Processing math: 100%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

活性无序合金冲击的释能特性及在毁伤元中应用研究进展

侯先苇 张先锋 熊玮 谈梦婷 刘闯 戴兰宏

沙明工, 孙莹, 李雨桐, 刘一鸣, 李玉龙. 高速雨滴冲击下飞行器蒙皮涂层损伤行为动态实验研究[J]. 爆炸与冲击, 2023, 43(8): 083304. doi: 10.11883/bzycj-2023-0005
引用本文: 侯先苇, 张先锋, 熊玮, 谈梦婷, 刘闯, 戴兰宏. 活性无序合金冲击的释能特性及在毁伤元中应用研究进展[J]. 爆炸与冲击, 2023, 43(9): 091401. doi: 10.11883/bzycj-2023-0189
SHA Minggong, SUN Ying, LI Yutong, LIU Yiming, LI Yulong. Dynamic experimental study on damage behaviors of aircraft envelope coating under the impact of high-speed raindrops[J]. Explosion And Shock Waves, 2023, 43(8): 083304. doi: 10.11883/bzycj-2023-0005
Citation: HOU Xianwei, ZHANG Xianfeng, XIONG Wei, TAN Mengting, LIU Chuang, DAI Lanhong. Research progress on impact energy release characteristics of reactive disordered alloy and its application in kill elements[J]. Explosion And Shock Waves, 2023, 43(9): 091401. doi: 10.11883/bzycj-2023-0189

活性无序合金冲击的释能特性及在毁伤元中应用研究进展

doi: 10.11883/bzycj-2023-0189
基金项目: 国家自然科学基金(11790292,12141202,12002170)
详细信息
    作者简介:

    侯先苇(1997— ),女,博士研究生,18260081681@163.com

    通讯作者:

    张先锋(1978— ),男,博士,教授,lynx@njust.edu.cn

  • 中图分类号: O385

Research progress on impact energy release characteristics of reactive disordered alloy and its application in kill elements

  • 摘要: 无序合金是一种新型金属材料,突破了传统的合金设计理念,表现出不同于传统合金的优异力学性能、冲击释能及剪切自锐特性,在高温、高压、高应变率等环境具有良好的应用前景。分析活性无序合金的冲击释能特性对其应用于军事领域有着重要的指导作用,能为弹药战斗部的设计提供参考。本文阐述了静动态力学实验中典型无序合金的反应释能现象;总结了撞击速度与活性无序合金释能超压、释能效率之间的关系;讨论了撞击速度、材料破碎程度及靶标特征等因素对活性无序合金释能机理的影响;归纳了制备工艺及元素类型对活性无序合金释能特性的调控效果。进一步,本文梳理了活性无序合金在破片、穿甲弹芯和聚能装药战斗部三个方向的应用研究进展,分析了活性无序合金毁伤元的侵彻行为和作用机制。最后,针对活性无序合金材料未来的发展趋势和需求进行了展望。
  • 纺织结构复合材料是以纺织纤维体作为增强材料,用树脂固化后形成的纤维增强复合材料。二维纺织结构主要包括平纹、斜纹和缎纹织物,具有比强度高、比刚度大和材料性能可以设计等优点,在防护工程领域具有良好的应用前景[1]。P.M.Cunniff[2-3]研究了子弹侵彻叠层平纹织物时的入射速度和剩余速度的关系,得到了在不同形状子弹侵彻下结构的弹道极限以及半经验公式;顾冰芳等[4]研究了不同形状子弹冲击下Kevlar纤维叠层织物的防弹机理和性能,观测了纤维的表观破坏形态和微观损伤机理;R.Barauskas等[5]基于LS-DYNA软件通过考虑纱线滑动、子弹和纱线之间的滑动计算了二维编织物在可变形体侵彻下的破坏过程。这些研究主要关注纤维材料的弹道冲击侵彻性能,而对于复合材料整体动力响应方面的研究还较少。V.Kostopoulos等[6]使用有限元技术分析了3种不同的复合材料(碳、玻璃和Kevlar)制作的摩托车安全头盔的冲击动态响应过程,发现Kevlar配置的安全头盔防护性能要优于其他2种,指出Kevlar较低的抗剪性增强了头盔的能量吸收和压缩能力。I.Taraghi等[7]研究了常温(27 ℃)和低温(-40 ℃)下,多壁碳纳米管增强的平纹Kevlar/环氧树脂复合板的低速冲击响应,在基体内加入一定量的多壁碳纳米管能显著提高复合板的吸能和刚度。P.N.B.Reis等[8]研究了Kevlar/纳米粘土增强环氧树脂复合板的冲击响应,通过在基质内加入一定量的纳米粘土可以提高复合板的弹性恢复性能和侵彻阀值。本文中研究了钢制平头弹撞击下平纹Kevlar纤维复合板的动态响应,给出了复合板的变形失效模式。在实验的基础上,利用LS-DYNA分析钢质平头弹冲击载荷作用下平纹Kevlar纤维复合板的动力响应和纤维铺层数对结构动力响应的影响,模拟结果与实验吻合较好。

    实验试件为编织Kevlar/Epoxy复合材料层合板,尺寸为300 mm×300 mm。试件铺层厚度0.27 mm,共18层,经浸渍环氧树脂后加温加压形成。每层织物组织都为平纹组织,由2根经纱和2根纬纱组成织物循环,经纱和纬纱每隔1根纱线交织1次。实验采用平头钢制子弹,长度150 mm,直径为37 mm,质量为1.24 kg。冲击实验装置由空气动力枪、激光位移传感器(micro-epsilon LD1625-200,响应特性:采样率37 kHz,每秒采集185 000个点,能够实时探测到靶板中点的位移)、激光测速仪、实验夹具、超动态应变仪和高速摄像机等组成,如图 1所示。实验加载是通过空气动力枪驱动钢制子弹撞击复合板实现,子弹速度由空气动力枪气压控制,其大小由激光测速装置获得。实验支架采用钢制正方形夹具,端面平整,其外部边长400 mm,内部边长250 mm,通过螺栓固定在不可移动的平台上。实验中通过高速摄像仪对整个加载过程进行了拍摄。

    图  1  实验装置示意图
    Figure  1.  Schematic diagram of experimental devices

    分别对试件的变形失效模式和背面中心点的挠度进行分析,实验结果如表 1所示,n为层数,h为纤维复合板的厚度,v为冲击速度,I为冲击冲量,W为残余挠度。结构在冲击载荷下主要呈现3种变形失效模式:Ⅰ型为未发生明显破坏失效,整体呈现弹性变形,如图 2(a)所示;Ⅱ型为复合板表面子弹作用区域的嵌入失效,结构呈整体塑性大变形,如图 2(b)所示;Ⅲ型为背面纤维拉伸断裂及分层失效,如图 2(c)所示。

    表  1  实验数据
    Table  1.  Experimental data
    No. n h/mm v/(m·s-1) I/(N·s) W/mm 变形失效模式
    1 18 5.11 13.30 16.49 1.8
    2 18 4.98 24.70 30.63 8.3
    3 18 5.15 32.60 40.42 12.4 Ⅱ Ⅲ
    4 18 5.13 36.47 45.22 13.5 Ⅱ Ⅲ
    5 18 5.10 36.50 45.26 13.3 Ⅱ Ⅲ
    下载: 导出CSV 
    | 显示表格
    图  2  复合板的变形失效模式
    Figure  2.  The deformation and failure modes of the plates

    平头弹撞击瞬间,复合板受载边界处将产生较大的剪切应力,导致表面纤维及胶层瞬时剪切失效,因此正面受冲击区域边缘发生了明显的嵌入失效;纤维良好的延展性使得复合板整体为塑性大变形,呈现穹形;纤维的正交分布导致背面纤维拉伸断裂后裂纹沿着垂直于断裂纤维方向扩展,并且出现了分层现象,因此背面发生近似方形的局部破坏(不考虑夹具的影响)。

    表 1中看出,在不同冲击速度下,复合板背面中心点的残余挠度随着冲击速度的增加逐渐增大。图 3给出了不同冲击速度下复合板背面中心点的挠度时程曲线,可以看出:在子弹冲击作用下,板背面中心点在0.8 ms左右达到最大挠度,随后发生反弹,在平衡位置附近进行振荡,最终静止;且当冲击速度v=13.30 m/s时,试件的后面板的瞬时挠度峰值是最终挠度的5.7倍,即后面板瞬时挠度有可能对被保护的人员或结构产生更大的伤害,因此在用作防护结构时不能仅考虑最终挠度。

    图  3  复合板背面中心点位移时程曲线
    Figure  3.  Displacement histories ofthe mid-span in the back face
    2.1.1   材料参数

