率增加时墨鱼骨平台应力的变化曲线

    Figure  16.  The variation of the plateau stress of cuttlebone with increase of compressive strain-rate

  • [1] COMPTON B G, LEWIS J A. 3D-Printing of lightweight cellular composites [J]. Advanced Materials, 2014, 26(34): 5930–5935. DOI: 10.1002/adma.201401804.
    [2] ZOK F W, RATHBUN H, HE M, et al. Structural performance of metallic sandwich panels with square honeycomb cores [J]. Philosophical Magazine, 2005, 85: 3207–34. DOI: 10.1080/14786430500073945.
    [3] CADMAN J, CHEN Y H, ZHOU S W, et al. Creating biomaterials inspired by the microstructure of cuttlebone [J]. Materials Science Forum, 2010, 654: 2229–2232. DOI: 10.4028/www.scientific.net/MSF.654-656.2229.
    [4] SHERRARD K M. Cuttlebone morphology limits habitat depth in eleven species of sepia (cephalopoda: sepiidae) [J]. The Biological Bulletin, 2000, 198(3): 404–414. DOI: 10.2307/1542696.
    [5] ROCHA J, LEMOS A F, AGATHOPOULOS S, et al. Scaffolds for bone restoration from cuttlefish [J]. Bone, 2005, 37(6): 850–857. DOI: 10.1016/j.bone.2005.06.018.
    [6] JIAN S, WANG Y, ZHOU W, et al. Topology optimization-guided lattice composites and their mechanical characterizations [J]. Composites Part B: Engineering, 2019, 60: 402–411. DOI: 10.1016/j.compositesb.2018.12.027.
    [7] RIVERA J, HASSEII M S, RESTREPO D, et al. Publisher correction: Toughening mechanisms of the elytra of the diabolical ironclad beetle [J]. Nature, 590(7844): E21. DOI: 10.1038/s41586-020-03106-6.
    [8] DENTON E J, GILPIN-BROWN J B. The buoyancy of the cuttlefish, sepia officinalis [J]. Journal of the Marine Biological Association of the United Kingdom, 1961, 41(2): 319–342. DOI: 10.1017/s0025315400023948.
    [9] ROCHA J H G, LEMOS A F, AGATHOPOULOS S, et al. Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones [J]. Journal of Biomedical Materials Research Part A, 2006, 77(1): 160–168. DOI: 10.1002/jbm.a.30566.
    [10] BIRCHALL J D, THOMAS N L. On the architecture and function of cuttlefish bone [J]. Journal of Materials Science, 1983, 18(7): 2081–2086. DOI: 10.1007/bf00555001.
    [11] CADMAN J, ZHOU S, CHEN Y, et al. Characterization of cuttlebone for a biomimetic design of cellular structures [J]. Acta Mechanica Sinica, 2010, 26(1): 27–35. DOI: 10.1007/s10409-009-0310-2.
    [12] WARD P D, BOLETZKY S V. Shell implosion depth and implosion morphologies in three species of sepia (cephalopoda) from the Mediterranean Sea [J]. Journal of the Marine Biological Association of the United Kingdom, 1984, 64: 955–966. DOI: 10.1017/s0025315400047366.
    [13] BOLETZKY S V. Biology of early life stages in cephalopod molluscs [J]. Advances in Marine Biology, 2003, 44: 143–203. DOI: 10.1016/S0065-2881(03)44003-0.
    [14] YANG T, JIA Z, CHEN H S, et al. Mechanical design of the highly porous cuttlebone: a bioceramic hard buoyancy tank for cuttlefish [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(38): 23450–23459. DOI: 10.1073/pnas.2009531117.
    [15] EDWARD L, JIA Z, YANG T, et al. Multiscale mechanical design of the lightweight, stiff, and damage-tolerant cuttlebone: a computational study [J]. Acta Biomaterialia, 2022, 154: 312–323. DOI: 10.1016/j.actbio.2022.09.057.
    [16] MAO A, ZHAO N, LIANG Y, et al. Mechanically efficient cellular materials inspired by cuttlebone [J]. Advanced Materials, 2021, 33(15): 2007348. DOI: 10.1002/adma.202007348.
    [17] YANG C, LI Q M. Advanced lattice material with high energy absorption based on topology optimization [J]. Mechanics of Materials, 2020, 148(10): 103536. DOI: 10.1016/j.mechmat.2020.103536.
    [18] 谢慕原, 李鹏飞, 徐汉祥, 等. 基于内壳生长纹的浙江海域曼氏无针乌贼生长特性 [J]. 浙江海洋大学学报(自然科学版), 2022, 41(4): 279–285. DOI: 10.3969/j.issn.1008-830X.2022.04.001.

    XIE M Y, LI P F, XU H X, et al. Growth characteristics of sepiella maindroni based on growth increments of cuttlebone in coastal water of Zhejiang [J]. Journal of Zhejiang Ocean University (Natural Science Edition), 2022, 41(4): 279–285. DOI: 10.3969/j.issn.1008-830X.2022.04.001.
    [19] QI C, JIANG F, YANG S. Advanced honeycomb designs for improving mechanical properties: A review [J]. Composites, Part B. Engineering, 2021, 227: 109393. DOI: 10.1016/j.compositesb.2021.109393.
    [20] 曾斐, 潘艺, 胡时胜. 泡沫铝缓冲吸能评估及其特性 [J]. 爆炸与冲击, 2002, 22(4): 358–362.

    ZENG F, PAN Y, HU S S. Evaluation of cushioning properties and energy-absorption capability of foam aluminium [J]. Explosion and Shock Waves, 2002, 22(4): 358–362.
    [21] 宋玉环, 肖久梅. 聚氨酯/蜂窝铝复合材料的缓冲吸能特性研究[C]//北京力学会学术年会, 北京, 2016: 442–443.
    [22] 陈浩, 郭鑫, 宋力. 直接撞击式大变形霍普金森压杆实验技术 [J]. 宁波大学学报(理工版), 2018, 31(4): 70–73. DOI: 10.3969/j.issn.1001-5132.2018.04.012.

    CHEN H, GUO X, SONG L. A direct impact Hopkinson pressure bar technique for material testing in large deformation [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2018, 31(4): 70–73. DOI: 10.3969/j.issn.1001-5132.2018.04.012.
    [23] PARK S. W, ZHOU M. Separation of elastic waves in split Hopkinson bars using one-point strain measurements [J]. Experimental Mechanics, 1999, 39(4): 287–294. DOI: 10.1007/bf02329807.
    [24] PIYUSH U, PRAVEER S, NAVIN K. Effect of organic matrix alteration on strain rate dependent mechanical behavior of cortical bone [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125: 104910. DOI: 10.1016/j.jmbbm.2021.104910.
  • 加载中
图(16)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  43
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-18
  • 修回日期:  2023-09-10
  • 网络出版日期:  2024-01-24
  • 刊出日期:  2024-04-07

目录

    /

    返回文章
    返回