Experiment study of cascades explosive implosion magnetic flux generator
-
摘要: 柱面内爆磁通量压缩发生器是利用炸药内爆压缩其内部磁通量至轴线附近小体积内从而实现超高磁场,传统的单级装置因受到金属套筒内爆失稳等影响性能指标受限。开展了多级内爆磁压缩技术研究,突破多项关键技术,包括研制特殊结构的密绕螺线管、脉冲功率源及大电流放电开关等,具备在直径135 mm套筒空间内实现20 T以上初始磁场产生能力,并建立了动态磁光测量系统。利用磁流体力学编码SSS-MHD开展多级装置设计,计算显示,设计的多级装置能够将约42%的初始磁通量压缩至轴线附近直径7 mm的空间内。最终研制成功多级内爆磁压缩装置CJ-150,在亚立方厘米以上空间实现轴向峰值磁场强度906 T,数据不确定度5.35%。10余发动态考核实验显示,CJ-150装置工作稳定,能够满足物理实验需要。利用经实验验证的磁流体模型计算显示,CJ-150具备1000 T以上超强磁场产生能力,能够对大尺寸样品实现500 GPa以上的准等熵加载。Abstract: The explosive implosion magnetic flux generator (EIMFG) could realize ultrahigh magnetic field by using explosive implosion to compress and cumulate inner magnetic flux into a smaller volume near axis. The EIMFG was designed by using magneto-hydrodynamics code of SSS-MHD and simulation shown that around 42% of initial magnetic flux would be finally compressed and cumulated into a volume of 7 mm in diameter near axis. The initial magnetic field system including specific solenoid, power source and large current switch was built up and had the ability of over 20 T of initial magnetic field producing in a cylinder space of 135 mm in diameter. A magnetic optical measurement system was also built up and suitable to dynamic detonation environment. Finally, a 20 kg TNT explosive sale EIMFG setup named CJ-150 was built up and axial maximum magnetic field up to 906 T was recorded using Faraday optical method. The original magneto-optical signal was clear with high quality, and uncertainty of maximum magnetic field data was 5.35%. The magnetic loading by Lorenz force was proved isentropic and uniform around from the measurement results of photonic Doppler velocimeter (PDV) probes which were set inside the sample tube. The CJ-150 setup is proved working stably and suitable to be used in physics experiment. Analysis show that CJ-150 could produce over 1000 T of ultrahigh magnetic field in over 10-1 cm3 volume and realize over 500 GPa of ultrahigh isentropic compression on large size sample.
-
-
[1] SAKHAROV A D, LUDAYEV R Z, SMIRNOV E N, et al. Magnitnaya kumulatsia [J]. Dokl. Akad. Nauk SSSR, 1965, 196(1): 65–68. [2] FOWLER C M, GARN W B, CAIRD R S. Production of very high magnetic fields by implosion [J]. Journal of Applied Physics, 1960, 31(3): 588–594. DOI: 10.1063/1.1735633. [3] HAWKE R S, DUERRE D E, HUEBEL J G, et al. Electrical properties of Al2O3 under isentropic compression up to 500 GPa (5 Mbar) [J]. Journal of Applied Physics, 1978, 49(6): 3298–3303. DOI: 10.1063/1.325281. [4] HERLACH F, KNOEPFEL H. Megagauss fields generated in explosive‐driven flux compression devices [J]. Review of Scientific Instruments, 1965, 36(8): 1088–1095. DOI: 10.1063/1.1719809. [5] PAVLOVSKII A I. Reproducible generation of multimegagauss magnetic fields [C] // Megagauss Physics and Technology. TURCHI P J. New York: Plenum Press 1980: 627–639. [6] BYKOV A I, DOLOTENKO M I, KOLOKOLCHIKOV N P, et al. VNIIEF achievements on ultra-high magnetic fields generation [J]. Physica B: Condensed Matter, 2001, 294/295: 574–578. DOI: 10.1016/S0921-4526(00)00723-7. [7] CLARK R G. The dirac experiments–results and challenges [C] // Proceeding of the Ⅷth International Conference on Megagauss Magnetic Field Generation and Related Topics. HANS J. Tallahassee, Florida: Schneider-Muntau, 1998: 12–22. [8] LINDEMUTH I R, EKDAHL C A, FOWLER C M. US/Russian collaboration in high-energy-density physics using high-explosive pulsed power: ultrahigh current experiments, ultrahigh magnetic field applications, and progress toward controlled thermonuclear fusion [J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1357–1371. DOI: 10.1109/27.650905. [9] 谷卓伟, 罗浩, 张恒第, 等. 