    纤维层采用复合材料平纹织物层合板模型(MAT_LAMINATED_COMPOSITE_FABRIC)具体材料参数见表 2,其中ρ为密度,E为弹性模量,Gab为面内剪切模量,Gca为层间剪切模量,ν为泊松比,Xt为纵向拉伸强度,Xc为纵向压缩强度,Yt为横向拉伸强度,Yc为横向压缩强度,Sc为面内剪切强度。环氧树脂层采用双线性应变强化弹塑性模型,密度为1 200 kg/m3,弹性模量为12.0 GPa,泊松比为0.34。假定冲击过程中子弹和夹具没有变形,采用刚体模型,密度为7 800 kg/m3

    表  2  Kevlar纤维平纹织物的材料参数
    Table  2.  Material properties of the Kevlar composite fabric
    ρ/(kg·m-3) E/GPa Gab/GPa Gca/GPa ν Xt/GPa Xc/GPa Yt/GPa Yc/GPa Sc/GPa
    1 400 59.5 5.18 5.18 0.34 1.20 0.23 1.20 0.23 0.12
    下载: 导出CSV 
    | 显示表格
    2.1.2   几何模型

    图 4给出了Kevlar/Epoxy复合材料层合板在冲击载荷作用下的数值分析模型及冲击实验照片。为了实现与实验尽量一致的边界,数值模拟中同样采用了实验中的夹具形式:夹具与复合板之间定义自动面对面接触;子弹与纤维层、胶层之间定义侵蚀接触;纤维层与胶层之间共节点连接;在螺栓位置,采用弹簧单元来模拟夹具中螺栓的紧固作用。复合板为300 mm×300 mm的正方形,有效面积为250 mm×250 mm。基于LS-DYNA软件,建立了1/4计算模型。纤维层采用shell193壳单元,单元尺寸为1.875 mm×1.875 mm,每层厚度为0.27 mm。上下表面及纤维层之间建立环氧树脂层,环氧树脂层采用solid164实体单元,单元尺寸为1.875 mm×1.875 mm×0.27 mm。子弹同样采用solid164实体单元。整个模型中,纤维分为18层,共115 200个单元,胶层分为19层,共121 600个单元,经过网格敏感性验证,所选网格比较稳定,可以满足计算需要。

    图  4  Kevlar纤维复合板有限元模型及冲击实验照片
    Figure  4.  Finite element model of the structure and its photo in the experiment

    图 5给出了冲击速度v=36.47 m/s时,Kevlar纤维复合板受撞击变形的实验与数值模拟对比。复合板整体为塑性大变形,呈现穹形,中心受子弹冲击区域挠度最大,向边界处逐渐减小。正面子弹冲击区域边缘发生了明显的嵌入失效;背面纤维断裂呈现近似方形的破坏。表 3给出了复合板受冲击最大位移、冲击后残余挠度的模拟结果与实验结果的对比。可以看出Kevlar/Epoxy复合材料层合板的变形失效模式、残余挠度的数值模拟结果和实验结果吻合较好,误差均在20%以内。由此可见,本文中建立的有限元模型是可靠的,可以用于进一步的Kevlar纤维复合板抗冲击性能的分析。

    图  5  Kevlar纤维复合板受撞击实验与数值模拟对比
    Figure  5.  Comparison of the experimental and simulated final deformation modes under impact
    表  3  Kevlar纤维复合板在不同速度冲击下实验与数值模拟对比
    Table  3.  Comparison of the experimental and simulated results at different impact velocities
    v/(m·s-1) dmax/mm W/mm
    实验 数值模拟 ε/% 实验 数值模拟 ε/%
    13.30 10.3 9.3 -9.71 1.8 1.5 -16.67
    24.70 14.2 14.8 4.23 8.7 7.9 -9.20
    32.60 18.3 17.6 -3.83 12.4 11.2 -9.68
    36.47 20.7 20.3 -1.93 13.5 13.6 0.71
    36.50 19.9 20.3 2.01 13.3 13.6 2.21
    下载: 导出CSV 
    | 显示表格

    图 6给出了冲击速度v=36.47 m/s下子弹和复合板的相互作用过程,整个过程可以分为2个阶段。(1)加载阶段(0≤t≤1.1 ms):子弹发射后高速冲击复合板,板面受冲击后与子弹具有相同的速度一起运动,变形区域从中心向边界处传播,出现穹形大变形;t=0.8 ms后随着变形进一步增加,冲击区域环氧树脂发生失效破坏结构中点挠度进一步增加;t=1.1 ms后背面纤维拉伸断裂,结构中点挠度达到最大值。(2)卸载阶段(t>1.1 ms):结构贮存的弹性应变能转化为板和子弹的动能从而发生反向回弹, 结构与子弹以相同的速度开始反弹,t=2.0 ms结构与子弹分离,t=2.2 ms结构反弹至反向最大挠度后进入自由振动阶段,并最终静止。如图 4(a)所示,在复合板背面纤维单元上分别取7个测点,其中1#点位于板中心,3#点位于距离中心点18.5 mm处(即子弹边缘与板面的交界处),7#点位于边界处。图 7(a)给出了1#、3#、5#和7#点的x方向的应力时程曲线,可以看出7#点(边界处)应力正负交替出现,说明复合板在边界处沿x方向发生了弯曲变形;加载区域内纤维的应力要高于加载区域外,且加载区域边界处的应力最大,因而更容易发生纤维的拉伸断裂。图 7(b)给出了3#点截面处沿厚度方向第1、7、11和18层纤维单元x方向的应力分布,可以看出复合板所受应力由压应力逐渐转变为拉应力。因此,复合板首先在3#点截面第18层纤维单元处发生拉伸破坏。

    图  6  子弹和Kevlar纤维复合板作用的过程
    Figure  6.  Process of projectile impacting the Kevlar laminates
    图  7  纤维复合板中应力分布时程曲线
    Figure  7.  Histories of stress distribution in the Kevlar laminates

    为了研究加载冲量及铺层数对结构响应的影响,分别计算了不同加载冲量下(12.4~47.12 N·s),不同铺层数(6、9、12、15和18层)的复合板的动态响应:分别从复合板的能量吸收规律和背面中心点的残余挠度进行了研究。研究表明复合材料层合板的抗冲击性能与其铺层数和外加载荷有密切的关系。分别将纤维复合板的残余挠度W、初始冲量I以及能量吸收Ea按下面的方法量纲一化:

    ˉW=Wh,ˉI=Imσyρ,m=ms,ˉE=EaEi

    式中:ρ纤维的密度,m为纤维复合板的质量,s为纤维复合板的有效作用面积, σy为屈服应力,Ei为子弹的冲击能量。

    Kevlar纤维复合材料层合板用于工程防护结构时,一般将其背面的残余变形作为抗冲击性能的主要参数。图 8给出了铺层数不同的复合板背面中心点量纲一残余挠度随量纲一冲量变化的规律,可以看出:铺层数相同的复合板背面中心点的残余挠度随着冲量的增大逐渐增大;当I=0.8时,12层的复合板挠度最小,表现出最好的抗冲击性能;I≤0.75时,15和18层的复合板挠度差异很小;当I>0.8时,18层的复合板挠度最小。因此在本文中研究的冲量范围内,随着冲量的变化,并不是纤维层数越多,复合板的挠度越小。

    图  8  纤维复合板背面中心点量纲一残余挠度随量纲一冲量变化的规律
    Figure  8.  Relation between normalized residual deflectionand normalized impulse at the mid-span on the back face

    冲击能量Ei代表了结构可以转化的最大能量即子弹的动能,反之吸收能量Ea为结构实际转化的能量。从图 9可以看出,纤维复合板的吸能效率E随着加载冲量和复合板铺层数的增加逐渐增大。冲量相同的情况下,吸能效率的提高随铺层数的增加呈现递减趋势;当I>0.6时,15和18层铺层的复合板的吸能效率差异很小。虚线对应的点的横坐标为各结构发生侵彻破坏的阀值。

    图  9  纤维复合板吸能效率随量纲一冲量变化的规律
    Figure  9.  Relation between energy absorption efficiencyand normalized impulse

    针对Kevlar/Epoxy复合材料层合板在钢制平头弹冲击下的动态响应开展了实验研究和数值模拟,分析了结构在不同冲量下的变形失效模式以及抗冲击性能,主要结论如下:

    (1) 编织Kevlar纤维层合板的冲击失效模式与结构配置和载荷强度有关,主要表现为弹性变形、复合板表面嵌入失效及整体塑性大变形和背面纤维拉伸断裂及分层失效。

    (2) 数值模拟表明,子弹撞击区域边界处纤维应力沿厚度方向由压应力逐渐变为拉应力,且最大拉伸应力出现在背面几层。

    (3) 在一定的冲量范围内,数值模拟结果表明复合板的动力响应与铺层数和加载冲量密切相关;通过对复合板铺层数的优化,能够有效地减小后面板挠度,提高结构的能量吸收效率,增强结构的抗冲击性能。

