Study on resistance of UHMWPE thin panels to oblique penetration of small arms ammo
-
摘要: 为解决高性能轻质防弹插板受轻武器杀伤元侵彻防护问题,对超高分子量聚乙烯(ultra-high molecular weight polyethylene,UHMWPE)层压薄板进行了侵彻实验,分析了侵彻后UHMWPE薄板的变形失效特征并对比了轻武器杀伤元的破坏形貌。利用有限元软件LS-DYNA建立了UHMWPE薄板抗轻武器杀伤元侵彻数值模型,通过靶板破坏形态、凹陷深度以及弹头变形的实验结果对数值模型的有效性进行了验证。在此基础上,通过数值模拟方法研究了UHMWPE薄板受弹体斜侵彻失效模式,揭示了3种轻武器杀伤元侵彻下入射角度对跳弹现象和UHMWPE薄板破坏形态的影响规律。结果表明:7.62 mm×25 mm的钢芯弹和7.62 mm×39 mm的普通弹(钢芯)斜侵彻UHMWPE薄板的跳弹角均位于45°~50°范围内;7.62 mm×25 mm的铅芯弹在入射角大于70°时才可完整跳出,其余均以破损弹片形式飞溅,弹体破坏会对跳弹状况产生影响;入射角较小时,斜侵彻子弹会产生面积较大且具有一定深度的弹坑,连续击发的下一枚子弹会更容易击穿弹坑薄弱处的纤维板,斜侵彻作用对薄板受二次侵彻产生不利影响;入射角较大时,子弹会较完整地发生跳弹并具有高剩余速度,会对人员产生二次杀伤。研究成果可为UHMWPE薄板用于轻量化军用防弹插板设计提供参考。Abstract: In order to solve the problem of high-performance lightweight bulletproof inserts protection of penetration of light weapon killing elements, this paper carried out penetration experiments on ultra-high molecular weight polyethylene (UHMWPE) laminated sheet, analyzed the deformation and failure characteristics of the UHMWPE sheet after penetration and compared the damage morphology of light weapon killing element. A numerical model of UHMWPE laminate against the penetration of light weapon killers was established by using the finite element software LS-DYNA, and the validity of the numerical model was verified by the experimental results of the damage morphology of the target plate, the depth of the depression and the deformation of the warhead. On this basis, the failure mode of the UHMWPE thin plate subjected to oblique penetration by the projectile is investigated by numerical methods, and the influence of the incidence angle on the ricochet phenomenon and the damage morphology of UHMWPE thin plate under the penetration of three kinds of light weapon killing elements is revealed. The results show that the ricochet angles of 7.62 mm×25 mm steel-core bullets and 7.62 mm×39 mm ordinary bullets (steel-core) obliquely penetrating UHMWPE plates are located in the range of 45°–50°; 7.62 mm×25 mm lead-core bullets can be completely ricocheted out when the angle of incidence is greater than 70°, and the rest of the bullets are in the form of broken shrapnel splinters, and the destruction of the bullet body has an effect on the ricochet condition; the oblique penetration bullets produce a large area and a large number of damage patterns at a smaller angle of incidence; the oblique penetration bullets produce a larger area and a larger number of damage patterns in the UHMWPE plates. When the angle of incidence is small, the oblique penetration bullet will produce a larger area and a certain depth of the crater, the next bullet will be easier to penetrate the crater weakness of the fiber plate, and the oblique penetration effect on the thin plate by the secondary penetration of the negative impact, the angle of incidence is larger, the bullet will be more complete ricochet and has a high residual velocity, which will produce a secondary killing of personnel. The research results can be used for UHMWPE thin plate for lightweight military bulletproof insert design to provide reference.