炸药柱面内爆磁通量压缩实验技术研究 [J]. 物理学报, 2013, 62(17): 170701. DOI: 10.7498/aps.62.170701.GU Z W, LUO H, ZHANG H D, et al. Experimental research on the technique of magnetic flux compression by explosive cylindrical implosion [J]. Acta Physica Sinica, 2013, 62(17): 170701. DOI: 10.7498/aps.62.170701. [10] ZHOU Z Y, GU Z W, TONG Y J, et al. A compact explosive-driven flux compression generator for reproducibly generating multimegagauss fields [J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3279–3283. DOI: 10.1109/TPS.2018.2794761. [11] 孙承纬, 陆禹, 赵继波, 等. 电磁驱动高能量密度动力学实验的一维磁流体力学多物理场数值模拟平台: SSS-MHD [J]. 爆炸与冲击, 2023, 43(10): 104201. DOI: 10.11883/bzycj-2023-0127.SUN C W, LU Y, ZHAO J B, et al. SSS-MHD: a one-dimensional magneto-hydrodynamics multi-physics simulation platform for magnetically-driven high-energy-density dynamics experiments [J]. Explosion and Shock Waves, 2023, 43(10): 104201. DOI: 10.11883/bzycj-2023-0127. [12] MADER C L. Numerical modeling of explosives and propellants [M]. 3rd ed. Boca Raton: CRC Press, 2008. [13] 孙承纬. 一维冲击波和爆轰波计算程序SSS [J]. 计算物理, 1986, 3(2): 142–154. DOI: 10.19596/j.cnki.1001-246x.1986.02.002.SUN C W. One dimensional shock wave and detonation wave calculation program SSS [J]. Chinese Journal of Computational Physics, 1986, 3(2): 142–154. DOI: 10.19596/j.cnki.1001-246x.1986.02.002. [14] BURGESS T J. Electrical resistivity model of metals: SAND86-1093C [R]. USA: Sandia National Labs, 1986. [15] 李茂生, 陈栋泉. 高温高压下材料的本构模型 [J]. 高压物理学报, 2001, 15(1): 24–31. DOI: 10.11858/gywlxb.2001.01.004.LI M S, CHEN D Q. A constitutive model for materials under high-temperature and pressure [J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 24–31. DOI: 10.11858/gywlxb.2001.01.004. [16] ZHANG J, ZHAO X C, CHEN G H, et al. Dual-channel Faraday rotation measurement for pulsed magnetic field [J]. Review of Scientific Instruments, 2021, 92(10): 105004. DOI: 10.1063/5.0058980. [17] GENG H Y, WU Q, MARQUÉS M, et al. Thermodynamic anomalies and three distinct liquid-liquid transitions in warm dense liquid hydrogen [J]. Physical Review B, 2019, 100(13): 134109. DOI: 10.1103/PhysRevB.100.134109. 期刊类型引用(1)
1. 董建才, 张先锋, 刘闯, 沈陶然, 梁俊宣. 弹体侵彻预损伤花岗岩靶体作用特性研究. 北京理工大学学报. 2025(10)
百度学术其他类型引用(1)
-
施引文献
?
Preheating of colliding plates by a shock-compressed gas during explosive welding
S. Khaustov et al., RUSSIAN METALLURGY (METALLY), 2024
Numerical simulation of a high-speed impact of metal plates using a three-fluid model
P. Chuprov et al., METALS, 2021
The influence of the shock-compressed gas composition in the gap between metal plates on the processes occurring before contact point during explosion welding
S. Khaustov et al., INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025
Investigation of thermal processes in the gap during explosion welding
S. Khaustov et al., SSRN ELECTRONIC JOURNAL, 2022
推荐阅读
基于高压气体驱动的爆炸波模拟激波管冲击波衰减历程控制方法
程帅 等, 爆炸与冲击, 2024
磁场效应对甲烷爆炸影响的机理
高建村 等, 爆炸与冲击, 2023
镍/304不锈钢爆炸焊接试验及数值模拟
卓然 等, 高压物理学报, 2025
水下爆炸气泡脉动周期的简便计算方法
段超伟 等, 高压物理学报, 2022
Formation mechanism of waveform interface in mg/al electromagnetic pulse welding
MATERIALS TODAY COMMUNICATIONS, 2025



下载:
百度学术