  • 图  1  室温下空气中测试的锆基非晶合金试样断裂瞬间[19]

    Figure  1.  Moment of fracturing a BAA specimen testedat room temperature in air[19]

    图  2  摆锤冲击试验装置及空气环境中试验现象[20]

    Figure  2.  Pendulum impact test device and test phenomena in air environment[20]

    图  3  Zr41.2Ti13.8Cu12.5Ni10Be22.5分子轨道能级谱[20]

    Figure  3.  Molecular orbital energy spectrum of Zr41.2Ti13.8Cu12.5Ni10Be22.5[20]

    图  4  氮气环境中断裂后断口扫描电镜照片[20]

    Figure  4.  Scanning electron microscope photos of fracture surface of the specimen fracturing in nitrogen environment[20]

    图  5  准密闭容器试验[25]

    Figure  5.  Quasi-sealed chamber test[25]

    图  6  高速摄影图片及容器内超压时程曲线[26]

    Figure  6.  Video frames and pressure curves inside the chamber[26]

    图  7  破片撞击靶板后反应产物形貌与成分[26]

    Figure  7.  Morphology and composition of the reaction products of fragment after impacting target[26]

    图  8  高熵合金破片不同撞击速度下压力峰值[33]

    Figure  8.  Peak overpressures at different impact velocities of the high-entropy alloy fragments[33]

    图  9  多种活性材料的单位质量能量密度[34]

    Figure  9.  Specific energy per unit mass of various reactive materials[34]

    图  10  锆基非晶合金动态压缩高速摄影图像[37]

    Figure  10.  High-speed photography of Zr-based amorphous alloy under dynamic compression[37]

    图  11  锆基非晶合金动态压缩模拟损伤云图[37]

    Figure  11.  Simulational damage contours of Zr-based amorphous alloy under dynamic compression[37]

    图  12  氩气中不同撞击速度下动态破碎锆基非晶合金累积质量分布试验数据[38]

    Figure  12.  Experimental data of cumulative mass distribution forZr-based amorphous alloy after dynamic fragmentation atdifferent impact velocities in argon atmosphere[38]

    图  13  TiZrNbV高熵合金动态压缩背散射电子成像结果[40]

    Figure  13.  BSE result of TiZrNbV high entropy alloy after dynamic compression[40]

    图  14  不同撞击速度下回收试样的断口形貌[40]

    Figure  14.  Fracture morphology of recovered specimen at different impact velocities[40]

    图  15  原位晶化对锆基非晶合金能量释放行为的影响[45]

    Figure  15.  Effect of in-situ crystalline phases on the energy release behaviors of Zr-based amorphous alloy[45]

    图  16  NbZrTiTa高熵合金和HfZrTiTa0.53合金弹丸在不同速度下撞击靶箱后的碎片[50]

    Figure  16.  The fragments of NbZrTiTa high-entropy alloy and HfZrTiTa0.53 high-entropy alloy projectilesimpacting the target at different velocities[50]

    图  17  1200 m/s速度下NbZrTiTa高熵合金弹丸碎片的截面背散射电子成像[50]

    Figure  17.  Cross-section BSE photos of NbZrTiTa high-entropy alloy projectile at 1200 m/s[50]

    图  18  0.5 mm厚的盖板下破片不同撞击速度对应的压力-时间的曲线[60]

    Figure  18.  Pressure as a function of time for a 0.5 mmcover target thicknesses[60]

    图  19  不同靶板厚度下不同撞击速度对应的超压-时间曲线[60]

    Figure  19.  Overpressure as a function of time for differentcover plate at different impact velocities[60]

    图  20  超压-反应速率曲线[60]

    Figure  20.  Reaction efficiency as a function of shock pressure[60]

    图  21  冲击温度-反应速率曲线[60]

    Figure  21.  Reaction efficiency as a function of shock temperature[60]

    图  22  Zr55Cu30Ni5Al10非晶合金破片典型速度撞击间隔靶板高速摄影图片[71]

    Figure  22.  High-speed photographs of Zr55Cu30Ni5Al10 amorphous fragments impacting spacing targets at typical velocity[71]

    图  23  WFeNiMo高熵合金在不同速度下穿靶燃烧过程的高速摄影[72]

    Figure  23.  High-speed video frames of combustion process of WFeNiMo HEA at different speeds[72]

    图  24  高速撞击后高熵合金回收破片细观结构[72]

    Figure  24.  Microstructure of high-entropy alloy fragments after high speed impact[72]

    图  25  非晶破片毁伤后效仿真结果[73]

    Figure  25.  Simulation results of amorphous fragmentation damage aftermath[73]

    图  26  W/Zr基非晶合金预制破片[11]

    Figure  26.  W/Zr-based amorphous alloy fragments[11]

    图  27  预制破片布置方式[11]

    Figure  27.  Arrangement of performed fragments[11]

    图  28  典型时刻高速摄影图片[11]

    Figure  28.  High-speed photographs at typical moments[11]

    图  29  棉被和油箱毁伤情况[11]

    Figure  29.  The damage of quilts and fuel tanks[11]

    图  30  破片侵彻后油箱[11]

    Figure  30.  The oil tank penetrated by fragments[11]

    图  31  复合材料弹芯的“自锐”和钨合金弹芯的“镦粗”[77]

    Figure  31.  “Self-sharpening” of composite core and the “upsetting” of tungsten alloy core[77]

    图  32  弹芯残体照片[82]

    Figure  32.  Pictures of penetrator residual[82]

    图  33  钨丝/锆基非晶复合材料侵彻深度与着靶动能及长径比的关系曲线[80, 86]

    Figure  33.  Curves of kinetic energy and penetration depth of Wf/Zr-MG and WHA rods[80, 86]

    图  34  不同直径钨丝/锆基非晶复合材料着靶速度-侵彻深度关系[86]

    Figure  34.  Relationship between penetration depth and impact velocities of different Zr-based composite materials[86]

    图  35  多组分钨丝/锆基非晶合金复合材料杆弹横截面[86]

    Figure  35.  The cross section of multi-component Wf/Zr-based amorphous composite rod projectiles[86]

    图  36  分段式钨丝/锆基非晶合金复合材料杆弹及侵彻结果(单位:mm)[86]

    Figure  36.  Segmented Wf/Zr-based amorphous composite rod projectiles and penetration results (unit: mm)[86]

    图  37  弹体侵彻靶体的高速摄像[88]

    Figure  37.  High-speed video photographs of the projectiles penetrating the targets[88]

    图  38  长杆弹侵彻深度和撞击动能的关系[88]

    Figure  38.  Relation between penetration depth and kineticenergy of long rod projectiles[88]

    图  39  长杆弹弹孔体积和撞击动能的关系曲线[88]

    Figure  39.  Relation between total penetration volume and kinetic energy of long rod projectiles[88]

    图  40  弹体侵彻靶板典型过程[89]

    Figure  40.  Typical frames of the projectiles penetrating the targets[89]

    图  41  弹体侵彻后靶板表面毁伤效果[89]

    Figure  41.  The targets damaged surface after the projectiles penetrating[89]

    图  42  钨丝/锆基非晶合金复合材料自锐剪切失效的 4 种模式[81]

    Figure  42.  Four modes of self-sharpening shear failure of Wf/Zr-based amorphous composites material[81]

    图  43  钨丝增强金属玻璃复合材料弹残余弹体头部及其附近位置 SEM 图像[79]

    Figure  43.  SEM images of tungsten wire reinforced metal glass composite residual projectile head and its vicinity[79]

    图  44  回收弹体TEM测试结果[90]

    Figure  44.  Transmission electron microscope (TEM) bright-field images of LRPs after impact[90]

    图  45  回收弹体TEM明图中的变形孪晶和堆叠断层[90]

    Figure  45.  TEM results showging the multiple deformation twins and the stack faults[90]

    图  46  钨丝/锆基非晶合金复合材料杆弹不同着靶速度下的侵彻断裂模式[86]

    Figure  46.  Fracture modes of Wf/Zr-based amorphous composite projectile at different impact velocities[86]

    图  47  WFeNiMo和93W长杆弹对靶体的侵彻深度与动能关系[9]

    Figure  47.  Depth of WFeNiMo rod and 93W rod penetrating targets versus kinetic energy[9]

    图  48  等截面直管内两相的流动模型[91]

    Figure  48.  Model of two-phase flow in a straight pipe with equal cross section[91]

    图  49  不同初始浓度及密度对硬相浓度演化的影响[91]