-
Key words:
- UHMWPE thin panels /
- light weapon killing element /
- oblique penetration /
- failure mode /
- ricochet angle
-
双层环肋圆柱壳作为一种典型结构,在潜艇中被广泛应用。由于作业环境恶劣,一旦发生撞击事故,会造成重大损失[1]。针对潜艇受到碰撞或潜艇搁浅的问题,梅志远等[2-3]、朱新阳等[4]对潜艇典型结构受撞损伤特征开展了数值模拟和模型试验研究。关于环肋圆柱壳结构撞击问题,Y.W.Kim等[5]利用能量法计算了环肋圆柱壳在阶跃冲击作用下的动态响应;孙清磊等[6]考虑静水压作用,对环肋圆柱壳受不同形状撞击体的撞击过程进行了数值模拟,探讨了不同撞头形状对结构变形吸能及碰撞力的影响规律。潜艇受撞击与导弹穿甲或侵彻问题不同,后者是金属在高速冲击和冲击产生高温的联合作用下瞬时被击穿形成破口的过程,破口周围的结构几乎不产生变形,穿甲机理包含力学和热力学作用[7]。而前者的撞击速度较低,撞击过程中热力学作用微小,可以忽略,且结构的变形范围不仅局限于接触区。目前,对圆柱壳受撞问题的研究,撞击物多为单一体,而实际中常会遇到多个物体同时或连续撞击的案例,而该类问题的研究却少见报道。本文中拟针对双层环肋圆柱壳受多物体撞击问题进行数值模拟和模型试验,对多物体撞击下的壳体结构损伤机理和典型特征开展研究,以期为相关工程设计提供参考。
1. 数值模拟
1.1 数值模型
选取双层环肋圆柱壳受撞一侧的半圆结构作为研究对象,由内、外层环肋圆柱壳通过实肋板连接而成。内外壳结构的特征参数如表 1所示,其中R为壳体半径,t为壳体板厚,L为壳体上环肋骨间距,F为环肋骨横剖面积,下标1、2分别代表外壳和内壳;撞击物为5只相同的实心钢球,半径为150 mm,每只钢球的质量为111 kg。
表 1 模型结构特征参数Table 1. Parameters of the model's structural characteristicsR1/t1 L1/√R1t1 F1/L1t1 R2/t2 L2/√R2t2 F2/L2t2 363.3 4.2 0.25 153.3 1.62 0.56 建模前首先对模型网格尺度对计算结果的影响进行分析,以单个物体(钢球)撞击双层壳体的环肋外壳为例,采用4种不同尺度的网格建立模型。从计算得到的撞击力和壳体变形能对比曲线,如图 1所示。从图中可以看出,模型网格特征长度为20和12 mm的计算结果基本吻合,表明前者能满足计算结果的稳定。根据结构受撞损伤的局部特性[8-9],考虑计算效率,建模时在壳体受撞及附近区域采用特征长度为20 mm的网格,远离受撞区采用较粗网格。
采用MSC.Patran[10]建立的双层环肋半圆柱壳结构及撞击物(钢球)的数值模型如图 2所示,图中还给出了钢球的分布。模型中所有构件均采用壳单元模拟,单元数为50 388,节点数为50 479。通过在撞击物上施加11.71 m/s的初始速度来模拟5只钢球从距离圆柱壳顶端7 m的高度同时自由坠落撞击壳体,同时考虑撞击过程中重力加速度以及摩擦作用的影响,动、静摩擦力因数都取0.1。
为了与模型试验相对应,双层环肋半圆柱壳结构的材料采用普通船用Q235钢,计算时考虑材料的应变率敏感性,用弹塑性材料来模拟,相关材料参数如下:材料密度, 7 850 kg/m3; 屈服应力, 290 MPa; 弹性模量, 206 GPa; 泊松比, 0.3;最大塑性失效应变, 0.386;应变率敏感系数D=40.4, q=5[11]。实心钢球相对于壳体结构的刚度较大,变形可忽略不计,因此采用刚体材料来模拟。
1.2 数值模拟结果及损伤机理分析
采用MSC.Dytran的主从面自适应接触算法对壳体受撞损伤过程进行计算,并用MSC.Patran对计算结果进行后处理,对结构的动态响应过程进行分析。
1.2.1 结构损伤变形
图 3~4所示分别为钢球达到最大撞深时壳体上产生的等效应力和损伤变形分布,可以看出,外壳上5个撞击点形成的网状面内的壳板多处产生屈服,损伤变形主要以受撞点处的凹陷为主,此外,受撞点之间的壳板变形也较明显。远离受撞区的壳板等效应力和结构变形都很小。中间钢球造成的壳体损伤变形最大,最大撞击深度达到了122 mm,表明相同撞击条件下,沿圆柱壳板径向撞击造成的壳体损伤最严重。根据受撞壳体结构的特征参数可以推断,达到最大撞深时外壳板将会与内壳上的环向肋骨产生接触。
图 5所示为钢球达到最大撞深时受撞壳体内壳的等效应力分布,可以看出,内壳上产生的塑性变形区较小,主要集中在与外壳板发生接触区以及与实肋板相连的环向肋骨上,撞击造成的内壳变形很小,表明在受撞环境下双层环肋圆柱壳的外壳能够对内壳起到很好的防护作用。
1.2.2 撞击力变化
图 6所示为5只钢球产生的撞击力时程曲线,可以看出,撞击力曲线的非线性现象十分明显,0号球的撞击力峰值要大于其余4只球,表明相同条件下沿圆柱壳板径向撞击形成的撞击力最大。撞击位置相似的钢球产生的撞击力基本相同。
