多级柱面炸药内爆磁通量压缩技术研究

谷卓伟 周中玉 赵新才 陆禹 张旭平 程诚 赵娟 陈光华 吴刚 谭福利 赵剑衡 孙承纬

谷卓伟, 周中玉, 赵新才, 陆禹, 张旭平, 程诚, 赵娟, 陈光华, 吴刚, 谭福利, 赵剑衡, 孙承纬. 多级柱面炸药内爆磁通量压缩技术研究[J]. 爆炸与冲击, 2024, 44(2): 021201. doi: 10.11883/bzycj-2023-0183
引用本文: 谷卓伟, 周中玉, 赵新才, 陆禹, 张旭平, 程诚, 赵娟, 陈光华, 吴刚, 谭福利, 赵剑衡, 孙承纬. 多级柱面炸药内爆磁通量压缩技术研究[J]. 爆炸与冲击, 2024, 44(2): 021201. doi: 10.11883/bzycj-2023-0183
GU Zhuowei, ZHOU Zhongyu, ZHAO Xincai, LU Yu, ZHANG Xuping, CHENG Cheng, ZHAO Juan, CHEN Guanghua, WU Gang, TAN Fuli, ZHAO Jianheng, SUN Chengwei. Experiment study of cascades explosive implosion magnetic flux generator[J]. Explosion And Shock Waves, 2024, 44(2): 021201. doi: 10.11883/bzycj-2023-0183
Citation: GU Zhuowei, ZHOU Zhongyu, ZHAO Xincai, LU Yu, ZHANG Xuping, CHENG Cheng, ZHAO Juan, CHEN Guanghua, WU Gang, TAN Fuli, ZHAO Jianheng, SUN Chengwei. Experiment study of cascades explosive implosion magnetic flux generator[J]. Explosion And Shock Waves, 2024, 44(2): 021201. doi: 10.11883/bzycj-2023-0183

多级柱面炸药内爆磁通量压缩技术研究

doi: 10.11883/bzycj-2023-0183
基金项目: 国家自然科学基金(11672276)
详细信息
    作者简介:

    谷卓伟(1969- ),男,博士,研究员,guzhw1969@126.com

    通讯作者:

    周中玉(1986- ),男,博士,副研究员,z.y.zhou@qq.com

  • 中图分类号: O361.3

Experiment study of cascades explosive implosion magnetic flux generator

  • 摘要: 柱面内爆磁通量压缩发生器是利用炸药内爆压缩其内部磁通量至轴线附近小体积内从而实现超高磁场,传统的单级装置因受到金属套筒内爆失稳等影响性能指标受限。开展了多级内爆磁压缩技术研究,突破多项关键技术,包括研制特殊结构的密绕螺线管、脉冲功率源及大电流放电开关等,具备在直径135 mm套筒空间内实现20 T以上初始磁场产生能力,并建立了动态磁光测量系统。利用磁流体力学编码SSS-MHD开展多级装置设计,计算显示,设计的多级装置能够将约42%的初始磁通量压缩至轴线附近直径7 mm的空间内。最终研制成功多级内爆磁压缩装置CJ-150,在亚立方厘米以上空间实现轴向峰值磁场强度906 T,数据不确定度5.35%。10余发动态考核实验显示,CJ-150装置工作稳定,能够满足物理实验需要。利用经实验验证的磁流体模型计算显示,CJ-150具备1000 T以上超强磁场产生能力,能够对大尺寸样品实现500 GPa以上的准等熵加载。
  • 图  1  单级内爆磁压缩原理示意图

    Figure  1.  Sketch of single liner MC-1 principle

    图  2  多级MC-1装置原理示意图

    Figure  2.  Sketch of cascades MC-1 principle

    图  3  多级内爆磁压缩实验系统布局

    Figure  3.  Layout of cascades MC-1 experiment system

    图  4  三级磁通量压缩一维MHD计算模型(单位:mm)