    Figure  49.  Effect of initial concentration on concentration evolution of hard phase[91]

    图  50  Zr57Cu15.4Ni12.6Al10Nb5非晶合金射流成型形态[95]

    Figure  50.  Shape of Zr57Cu15.4Ni12.6Al10Nb5 jet forming[95]

    图  51  Zr41.2Ti13.8Cu12.5Ni10Be22.5非晶合金射流成型形态[96]

    Figure  51.  Shape of Zr41.2Ti13.8Cu12.5Ni10Be22.5 jet forming[96]

    图  52  塑性和脆性药型罩形成的射流[98]

    Figure  52.  Jets by plastic and brittle liner[98]

    图  53  两种材料杆式射流不同时刻下的成形状态[99]

    Figure  53.  Shape of rod jets about two materials at different times[99]

    图  54  CrMnFeCoNi与紫铜材料流动速度(V2)与临界压垮角(βc)关系[100]

    Figure  54.  Relationship between flow velocity (V2) and critical crushing angle (βc) of CrMnFeCoNi and copper[100]

    图  55  材料流动速度(V2)与临界压垮角(βc)曲线不同取值位置有限元仿真结果[100]

    Figure  55.  Finite element simulation results of value positions of flow velocity (V2) and critical crushing angle (βc) curve[100]

    图  56  不同硬化指数k下射流形态对比[100]

    Figure  56.  Comparison of jet shape under different hardening index (k)[100]

    图  57  不同炸高下药型罩侵彻深度[105]

    Figure  57.  Penetration depths of liners under different stand off[105]

    图  58  数值模拟模型及成型射流[12]

    Figure  58.  Model and jet structure of numerical simulation[12]

    图  59  聚能装药结构[109]

    Figure  59.  Shaped charge[109]

    图  60  靶板截面形貌和晶相[12]

    Figure  60.  Cross-section profile and crystal phase of target plate[12]

    图  61  残余射流区的XRD谱[12]

    Figure  61.  XRD spectrum of residual zone[12]

    图  62  残余射流区的EDS谱[12]

    Figure  62.  EDS spectrum of residual zone[12]

    图  63  射流侵彻后靶板的EBSD细观分析:(a)变形区IPF图;(a)中区域b的(b1、b2)IPF图和对应的KAM图;(a)中区域c的(c1, c2) IPF图和对应的KAM图[113]

    Figure  63.  Microstructural analysis of the residual jet after penetration via EBSD: (a) IPF map of deformation zone; (b1, b2) IPF map and corresponding KAM map of region b in (a); (c1, c2) IPF map and corresponding KAM map of region c in (a)[113]

    图  64  再结晶区的高倍BSE-SEM图像(a)及线扫描分析(b):在(a)中显示的两个晶界上进行线扫描,其对应的位置在(b)中用虚线标记[113]

    Figure  64.  High-magnification BSE-SEM images (a) and line scan analysis (b) of the recrystallization region: a line scan was conducted across two grain boundaries as displayed in (a), the corresponding locations of which are labeled with dashed lines in (b)[113]

    图  65  CoCrNi残余射流侵彻后的TEM组织分析:(a) CoCrNi残余射流的TEM照片,其中的白色虚线标记了沿晶界的纳米尺寸沉淀;(b) 降水(图(a)中的红色矩形区域)的HAADF-TEM照片;(c~e) 图(b)中对应的Co、Cr、Ni元素分布;(f) 降水SAED图(区域I(b)),(g) 图(b)中Ⅰ,Ⅱ,Ⅲ,Ⅳ区域Co,Cr,Ni元素含量[113]

    Figure  65.  Microstructural analysis of CoCrNi residual jet after penetration by TEM: (a) TEM images of CoCrNi residual jet, where the white dashed line marks the nanosized precipitations along grain boundaries; (b) HAADF-TEM image of the precipitation (red rectangle region in (a)); (c–e) Corresponding element distributions of Co, Cr, and Ni in (b); (f) SAED pattern ofprecipitation (region I in (b)); (g) Element content of Co, Cr, and Ni in region I, II, III, IV in (b)[113]

    表  1  锆基非晶合金的冲击化学反应行为[36]

    Table  1.   Impact-induced chemical reaction behavior of ZrTiNiCuBe[36]

    射击序号 靶板厚度/mm 撞击速度/(m·s−1 超压峰值/MPa 扩孔半径/mm 挠度/mm
    1 3 1450 0.02 7~10 10~15
    2 3 1560 0.04 10~15 15~20
    3 2 1348 0.05 20~25 20~25
    4 2 1218 0.024 8~12 10~15
    5 4.5 1630 0.021 7~10 8~10
    下载: 导出CSV
  • [1] 汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33(5): 177–351.

    WANG W H. The nature and properties of amorphous matter [J]. Progress in Physics, 2013, 33(5): 177–351.
    [2] FALK M L, KANGER J S. 类固体非晶态材料的变形与失效 [J]. 力学进展, 2021, 51(2): 406–426. DOI: 10.6052/1000-0992-21-034.

    FALK M L, KANGER J S. Deformation and failure of amorphous, solidlike materials [J]. Advances in Mechanics, 2021, 51(2): 406–426. DOI: 10.6052/1000-0992-21-034.
    [3] 乔吉超, 张浪渟, 童钰, 等. 基于微观结构非均匀性的非晶合金力学行为 [J]. 力学进展, 2022, 529(1): 117–152. DOI: 10.6052/1000-0992-21-038.

    QIAO J C, ZHANG L T, TONG Y, et al. Mechancial properties of amorphous alloys: in the framework of the microstructure heterogeneity [J]. Advances in Mechanics, 2022, 529(1): 117–152. DOI: 10.6052/1000-0992-21-038.
    [4] LIU D, YU Q, KABRA S, et al. Exceptional fracture toughness of CrCoNi-based medium-and high-entropy alloys at 20 Kelvin [J]. Science, 2022, 378(6623): 978–983. DOI: 10.1126/science.abp8070.
    [5] 卜叶强, 王宏涛. 多主元合金中的化学短程有序 [J]. 力学进展, 2021, 51(4): 915–919. DOI: 10.6052/1000-0992-21-027.

    BU Y Q, WANG H T. Short-range order in multicomponent alloys [J]. Advances in Mechanics, 2021, 51(4): 915–919. DOI: 10.6052/1000-0992-21-027.
    [6] 陈曦, 杜成鑫, 程春, 等. Zr基非晶合金材料的冲击释能特性 [J]. 兵器材料科学与工程, 2018, 41(6): 44–49. DOI: 10.14024/j.cnki.1004-244x.20180717.002.

    CHEN X, DU C X, CHENG C, et al. Impact energy releasing characteristics of Zr-based amorphous alloy [J]. Ordnance Material Science and Engineering, 2018, 41(6): 44–49. DOI: 10.14024/j.cnki.1004-244x.20180717.002.
    [7] 张周然. HfZrTiTa x高熵合金含能结构材料的组织结构与力学性能研究 [D]. 长沙: 国防科技大学, 2017: 80–84. DOI: 10.27052/d.cnki.gzjgu.2017.000221.

    ZHANG Z R. Microstructure and mechanical properties of HfZrTiTa x high-entropy alloys energetic structural materials [D]. Changsha: National University of Defense Technology, 2017: 80–84. DOI: 10.27052/d.cnki.gzjgu.2017.000221.
    [8] 李继承, 陈小伟. 块体金属玻璃及其复合材料的压缩剪切特性和侵彻/穿甲“自锐”行为 [J]. 力学进展, 2011, 41(5): 480–518. DOI: 10.6052/1000-0992-2011-5-lxjzJ2011-056.

    LI J C, CHEN X W. Compressive-shear behavior and self-sharpening of bulk metallic glasses and their composite materials [J]. Advances in Mechanics, 2011, 41(5): 480–518. DOI: 10.6052/1000-0992-2011-5-lxjzJ2011-056.
    [9] LIU X F, TIAN Z L, ZHANG X F, et al. “Self-sharpening”tungsten high-entropy alloy [J]. Acta Materialia, 2020, 186: 257–266. DOI: 10.1016/j.actamat.2020.01.005.
    [10] LIU T W, LI T, DAI L H. Near-equiatomic µ phase in self-sharpening tungsten-based high-entropy alloy [J]. Metals, 2022, 12(7): 1130. DOI: 10.3390/met12071130.
    [11] 张玉令, 施冬梅, 张云峰, 等. W骨架/Zr基非晶合金复合材料破片侵彻能力与后效研究 [J]. 爆炸与冲击, 2021, 41(5): 053301. DOI: 10.11883/bzycj-2020-0063.