0号球的撞击力曲线出现了2个明显的峰值,从撞击过程的动态模拟中观察分析,第1个峰值是由于0号球位于圆柱壳弧顶端,5只钢球同一平面同时落下时,0号球首先与圆柱壳接触,撞击力随着接触面的增加而增加,随后其余4只球与圆柱壳接触,它们的撞击造成了圆柱壳的凹陷,使得0号球与撞击位置的壳板接触面减小,因此会出现撞击力的卸载;此时0号球仍然具有撞击速度,随着接触的继续增加,撞击力继续增加,直至0号球的撞击速度减为零,撞击力达到最大值,出现第2个峰值。从图中还可以看出,其余4只钢球的撞击力曲线在卸载过程中也受到了0号球撞击产生的影响,表明多物体撞击过程中的撞击力会相互影响,产生耦合现象,这也是其区别于单物体撞击的显著特征。
1.2.3 能量转换
壳体受撞过程遵守能量守恒定律,在整个过程中钢球的撞击动能绝大部分将会被耗散,转变成以下几种能量:受撞壳体的动能、结构变形能以及接触摩擦产生的热能,在计算中还有一部分会转变成模型的沙漏能。直接从中间钢球(0号球)与壳体即将接触时刻开始计起,图 7给出了整个过程中各种能量的变化曲线。可以看出,钢球的初始动能随着撞击过程的进行将会被耗散,损失的动能有97.3%转变成了受撞壳体的结构变形能。撞击引起的壳体运动很小,因此壳体动能很小,同时,数值模拟中的沙漏能也很小,都可以忽略不计。从图中还可以发现,钢球在撞击过程中发生了反弹现象,还剩余一部分的撞击动能,考虑重力影响,反弹后的钢球动能将会转变成重力势能,再次下落撞击壳体结构,最终转变成壳体结构的变形能。
2. 模型试验验证
2.1 试验模型
为了与数值模拟结果进行对比,开展了相应的模型试验。通过采用特定的装置和措施,使得5只钢球按照给定高度、分布方式坠落,撞击壳体的指定位置,受撞壳体结构模型及撞击钢球如图 8所示。
试验开始前,受撞圆柱壳模型放置在特定的试验池内,弧顶向上,两侧的纵边与试验池底钢板焊接来模拟刚性固定的边界条件。5只撞击钢球悬挂在受撞圆柱壳中间位置的弧顶正上方,距离弧顶7 m,通过连接在吊车上的电磁钩瞬间释放自由下落撞击壳体模型。壳体模型受撞过程中的撞击力是通过安装在钢球起吊端一侧的加速度传感器来测量的,通过动态测试仪器可以直接得到该过程中的加速度值,然后根据Fi=miai可以求出各个钢球的撞击力,式中Fi、mi和ai分别为i号钢球的撞击力、质量和加速度,加速度传感器分别安装在0~3号球上。
2.2 试验结果及对比分析
对壳体模型受撞损伤的过程进行了高速摄像,受撞瞬间的接触状态及受撞后发生的钢球反弹现象如图 9所示。从高速摄像可以观察到,撞击是在十几毫秒内完成的,时间极其短暂。壳体模型在瞬时撞击载荷作用下,受撞区结构产生了明显的变形,同时整体还产生了明显的振动现象。钢球发生了反弹现象,0号钢球反弹方向基本是垂直向上的,而1~4号钢球由于模型弧度的影响,反弹方向是稍微偏向外侧的。反弹后的钢球在重力作用下会再次撞击模型,但造成的二次结构损伤不是很明显。
2.2.1 撞击力对比
图 10所示为0号和1号球撞击力的模型试验结果与数值模拟结果对比图,可以看出,2种结果吻合得较好,两者撞击力峰值和变化趋势都有很好的相似性。与数值模拟结果相比,试验得到的0号球撞击力曲线同样存在2个较明显的峰值,模型试验首次峰值的量值和卸载时间都比数值模拟计算的更大,造成这种差异的原因可能是0号球与其余4只球之间的距离在模型试验和计算之间存在微小差异,导致其余4只球的撞击对0号球产生的影响不同,但对0号球的撞击力最大峰值的影响很小。
2.2.2 壳体结构变形对比
受撞后外壳和外壳环肋骨上产生的损伤变形的模型试验结果与数值模拟结果对比如图 11所示。首先,从结构损伤变形范围来看,2种结果都显示:损伤变形集中在外壳板上5个受撞击点形成的面内,变形在实肋板处存在较明显的终止现象。其次,从损伤模式来看,2种结果均显示:外壳板的变形模式主要包含2种变形模式,一种是5只钢球撞击点处的壳板凹陷,另一种是连接1~4号钢球相邻撞击点的外壳板屈曲变形,如图 11(a)所示。这部分是由相邻受撞区壳板凹陷变形引起的连接区壳板面内挤压而造成的,即多物体撞击产生的变形耦合现象,这也是其区别于单物体撞击的典型特征。此外,外壳内表面上的环肋骨随壳板变形产生了屈曲失稳、压皱和扭曲等变形模式。
采用激光跟踪仪对试验结束后的模型外壳板受撞损伤变形量进行了测量,图 12给出了外壳板上5只钢球撞击深度的试验测量结果和数值模拟结果。对比可以看出,0号球造成的撞深最大,试验测量和数值模拟计算分别为103.2和106.0 mm,两者比较接近;其余4只球撞深的2种结果差异较大。产生这种现象的原因可能有:(1)变形测量时的操作误差,例如激光定位时没有扫描到最大变形处;(2)模型的初始挠度误差;(3)撞击前钢球位置存在偏差,越靠近圆弧两侧,产生的撞深越小。上述原因也正是模型试验不确定性的表现,但从整体来看,模型试验和数值模拟结果吻合较好,有限元数值模拟能够较准确地反映壳体结构受多物体撞击的损伤特性。
3. 结论
针对双层环肋圆柱壳结构受到多物体撞击问题,分别开展了数值模拟计算和模型试验,通过对两者结果的比较,得到如下结论:
(1) 双层环肋圆柱壳结构同时受多物体撞击是一个瞬态动响应过程,在巨大瞬时冲击载荷作用下,受撞区壳板会迅速超越弹性变形而产生塑性变形;撞击的物体、速度、方向均相同的前提下,沿圆柱壳板径向撞击形成的撞深和撞击力最大。