    Figure  4.  1-D MHD simulation model of cascades magnetic flux cumulation (unit: mm)

    图  5  轴心区域磁通量汇聚历史(计算结果)

    Figure  5.  Magnetic flux cumulation history at axial area, obtained from simulation

    图  6  轴心空腔区域及相邻套筒铜线层区域磁场分布

    Figure  6.  The magnetic field distribution in the axial cavity and adjacent copper wires layer

    图  7  三级套筒运动轨迹及压缩磁场波形

    Figure  7.  The 3 liners movement trajectories and magnetic field profiles

    图  8  第3级套筒铜线层区域压力分布

    Figure  8.  The pressure distribution in the third liner copper wires layer

    图  9  螺线管剖面设计示意图

    Figure  9.  The sketch of solenoid section design

    图  10  密绕螺线管结构(左)及第2级套筒示意图(右)

    Figure  10.  The close-wound solenoid structure (left) and the second liner (right)

    图  11  密绕螺线管线圈归一化磁场分布

    Figure  11.  The close-wound solenoid normalized magnetic field distribution

    图  12  多层密绕螺线管线圈内磁通量和平均轴向磁场曲线

    Figure  12.  Magnetic flux inside of close-wound solenoid and average magnetic field

    图  13  能库电源模块

    Figure  13.  Power supply of initial magnetic field

    图  14  多路爆炸开关结构设计

    Figure  14.  Design of multi-channel explode switch structure

    图  15  实验后回收的爆炸网络板

    Figure  15.  Recovery of used explode network plate

    图  16  初始磁场及放电波形

    Figure  16.  Waveform of initial magnetic field and discharging current

    图  17  多级内爆磁加载装置CJ-150

    Figure  17.  Cascades EIMFG device CJ-150

    图  18  CJ-150实验场景

    Figure  18.  Experiment scene of CJ-150

    图  19  磁光测量系统

    Figure  19.  Magneto-optical probe measurement system

    图  20  磁光探针原始信号

    Figure  20.  Original signal of magneto-optical probe

    图  21  CJ-150轴向峰值磁场及与文献[6]装置试验数据对比

    Figure  21.  Comparison of axial magnetic field between CJ-150 and that in ref. [6]

    图  22  CJ-150加载铜管内置PDV测量

    Figure  22.  Inner PDV measurement of CJ-150 loading copper tube

    图  23  铜管内壁自由面速度及位移

    Figure  23.  Inner free surface velocity and displacement of copper tube

    图  24  峰值磁场实验结果与计算结果的对比

    Figure  24.  Comparison between experimental and numerical results on magnetic field

  • [1] SAKHAROV A D, LUDAYEV R Z, SMIRNOV E N, et al. Magnitnaya kumulatsia [J]. Dokl. Akad. Nauk SSSR, 1965, 196(1): 65–68.
    [2] FOWLER C M, GARN W B, CAIRD R S. Production of very high magnetic fields by implosion [J]. Journal of Applied Physics, 1960, 31(3): 588–594. DOI: 10.1063/1.1735633.
    [3] HAWKE R S, DUERRE D E, HUEBEL J G, et al. Electrical properties of Al2O3 under isentropic compression up to 500 GPa (5 Mbar) [J]. Journal of Applied Physics, 1978, 49(6): 3298–3303. DOI: 10.1063/1.325281.
    [4] HERLACH F, KNOEPFEL H. Megagauss fields generated in explosive‐driven flux compression devices [J]. Review of Scientific Instruments, 1965, 36(8): 1088–1095. DOI: 10.1063/1.1719809.
    [5] PAVLOVSKII A I. Reproducible generation of multimegagauss magnetic fields [C] // Megagauss Physics and Technology. TURCHI P J. New York: Plenum Press 1980: 627–639.
    [6] BYKOV A I, DOLOTENKO M I, KOLOKOLCHIKOV N P, et al. VNIIEF achievements on ultra-high magnetic fields generation [J]. Physica B: Condensed Matter, 2001, 294/295: 574–578. DOI: 10.1016/S0921-4526(00)00723-7.
    [7] CLARK R G. The dirac experiments–results and challenges [C] // Proceeding of the Ⅷth International Conference on Megagauss Magnetic Field Generation and Related Topics. HANS J. Tallahassee, Florida: Schneider-Muntau, 1998: 12–22.
    [8] LINDEMUTH I R, EKDAHL C A, FOWLER C M. US/Russian collaboration in high-energy-density physics using high-explosive pulsed power: ultrahigh current experiments, ultrahigh magnetic field applications, and progress toward controlled thermonuclear fusion [J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1357–1371. DOI: 10.1109/27.650905.
    [9] 谷卓伟, 罗浩, 张恒第, 等. 炸药柱面内爆磁通量压缩实验技术研究 [J]. 物理学报, 2013, 62(17): 170701. DOI: 10.7498/aps.62.170701.