    ZHANG Y L, SHI D M, ZHANG Y F, et al. Investigation of penetration ability and aftereffect of Zr-based metallic glass reinforced porous W matrix composite fragments [J]. Explosion and Shock Waves, 2021, 41(5): 053301. DOI: 10.11883/bzycj-2020-0063.
    [12] HAN J L, CHEN X, DU Z H, et al. Application of W/Zr amorphous alloy for shaped charge liner [J]. Materials Research Express, 2019, 6(11): 115209. DOI: 10.1088/2053-1591/ab47d7.
    [13] CONNER R D, DANDLIKER R B, SCRUGGS V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. International Journal of Impact Engineering, 2000, 24(5): 435–444. DOI: 10.1016/s0734-743x(99)00176-1.
    [14] SCHROERS J, JOHNSON W L. Highly processable bulk metallic glass-forming alloys in the Pt-Co-Ni-Cu-P system [J]. Applied Physics Letters, 2004, 84(18): 3666–3668. DOI: 10.1063/1.1738945.
    [15] 胡宏伟, 宋浦, 邓国强, 等. 温压炸药的特性及发展现状 [J]. 力学进展, 2022, 52(1): 53–78. DOI: 10.6052/1000-0992-21-021.

    HU H W, SONG P, DENG G Q, et al. Characteristics of thermobaric explosives and their advances [J]. Advances in Mechanics, 2022, 52(1): 53–78. DOI: 10.6052/1000-0992-21-021.
    [16] INOUE A, ZHANG T, MASUMOTO T. Preparation of bulky amorphous Zr-Al-Co-Ni-Cu alloys by copper mold casting and their thermal and mechanical properties [J]. Materials Transactions, JIM, 1995, 36(3): 391–398. DOI: 10.2320/matertrans1989.36.391.
    [17] INOUE A, AMIYA K, KATSUYA A, et al. Mechanical properties and thermal stability of Ti- and Al-based amorphous wires prepared by a melt extraction method [J]. Materials Transactions, JIM, 1995, 36(7): 858–865. DOI: 10.2320/matertrans1989.36.858.
    [18] YOKOYAMA Y, INOUE A. Solidification condition of bulk glassy Zr60Al10Ni10Cu15Pd5 alloy by unidirectional arc melting [J]. Materials Transactions, JIM, 1995, 36(11): 1398–1402. DOI: 10.2320/matertrans1989.36.1398.
    [19] LIU C T, HEATHERLY L, HORTON J A, et al. Test environments and mechanical properties of Zr-base bulk amorphous alloys [J]. Metallurgical and Materials Transactions A, 1998, 29(7): 1811–1820. DOI: 10.1007/s11661-998-0004-6.
    [20] GILBERT C J, AGER III J W, SCHROEDER V, et al. Light emission during fracture of a Zr-Ti-Ni-Cu-Be bulk metallic glass [J]. Applied Physics Letters, 1999, 74(25): 3809–3811. DOI: 10.1063/1.124187.
    [21] 潘念侨. Zr基非晶合金材料动态本构关系及其释能效应研究 [D]. 南京: 南京理工大学, 2016: 36–54. DOI: 10.7666/d.Y3046370.

    PAN N Q. Dynamic Zr based amorphous alloy material constitutive relation and release energy effect reserch [D]. Nanjing: Nanjing University of Science and Technology, 2016: 36–54. DOI: 10.7666/d.Y3046370.
    [22] ZHANG Z R, ZHANG H, TANG Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53 [J]. Materials & Design, 2017, 133: 435–443. DOI: 10.1016/j.matdes.2017.08.022.
    [23] AMES R. Vented chamber calorimetry for impact-initiated energetic materials [C]// Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005: 279. DOI: 10.2514/6.2005-279.
    [24] AMES R G. Energy release characteristics of impact-initiated energetic materials [J]. MRS Online Proceedings Library, 2005, 896(1): 308. DOI: 10.1557/PROC-0896-H03-08.
    [25] 汪德武, 任柯融, 江增荣, 等. 活性材料冲击释能行为研究进展 [J]. 爆炸与冲击, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337.

    WANG D W, REN K R, JIANG Z R, et al. Shock-induced energy release behaviors of reactive materials [J]. Explosion and Shock Waves, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337.
    [26] WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass [J]. Intermetallics, 2018, 93: 383–388. DOI: 10.1016/j.intermet.2017.11.004.
    [27] GILBERT C J, AGER III J W, SCHROEDER V, et al. Mechanism for light emission during fracture of a Zr-Ti-Cu-Ni-Be bulk metallic glass: temperature measurements in air and nitrogen [J]. MRS Online Proceedings Library, 1998, 554(1): 191–196. DOI: 10.1557/PROC-554-191.
    [28] WEI H Y, YOO C S. Kinetics of small single particle combustion of zirconium alloy [J]. Journal of Applied Physics, 2012, 111(2): 023506. DOI: 10.1063/1.3677789.
    [29] WEI H Y, YOO C S. Dynamic responses of reactive metallic structures under thermal and mechanical ignitions [J]. Journal of Materials Research, 2012, 27(21): 2705–2717. DOI: 10.1557/jmr.2012.302.
    [30] 尚春明, 施冬梅, 李文钊, 等. Zr基非晶合金燃烧热测试方法 [J]. 兵器装备工程学报, 2019, 40(8): 193–197. DOI: 10.11809/bqzbgcxb2019.08.038.

    SHANG C M, SHI D M, LI W Z, et al. Study on combustion heat method of Zr-based amorphous alloy [J]. Journal of Ordnance Equipment Engineering, 2019, 40(8): 193–197. DOI: 10.11809/bqzbgcxb2019.08.038.
    [31] TU J, QIAO L, SHAN Y, et al. Study on the impact-induced energy release characteristics of Zr68.5Cu12Ni12Al7.5 amorphous alloy [J]. Materials, 2021, 14(6): 1447. DOI: 10.3390/ma14061447.
    [32] 尚春明, 施冬梅, 张云峰, 等. Zr基非晶合金的燃烧释能特性 [J]. 含能材料, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.

    SHANG C M, SHI D M, ZHANG Y F, et al. Combustion and energy release characteristics of Zr-based amorphous alloys [J]. Chinese Journal of Energetic Materials, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.
    [33] 侯先苇, 熊玮, 陈海华, 等. 两种典型高熵合金冲击释能及毁伤特性研究 [J]. 力学学报, 2021, 53(9): 2528–2540. DOI: 10.6052/0459-1879-21-327.

    HOU X W, XIONG W, CHEN H H, et al. Impact energy release and damage characteristics of two high-entropy alloys [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2528–2540. DOI: 10.6052/0459-1879-21-327.
    [34] 张云峰, 刘国庆, 李晨, 等. 新型亚稳态合金材料冲击释能特性 [J]. 含能材料, 2019, 27(8): 692–697. DOI: 10.11943/CJEM2018170.

    ZHANG Y F, LIU G Q, LI C, et al. Shock energy release characteristics of novel metastable alloy materials [J]. Chinese Journal of Energetic Materials, 2019, 27(8): 692–697. DOI: 10.11943/CJEM2018170.
    [35] LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments [J]. Materials & Design, 2015, 84: 72–78. DOI: 10.1016/j.matdes.2015.06.107.
    [36] CHEN X, DU C X, CHENG C, et al. Impact-induced chemical reaction behavior of ZrTiNiCuBe bulk metallic glass fragments impacting on thin plates [J]. Materiali in Tehnologije, 2018, 52(6): 737–743. DOI: 10.17222/mit.2018.089.
    [37] 张云峰, 罗兴柏, 施冬梅, 等. 动态压缩下Zr基非晶合金失效释能机理 [J]. 爆炸与冲击, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.

    ZHANG Y F, LUO X B, SHI D M, et al. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression [J]. Explosion and Shock Waves, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.
    [38] JI C, HE Y, WANG C T, et al. Effect of dynamic fragmentation on the reaction characteristics of a Zr-based metallic glass [J]. Journal of Non-Crystalline Solids, 2019, 515: 149–156. DOI: 10.1016/j.jnoncrysol.2019.04.022.
    [39] GRADY D E. Fragment size distributions from the dynamic fragmentation of brittle solids [J]. International Journal of Impact Engineering, 2008, 35(12): 1557–1562. DOI: 10.1016/j.ijimpeng.2008.07.042.
    [40] REN K R, LIU H Y, CHEN R, et al. Compression properties and impact energy release characteristics of TiZrNbV high-entropy alloy [J]. Materials Science and Engineering: A, 2021, 827: 142074. DOI: 10.1016/j.msea.2021.142074.
    [41] LOU H B, WANG X D, XU F, et al. 73 mm-diameter bulk metallic glass rod by copper mould casting [J]. Applied Physics Letters, 2011, 99(5): 051910. DOI: 10.1063/1.3621862.
    [42] INOUE A, ZHANG T. Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method [J]. Materials Transactions, JIM, 1996, 37(2): 185–187. DOI: 10.2320/matertrans1989.37.185.
    [43] DONG W B, ZHANG H F, CAI J, et al. Enhanced plasticity in a Zr-based bulk metallic glass containing nanocrystalline precipitates [J]. Journal of Alloys and Compounds, 2006, 425(1/2): L1–L4. DOI: 10.1016/j.jallcom.2006.01.021.
    [44] 黄彩敏. 金属型含能结构材料的组织调控与力、热特性研究 [D]. 长沙: 国防科技大学, 2020. DOI: 10.27052/d.cnki.gzjgu.2020.000084.