(2) 多物体撞击会造成外壳板一定区域的损伤变形,当撞击物分布均匀、紧密时,壳板的损伤区域不仅包括与撞击物接触区,还包括连接这些部位的区域,后者是由多物体撞击引起的变形耦合而产生的,这也是区别于单物体撞击的典型特征。
(3) 多物体撞击产生的撞击力会相互干扰,导致其非线性特征更明显;
(4) 双层圆柱壳的外壳能对内壳起到较好的防护作用,在外壳没被撞穿的情况下,其结构变形会吸收绝大部分的撞击动能,可以通过优化外壳的吸能效率来达到双层壳体结构物内壳防撞的目的。
-
表 1 侵彻实验工况
Table 1. Penetration experiment conditions
工况 靶板尺寸/mm 靶板面密度/(kg·m−2) 子弹规格 子弹初速/(m·s−1) 1 299×249×6.21 6.12 51式7.62 mm×25 mm手枪铅芯弹 445±10 2 303×250×10.31 10.26 51-B式7.62 mm×25 mm冲锋枪钢芯弹 515±10 3 303×250×19.45 19.18 56式7.62 mm×39 mm步枪普通弹 725±10 表 2 靶板凹陷深度
Table 2. Depression depth of target plate
射序 靶板凹陷深度/mm 工况1 工况2 工况3 1 16 14 16 2 20 9 9 3 16 10 20 4 17 11 4 5 18 12 18 6 20 14 18 Ea/GPa Eb/GPa Ec/GPa νba νca νcb Gab/MPa Gbc/MPa Gca/MPa 30.7 30.7 1.97 0.008 0.044 0.044 670 1 970 670 η XT/GPa YT/GPa YC/GPa SN/MPa SYZ/MPa SZX/MPa α 0 3 3 2.5 950 950 950 0.5 表 4 内聚力单元参数
Table 4. Parameters of cohesion unit
密度/(g·cm−3) 法向刚度/(N·mm−3) 面内刚度/(N·mm−3) GⅠC/(J·mm−2) GⅡC/(J·mm−2) T S 2.0 1.0×106 1.0×106 0.28 0.495 62 110 表 5 侵彻弹丸各部分材料的Johnson-Cook本构参数
Table 5. Johnson-Cook constitutive parameters of materials of the penetrating projectile parts
弹头构成 密度/(g·cm−3) 弹性模量/GPa 泊松比 A/MPa B/MPa n c 镀铜钢护套 7.85 210 0.31 448.20 303.4 0.15 0.003 33 钢弹芯 7.85 210 0.31 234.34 413.8 0.25 0.110 00 铅弹芯/铅壳 10.10 13.8 0.42 10.30 41.3 0.21 0.003 33 弹头构成 m d1 d2 d3 d4 d5 镀铜钢护套 1.03 2.250 0.000 5 −3.6 −0.012 3 0 钢弹芯 1.03 5.625 0.3 −7.2 −0.012 3 0 铅弹芯/铅壳 1.03 2.500 0 0 0 0 表 6 网格尺寸敏感性验算
Table 6. Mesh size sensitivity calculation
网格尺寸/mm 实验结果/mm 模拟结果/mm 1.0 18.00 10.32 0.5 18.00 16.31 0.4 18.00 17.03 0.3 18.00 17.17 0.2 18.00 17.21 表 7 UHMWPE靶弹着点凹深数值模拟结果与实验结果的对比
Table 7. Comparison between simulation and experimental results of concave depth at the impact point of UHMWPE target
靶板类型 实验平均凹陷深度/mm 模拟平均凹陷深度/mm 误差/% GA141 2级靶板 17.83 16.61 6.8 GA141 4级靶板 11.67 11.33 2.9 GA141 5级靶板 18.00 17.17 4.6 -