    GU Z W, LUO H, ZHANG H D, et al. Experimental research on the technique of magnetic flux compression by explosive cylindrical implosion [J]. Acta Physica Sinica, 2013, 62(17): 170701. DOI: 10.7498/aps.62.170701.
    [10] ZHOU Z Y, GU Z W, TONG Y J, et al. A compact explosive-driven flux compression generator for reproducibly generating multimegagauss fields [J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3279–3283. DOI: 10.1109/TPS.2018.2794761.
    [11] 孙承纬, 陆禹, 赵继波, 等. 电磁驱动高能量密度动力学实验的一维磁流体力学多物理场数值模拟平台: SSS-MHD [J]. 爆炸与冲击, 2023, 43(10): 104201. DOI: 10.11883/bzycj-2023-0127.

    SUN C W, LU Y, ZHAO J B, et al. SSS-MHD: a one-dimensional magneto-hydrodynamics multi-physics simulation platform for magnetically-driven high-energy-density dynamics experiments [J]. Explosion and Shock Waves, 2023, 43(10): 104201. DOI: 10.11883/bzycj-2023-0127.
    [12] MADER C L. Numerical modeling of explosives and propellants [M]. 3rd ed. Boca Raton: CRC Press, 2008.
    [13] 孙承纬. 一维冲击波和爆轰波计算程序SSS [J]. 计算物理, 1986, 3(2): 142–154. DOI: 10.19596/j.cnki.1001-246x.1986.02.002.

    SUN C W. One dimensional shock wave and detonation wave calculation program SSS [J]. Chinese Journal of Computational Physics, 1986, 3(2): 142–154. DOI: 10.19596/j.cnki.1001-246x.1986.02.002.
    [14] BURGESS T J. Electrical resistivity model of metals: SAND86-1093C [R]. USA: Sandia National Labs, 1986.
    [15] 李茂生, 陈栋泉. 高温高压下材料的本构模型 [J]. 高压物理学报, 2001, 15(1): 24–31. DOI: 10.11858/gywlxb.2001.01.004.

    LI M S, CHEN D Q. A constitutive model for materials under high-temperature and pressure [J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 24–31. DOI: 10.11858/gywlxb.2001.01.004.
    [16] ZHANG J, ZHAO X C, CHEN G H, et al. Dual-channel Faraday rotation measurement for pulsed magnetic field [J]. Review of Scientific Instruments, 2021, 92(10): 105004. DOI: 10.1063/5.0058980.
    [17] GENG H Y, WU Q, MARQUÉS M, et al. Thermodynamic anomalies and three distinct liquid-liquid transitions in warm dense liquid hydrogen [J]. Physical Review B, 2019, 100(13): 134109. DOI: 10.1103/PhysRevB.100.134109.
  • 加载中
图(24)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  33
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 修回日期:  2023-10-25
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2024-02-06

目录

    /

    返回文章
    返回