    HUANG C M. Research on prepartion, mechanical and thermal characteristics of metallic energetic structural materials [D]. Changsha: National University of Defense Technology, 2020. DOI: 10.27052/d.cnki.gzjgu.2020.000084.
    [45] HUANG C M, BAI S X, LI S, et al. Effect of in-situ crystalline phases on the mechanical properties and energy release behaviors of Zr55Ni5Al10Cu30 bulk metallic glasses [J]. Intermetallics, 2020, 119: 106720. DOI: 10.1016/j.intermet.2020.106720.
    [46] HUANG H L, WU Y, HE J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Advanced Materials, 2017, 29(30): 1701678. DOI: 10.1002/adma.201701678.
    [47] SUH D W, RYU J H, JOO M S, et al. Medium-alloy manganese-rich transformation-induced plasticity steels [J]. Metallurgical and Materials Transactions A, 2013, 44(1): 286–293. DOI: 10.1007/s11661-012-1402-3.
    [48] LI Z M, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off [J]. Nature, 2016, 534(7606): 227–230. DOI: 10.1038/nature17981.
    [49] LI X, CHEN L Q, ZHAO Y, et al. Influence of manganese content on ε-/ α′-martensitic transformation and tensile properties of low-C high-Mn TRIP steels [J]. Materials & Design, 2018, 142: 190–202. DOI: 10.1016/j.matdes.2018.01.026.
    [50] 王睿鑫. NbZrTiTa高熵合金的组织结构演变及结构释能特性研究 [D]. 长沙: 国防科技大学, 2018. DOI: 10.27052/d.cnki.gzjgu.2018.001416.

    WANG R X. Microstructure evolution and energetic structural properties of NbZrTiTa high-entropy alloy [D]. Changsha: National University of Defense Technology, 2018. DOI: 10.27052/d.cnki.gzjgu.2018.001416.
    [51] TANG Y, WANG R X, XIAO B, et al. A review on the dynamic-mechanical behaviors of high-entropy alloys [J]. Progress in Materials Science, 2023, 135: 101090. DOI: 10.1016/j.pmatsci.2023.101090.
    [52] 黄劲松, 刘咏, 陈仕奇, 等. 锆基非晶合金的研究进展与应用 [J]. 中国有色金属学报, 2003, 13(6): 1321–1332. DOI: 10.3321/j.issn:1004-0609.2003.06.001.

    HUANG J S, LIU Y, CHEN S Q, et al. Progress and application of Zr-based amorphous alloys [J]. The Chinese Journal of Nonferrous Metals, 2003, 13(6): 1321–1332. DOI: 10.3321/j.issn:1004-0609.2003.06.001.
    [53] 马卫锋, 寇宏超, 李金山, 等. W纤维增强Zr基非晶复合材料的界面研究现状 [J]. 材料导报, 2006, 20(4): 64–66. DOI: 10.3321/j.issn:1005-023X.2006.04.018.

    MA W F, KOU H C, LI J S, et al. The present status of interface study of W fiber reinforced Zr-based amorphous matrix composite [J]. Materials Reports, 2006, 20(4): 64–66. DOI: 10.3321/j.issn:1005-023X.2006.04.018.
    [54] INOUE A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Materialia, 2000, 48(1): 279–306. DOI: 10.1016/s1359-6454(99)00300-6.
    [55] QIU K Q, WANG A M, ZHANG H F, et al. Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite [J]. Intermetallics, 2002, 10(11/12): 1283–1288. DOI: 10.1016/s0966-9795(02)00136-x.
    [56] 武晓峰, 邱克强, 张海峰, 等. SiC颗粒对Zr55Al10Ni5Cu30非晶形成能力和热稳定性的影响 [J]. 金属学报, 2003, 39(4): 414–418. DOI: 10.3321/j.issn:0412-1961.2003.04.016.

    WU X F, QIU K Q, ZHANG H F, et al. Effect of SiCp on the glass forming ability and thermal stability of Zr55Al10Ni5Cu30 bulk metallic glass [J]. Acta Metallurgica Sinica, 2003, 39(4): 414–418. DOI: 10.3321/j.issn:0412-1961.2003.04.016.
    [57] XU Y K, XU J. Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites [J]. Scripta Materialia, 2003, 49(9): 843–848. DOI: 10.1016/s1359-6462(03)00447-0.
    [58] 寇生中, 郑宝超, 李娜, 等. 不同元素掺杂对Zr基非晶形成能力及力学性能的影响 [J]. 金属功能材料, 2011, 18(2): 1–5. DOI: 10.13228/j.boyuan.issn1005-8192.2011.02.009.

    KOU S Z, ZHENG B C, LI N, et al. Effects of additional different element on glass forming ability and mechanical properties of bulk Zr-based amorphous alloys [J]. Metallic Functional Materials, 2011, 18(2): 1–5. DOI: 10.13228/j.boyuan.issn1005-8192.2011.02.009.
    [59] 张云峰, 罗兴柏, 施冬梅, 等. W骨架/Zr基非晶合金复合材料细观胞元重构 [J]. 稀有金属材料与工程, 2019, 48(1): 137–142.

    ZHANG Y F, LUO X B, SHI D M, et al. Reconstruction of meso-cells of Zr-based metallic glass reinforced porous W matrix composite [J]. Rare Metal Materials and Engineering, 2019, 48(1): 137–142.
    [60] 张云峰, 罗兴柏, 刘国庆, 等. W骨架/Zr基非晶合金复合材料破片的冲击释能特性 [J]. 稀有金属材料与工程, 2020, 49(8): 2549–2556.

    ZHANG Y F, LUO X B, LIU G Q, et al. Shock-induced reaction characteristics of porous W/Zr-based metallic glass composite fragments [J]. Rare Metal Materials and Engineering, 2020, 49(8): 2549–2556.
    [61] MA Y S, ZHOU L, ZHANG K C, et al. Effects of cerium doping on the mechanical properties and energy-releasing behavior of high-entropy alloys [J]. Materials, 2022, 15(20): 7332. DOI: 10.3390/ma15207332.
    [62] MA Y S, HE J Y, ZHOU L, et al. Mechanical properties and impact energy release characteristics of Al0.5NbZrTi1.5Ta0.8Ce0.85 high-entropy alloy [J]. Materials Research Express, 2022, 9(11): 116510. DOI: 10.1088/2053-1591/ac9f04.
    [63] 魏祥赛. Ni-M系高熵合金含能结构材料设计与力学性能 [D]. 大连: 大连理工大学, 2022: 16−73. DOI: 10.26991/d.cnki.gdllu.2022.000524.

    WEI X S. Design and mechanical properties of Ni-M high entropy alloy energetic structural materials [D]. Dalian: Dalian University of Technology, 2022: 16−73. DOI: 10.26991/d.cnki.gdllu.2022.000524.
    [64] 高人奎. TiZrHf系高熵合金的冲击动力学特性及反应释能评价 [D]. 沈阳: 沈阳理工大学, 2022: 51−72. DOI: 10.27323/d.cnki.gsgyc.2022.000486.