[1] 赵美琪, 张乐天, 叶纯麟, 等. 超高分子量聚乙烯高抗冲性能优化研究及进展 [J]. 化工新型材料, 2021, 49(10): 53–57, 62. DOI: 10.19817/j.cnki.issn1006-3536.2021.10.011.ZHAO M Q, ZHANG L T, YE C L, et al. Progress on optimization of high impact resistance of UHMWPE [J]. New Chemical Materials, 2021, 49(10): 53–57, 62. DOI: 10.19817/j.cnki.issn1006-3536.2021.10.011. [2] 叶卓然, 罗靓, 潘海燕, 等. 超高分子量聚乙烯纤维及其复合材料的研究现状与分析 [J]. 复合材料学报, 2022, 39(9): 4286–4309. DOI: 10.13801/j.cnki.fhclxb.20220803.002.YE Z R, LUO L, PAN H Y, et al. Research status and analysis of ultra-high molecular weight polyethylene fiber and its composites [J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4286–4309. DOI: 10.13801/j.cnki.fhclxb.20220803.002. [3] PEINADO J, LIU L J, OLMEDO Á, et al. Influence of stacking sequence on the impact behaviour of UHMWPE soft armor panels [J]. Composite Structures, 2022, 286: 115365. DOI: 10.1016/j.compstruct.2022.115365. [4] 付杰, 李伟萍, 黄献聪, 等. 新型超高分子量聚乙烯膜材料防弹性能及机理 [J]. 兵工学报, 2021, 42(11): 2453–2464. DOI: 10.3969/j.issn.1000-1093.2021.11.019.FU J, LI W P, HUANG X C, et al. Bullet-proof performance and mechanism of new ultra-high molecular weight polyethylene film [J]. Acta Armamentarii, 2021, 42(11): 2453–2464. DOI: 10.3969/j.issn.1000-1093.2021.11.019. [5] 董彬, 魏汝斌, 王小伟, 等. 高性能有机纤维在防弹复合材料领域应用研究现状 [J]. 复合材料科学与工程, 2023(1): 116–123. DOI: 10.19936/j.cnki.2096-8000.20230128.015.DONG B, WEI R B, WANG X W, et al. Review of high performance organic fibers in ballistic composite fields [J]. Composites Science and Engineering, 2023(1): 116–123. DOI: 10.19936/j.cnki.2096-8000.20230128.015. [6] GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1. [7] WEI H Y, ZHANG X F, LIU C, et al. Oblique penetration of ogive-nosed projectile into aluminum alloy targets [J]. International Journal of Impact Engineering, 2021, 148: 103745. DOI: 10.1016/j.ijimpeng.2020.103745. [8] CAO M J, CHEN L, FANG Q. Penetration and perforation characteristics of the novel UHMWPE film laminates by the 7.62 mm standard bullet [J]. Composite Structures, 2023, 308: 116669. DOI: 10.1016/j.compstruct.2023.116669. [9] 王晓强, 朱锡, 梅志远, 等. 超高分子量聚乙烯纤维增强层合厚板抗弹性能实验研究 [J]. 爆炸与冲击, 2009, 29(1): 29–34. DOI: 10.11883/1001-1455(2009)01-0029-06.WANG X Q, ZHU X, MEI Z Y, et al. Ballistic performances of ultra-high molecular weight polyethylene fiber-reinforced thick laminated plates [J]. Explosion and Shock Waves, 2009, 29(1): 29–34. DOI: 10.11883/1001-1455(2009)01-0029-06. [10] 王智, 常利军, 黄星源, 等. 爆炸冲击波与破片联合作用下防弹衣复合结构防护效果的数值模拟 [J]. 