    GAO R K. Impact dynamics properties and reaction energy release evaluation of TiZrHf based high entropy alloys [D]. Shenyang: Shenyang Ligong University, 2022: 51−72. DOI: 10.27323/d.cnki.gsgyc.2022.000486.
    [65] CHEN C, GAO R K, GUO K, et al. Quantitative determination of impact release energy for TiZrHfX0.3 multicomponent materials in vacuum environment [J]. International Communications in Heat and Mass Transfer, 2022, 133: 105958. DOI: 10.1016/j.icheatmasstransfer.2022.105958.
    [66] TANG W Q, ZHANG K, CHEN T Y, et al. Microstructural evolution and energetic characteristics of TiZrHfTa0.7W0.3 high-entropy alloy under high strain rates and its application in high-velocity penetration [J]. Journal of Materials Science & Technology, 2023, 132: 144–153. DOI: 10.1016/j.jmst.2022.05.043.
    [67] MONTGOMERY JR H E. Reactive fragment: US3961576 [P]. 1976-06-08.
    [68] TRUITT R M, NIELSON D B, ASHCROFT B N, et al. Weapons and weapon components incorporating reactive materials: US11512058 [P]. 2006-08-29.
    [69] WILLIAM J F. Reactive fragrant warhead for enhanced neutralization of mortar, rocket, and missile threats: ONR-SBIR, N04-903 [R]. 2005.
    [70] REN S Y, ZHANG Q M, WU Q, et al. Influence of impact-induced reaction characteristics of reactive composites on hypervelocity impact resistance [J]. Materials & Design, 2020, 192: 108722. DOI: 10.1016/j.matdes.2020.108722.
    [71] 郭磊, 王传婷, 何勇, 等. Zr55Cu30Ni5Al10活性破片对间隔防护结构破坏特性研究 [J]. 航天器环境工程, 2020, 37(6): 582–588. DOI: 10.12126/see.2020.06.008.

    GUO L, WANG C T, HE Y, et al. The failure characteristics of spacing protective structures impacted by Zr55Cu30Ni5Al10 active fragments [J]. Spacecraft Environment Engineering, 2020, 37(6): 582–588. DOI: 10.12126/see.2020.06.008.
    [72] 陈海华, 张先锋, 熊玮, 等. WFeNiMo高熵合金动态力学行为及侵彻性能研究 [J]. 力学学报, 2020, 52(5): 1443–1453. DOI: 10.6052/0459-1879-20-166.

    CHEN H H, ZHANG X F, XIONG W, et al. Dynamic mechanical behavior and penetration performance of WFeNiMo high-entropy alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443–1453. DOI: 10.6052/0459-1879-20-166.
    [73] 杨林, 于述贤, 范群波. Zr77.1Cu13Ni9.9非晶合金破片侵彻LY12铝合金及TC4钛合金靶板毁伤后效及机理对比研究 [J]. 北京理工大学学报, 2023, 43(4): 417–428. DOI: 10.15918/j.tbit1001-0645.2022.092.

    YANG L, YU S X, FAN Q B. Damage effect and mechanism of Zr77.1Cu13Ni9.9 bulk metallic glasses fragment penetrating LY12 aluminum alloy and TC4 titanium alloy target plate [J]. Transactions of Beijing Institute of Technology, 2023, 43(4): 417–428. DOI: 10.15918/j.tbit1001-0645.2022.092.
    [74] LEHR H F, WOLLMAN E, KOERBER G. Experiments with jacketed rods of high fineness ratio [J]. International Journal of Impact Engineering, 1995, 17(4/5/6): 517–526. DOI: 10.1016/0734-743x(95)99876-s.
    [75] BACKMAN M E. Terminal ballistics: AD-A021 833 [R]. China Lake, California: Naval Weapons Center, 1976.
    [76] CHEN X W, WEI L M, LI J C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target [J]. International Journal of Impact Engineering, 2015, 79: 102–116. DOI: 10.1016/j.ijimpeng.2014.11.007.
    [77] RONG G, HUANG D W, YANG M C. Penetrating behaviors of Zr-based metallic glass composite rods reinforced by tungsten fibers [J]. Theoretical and Applied Fracture Mechanics, 2012, 58(1): 21–27. DOI: 10.1016/j.tafmec.2012.02.003.
    [78] 张明星, 黄晓霞. 钨合金穿甲弹芯材料强化技术及材料技术国外研究分析 [J]. 四川兵工学报, 2015, 36(12): 114–117. DOI: 10.11809/scbgxb2015.12.028.

    ZHANG M X, HUANG X X. Foreign research and analysis on strengthening technology and material technology of tungsten alloy piercing projectile [J]. Journal of Ordnance Equipment Engineering, 2015, 36(12): 114–117. DOI: 10.11809/scbgxb2015.12.028.
    [79] 荣光, 黄德武. 钨纤维复合材料穿甲弹芯侵彻时的自锐现象 [J]. 爆炸与冲击, 2009, 29(4): 351–355. DOI: 10.11883/1001-1455(2009)04-0351-05.

    RONG G, HUANG D W. Self-sharpening phenomena of tungsten fiber composite material penetrators during penetration [J]. Explosion and Shock Waves, 2009, 29(4): 351–355. DOI: 10.11883/1001-1455(2009)04-0351-05.
    [80] 杜忠华, 杜成鑫, 朱正旺, 等. 钨丝/锆基非晶复合材料长杆体弹芯穿甲实验研究 [J]. 稀有金属材料与工程, 2016, 45(5): 1308–1313.

    DU Z H, DU C X, ZHU Z W, et al. An experimental study on perforation behavior of pole penetrator prepared from WF/Zr-based bulk metallic glass matrix composite [J]. Rare Metal Materials and Engineering, 2016, 45(5): 1308–1313.
    [81] 陈小伟, 李继承, 张方举, 等. 钨纤维增强金属玻璃复合材料弹穿甲钢靶的实验研究 [J]. 爆炸与冲击, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.

    CHEN X W, LI J C, ZHANG F J, et al. Experimental research on the penetration of tungsten-fiber/metallic glass-matrix composite material penetrator into steel target [J]. Explosion and Shock Waves, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.
    [82] 杜忠华, 杜成鑫, 朱正旺, 等. 分段结构的钨丝/锆基非晶复合材料弹芯穿甲实验研究 [J]. 稀有金属材料与工程, 2016, 45(9): 2359–2365.

    DU Z H, DU C X, ZHU Z W, et al. An experimental study on perforation behavior of segmented Wf/Zr-based bulk metallic glass matrix composite [J]. Rare Metal Materials and Engineering, 2016, 45(9): 2359–2365.
    [83] 杜成鑫, 杜忠华, 朱正旺. 着靶速度和钨丝直径对钨丝/锆基非晶复合材料弹芯侵彻性能的影响 [J]. 稀有金属材料与工程, 2017, 46(6): 1632–1637.

    DU C X, DU Z H, ZHU Z W. Effect of impact velocity and diameter of tungsten fiber on penetration ability of Wf/Zr-based metallic glass composite penetrator [J]. Rare Metal Materials and Engineering, 2017, 46(6): 1632–1637.
    [84] 杜成鑫, 杜忠华, 朱正旺. 钨丝直径对锆基复合非晶材料穿甲性能的影响 [J]. 稀有金属材料与工程, 2017, 46(4): 1080–1085.

    DU C X, DU Z H, ZHU Z W. Effect of tungsten fiber diameter on penetration ability of Zr-based metallic glass composites [J]. Rare Metal Materials and Engineering, 2017, 46(4): 1080–1085.
    [85] JIANG F, CHEN G, WANG Z H, et al. Mechanical properties of tungsten fiber reinforced (Zr41.2Ti13.8Cu12.5Ni10Be22.5)100- x Nb x bulk metallic glass composites [J]. Rare Metal Materials and Engineering, 2011, 40(2): 206–208. DOI: 10.1016/S1875-5372(11)60016-7.
    [86] 杜成鑫. Wf/Zr基非晶复合材料杆弹准细观侵彻机理及优化设计 [D]. 南京: 南京理工大学, 2020: 39−62. DOI: 10.27241/d.cnki.gnjgu.2020.000070.

    DU C X. Research on penetration mechanism and optimization design of Wf/Zr-based bulk metallic glass matrix composite rod [D]. Nanjing: Nanjing University of Science & Technology, 2020: 39−62. DOI: 10.27241/d.cnki.gnjgu.2020.000070.
    [87] SORENSEN B R, KIMSEY K D, SILSBY G F, et al. High velocity penetration of steel targets [J]. International Journal of Impact Engineering, 1991, 11(1): 107–119. DOI: 10.1016/0734-743X(91)90034-D.
    [88] 林琨富, 张先锋, 陈海华, 等. Hf基非晶合金夹芯结构长杆弹的侵彻行为 [J]. 爆炸与冲击, 2021, 41(2): 023301. DOI: 10.11883/bzycj-2020-0181.

    LIN K F, ZHANG X F, CHEN H H, et al. Penetration behaviors of Hf-based amorphous alloy jacketed rods [J]. Explosion and Shock Waves, 2021, 41(2): 023301. DOI: 10.11883/bzycj-2020-0181.
    [89] HOU X W, ZHANG X F, XIONG W, et al. Study on energy release characteristics and penetration effects to concrete targets of Hf-based amorphous alloys [J]. Journal of Non-Crystalline Solids, 2022, 581: 121438. DOI: 10.1016/j.jnoncrysol.2022.121438.
    [90] HOU X W, ZHANG X F, LIU C, et al. Effects of annealing temperatures on mechanical behavior and penetration characteristics of FeNiCoCr high-entropy alloys [J]. Metals, 2022, 12(11): 1885. DOI: 10.3390/met12111885.
    [91] 陈海华, 张先锋, 赵文杰, 等. W25Fe25Ni25Mo25高熵合金高速侵彻细观结构演化特性 [J]. 力学学报, 2022, 54(8): 2140–2151. DOI: 10.6052/0459-1879-22-128.

    CHEN H H, ZHANG X F, ZHAO W J, et al. Effect of microstructure on flow behavior during penetration of W25Fe25Ni25Mo25 high-entropy alloy projectile [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2140–2151. DOI: 10.6052/0459-1879-22-128.
    [92] 赵腾, 罗虹, 贾万明, 等. 药型罩材料技术基本要素探讨 [J]. 兵器材料科学与工程, 2007, 30(5): 77–82. DOI: 10.3969/j.issn.1004-244X.2007.05.022.

    ZHAO T, LUO H, JIA W M, et al. Discussion on the basic elements of shaped charge liner material [J]. Ordnance Material Science and Engineering, 2007, 30(5): 77–82. DOI: 10.3969/j.issn.1004-244X.2007.05.022.
    [93] 张雪朋. 活性射流作用钢靶侵彻爆炸联合毁伤效应研究 [D]. 北京: 北京理工大学, 2016: 1−6.

    ZHANG X P. Research on penetration and blast combined damage effects of reactive material jet against steel target [D]. Beijing: Beijing Institute of Technology, 2016: 1−6.
    [94] 张雪朋, 肖建光, 余庆波, 等. 活性药型罩聚能装药破甲后效超压特性 [J]. 兵工学报, 2016, 37(8): 1388–1394. DOI: 10.3969/j.issn.1000-1093.2016.08.007.

    ZHANG X P, XIAO J G, YU Q B, et al. Armor penetration aftereffect overpressure produced by reactive material liner shaped charge [J]. Acta Armamentarii, 2016, 37(8): 1388–1394. DOI: 10.3969/j.issn.1000-1093.2016.08.007.
    [95] WALTERS W P, KECSKES L J, PRITCHETT J E. Investigation of a bulk metallic glass as a shaped charge liner material [R]. Aberdeen Proving Ground: Army Research Laboratory, 2006.
    [96] SHI J, HUANG Z X, ZU X D, et al. Experimental and numerical investigation of jet performance based on Johnson-Cook model of liner material [J]. International Journal of Impact Engineering, 2022, 170: 104343. DOI: 10.1016/j.ijimpeng.2022.104343.
    [97] SHI J, HUANG Z X, ZU X D, et al. Experimental investigation of Zr-Based amorphous alloy as a shaped charge liner [J]. Propellants, Explosives, Pyrotechnics, 2022, 47(11): e202200063. DOI: 10.1002/prep.202200063.
    [98] CUI P, GAO X B, XU J Q, et al. Simulation and experimental study on jet velocity of Zr-based amorphous alloy liner [J]. Metals, 2022, 12(6): 978. DOI: 10.3390/met12060978.
    [99] 周秉文, 孟凡迪, 张全孝, 等. 铜基非晶合金的动态性能及杆式射流仿真研究 [J]. 兵器材料科学与工程, 2020, 43(6): 1–5. DOI: 10.14024/j.cnki.1004-244x.20200612.001.

    ZHOU B W, MENG F D, ZHANG Q X, et al. Dynamic properties and rod jet simulation of copper-based bulk metallic glasses [J]. Ordnance Material Science and Engineering, 2020, 43(6): 1–5. DOI: 10.14024/j.cnki.1004-244x.20200612.001.
    [100] 鄢阿敏, 乔禹, 戴兰宏. 高熵合金药型罩射流成型与稳定性 [J]. 力学学报, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274.

    YAN A M, QIAO Y, DAI L H. Formation and stability of shaped charge liner jet of CrMnFeCoNi high-entropy alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274.
    [101] 郑哲敏. 聚能射流的稳定性问题 [M]// 郑哲敏. 郑哲敏文集. 北京: 科学出版社, 2004: 12.
    [102] 郑哲敏. 关于射流侵彻的几个问题 [J]. 兵工学报, 1980(1): 13–22.

    ZHENG Z M. Several problems on jet penetration [J]. Acta Armamentarii, 1980(1): 13–22.
    [103] CHOU P C, CARLEONE J. The stability of shaped-charge jets [J]. Journal of Applied Physics, 1977, 48(10): 4187–4195. DOI: 10.1063/1.323456.
    [104] CUI P, SHI D M, XU J Q, et al. Investigation of explosion simulation on jet forming of ZrCuNiAlAg amorphous alloy liner with eccentric sub-hemisphere structure [J]. IOP Conference Series: Materials Science and Engineering, 2020, 964: 012020. DOI: 10.1088/1757-899x/964/1/012020.
    [105] CUI P, WANG D S, SHI D M, et al. Investigation of penetration performance of Zr-based amorphous alloy liner compared with copper [J]. Materials, 2020, 13(4): 912. DOI: 10.3390/ma13040912.
    [106] CUI P, SHI D M, ZHANG Y L, et al. Numerical simulation and experimental study on jet forming and penetration performance of Zr-based amorphous alloy liner [J]. Engineering Letters, 2021, 29(1): 151–157.
    [107] CUI P, SHI D M, XU J Q, et al. Numerical simulation on jet forming and penetration performance of several amorphous energetic alloy liner with typical structures [J]. Journal of Physics: Conference Series, 2021, 1948: 012186. DOI: 10.1088/1742-6596/1948/1/012186.
    [108] 芦永进, 梁增友, 邓德志, 等. 铜基非晶合金双层药型罩射流形成及侵彻性能 [J]. 火炮发射与控制学报, 2022, 43(1): 14–20, 28. DOI: 10.19323/j.issn.1673-6524.2022.01.003.

    LU Y J, LIANG Z Y, DENG D Z, et al. Jet formation and penetration performance of a Cu-based amorphous alloy double-layer charge liner [J]. Journal of Gun Launch & Control, 2022, 43(1): 14–20, 28. DOI: 10.19323/j.issn.1673-6524.2022.01.003.
    [109] HAN J L, CHEN X, DU Z H, et al. Design and penetration of a new W-particle/Zr-based amorphous alloy composite liner [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(7): 364. DOI: 10.1007/s40430-020-02359-6.
    [110] LÜ J X, ZHANG J L, SHEK C. Corrosion of glassy (Ni8Nb5)99.5Sb0.5 alloy and stability of passive film [J]. Rare Metal Materials and Engineering, 2013, 42(3): 447–451. DOI: 10.1016/S1875-5372(13)60045-4.
    [111] ZHAO Z Y, LIU J X, GUO W Q, et al. Effect of Zn and Ni added in W-Cu alloy on penetration performance and penetration mechanism of shaped charge liner [J]. International Journal of Refractory Metals and Hard Materials, 2016, 54: 90–97. DOI: 10.1016/j.ijrmhm.2015.07.022.
    [112] BAI X, LIU J X, LI S K, et al. Effect of interaction mechanism between jet and target on penetration performance of shaped charge liner [J]. Materials Science and Engineering: A, 2012, 553: 142–148. DOI: 10.1016/j.msea.2012.06.003.
    [113] CHEN J, LIU T W, CAO F H, et al. Deformation behavior and microstructure evolution of CoCrNi medium-entropy alloy shaped charge liners [J]. Metals, 2022, 12(5): 811. DOI: 10.3390/met12050811.
    [114] GUO W Q, LIU J X, XIAO Y, et al. Comparison of penetration performance and penetration mechanism of W-Cu shaped charge liner against three kinds of target: pure copper, carbon steel and Ti-6Al-4V alloy [J]. International Journal of Refractory Metals and Hard Materials, 2016, 60: 147–153. DOI: 10.1016/j.ijrmhm.2016.07.015.
    [115] ZHANG S C, JIANG Z H, LI H B, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging [J]. Materials Characterization, 2018, 137: 244–255. DOI: 10.1016/j.matchar.2018.01.040.
  • 期刊类型引用(1)

    1. 马玉松,何金燕,李红欣,张兴高. Al_(0.3)V_(0.1)NbZr_(1.3)Ti_(1.4)Ta_(0.8)高熵合金的力学行为和侵彻释能特性. 兵器材料科学与工程. 2025(01): 19-25 . 百度学术

    其他类型引用(2)

  • 加载中
图(65) / 表(1)
计量
  • 文章访问数:  460
  • HTML全文浏览量:  214
  • PDF下载量:  170
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-05-24
  • 修回日期:  2023-08-28
  • 网络出版日期:  2023-08-29
  • 刊出日期:  2023-09-11

目录

/

返回文章
返回