爆炸与冲击, 2023, 43(6): 063202. DOI: 10.11883/bzycj-2022-0515.WANG Z, CHANG L J, HUANG X Y, et al. Simulation on the defending effect of composite structure of body armor under the combined action of blast wave and fragments [J]. Explosion and Shock Waves, 2023, 43(6): 063202. DOI: 10.11883/bzycj-2022-0515. [11] ZHU Y H, LIU K, WEN Y K, et al. Experimental and numerical study on the ballistic performance of ultrahigh molecular weight polyethylene laminate [J]. Polymer Composites, 2021, 42(10): 5168–5198. DOI: 10.1002/PC.26214. [12] ZHANG R, HAN B, ZHOU Y, et al. Mechanism-driven analytical modelling of UHMWPE laminates under ballistic impact [J]. International Journal of Mechanical Sciences, 2023, 245: 108132. DOI: 10.1016/j.ijmecsci.2023.108132. [13] 贾楠, 焦亚男, 周庆, 等. 碳化硅-超高分子量聚乙烯纤维增强树脂基复合材料复合装甲板的抗穿甲弹侵彻性能及其损伤机制 [J]. 复合材料学报, 2022, 39(10): 4908–4917. DOI: 10.13801/j.cnki.fhclxb.20210928.002.JIA N, JIAO Y N, ZHOU Q, et al. Anti-penetration performance of SiC-ultra-high molecular weight polyethylene fiber reinforced resin matrix composite armor plate against armor piercing projectile and its damage mechanism [J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4908–4917. DOI: 10.13801/j.cnki.fhclxb.20210928.002. [14] 张元豪, 程忠庆, 侯海量, 等. 结构间隙对夹芯式复合装甲结构抗侵彻性能的影响 [J]. 爆炸与冲击, 2019, 39(12): 125104. DOI: 10.11883/bzycj-2019-0270.ZHANG Y H, CHENG Z Q, HOU H L, et al. Influence of structural interspace on anti-penetration performance of sandwich composite armor system [J]. Explosion and Shock Waves, 2019, 39(12): 125104. DOI: 10.11883/bzycj-2019-0270. [15] MO G L, MA Q W, JIN Y X, et al. Delamination process in cross-ply UHMWPE laminates under ballistic penetration [J]. Defence Technology, 2021, 17(1): 278–286. DOI: 10.1016/j.dt.2020.05.001. [16] 刘迪, 肖依, 江旭伟, 等. SiC/UHMWPE复合装甲板抗侵彻性能的试验与数值模拟 [J]. 上海大学学报(自然科学版), 2020, 26(2): 234–243. DOI: 10.12066/j.issn.1007-2861.2037.LIU D, XIAO Y, JIANG X W, et al. Anti-penetration capability of SiC/UHMWPE composite armour plates through experimental and numerical simulation [J]. Journal of Shanghai University (Natural Science Edition), 2020, 26(2): 234–243. DOI: 10.12066/j.issn.1007-2861.2037. [17] HU P C, YANG H F, ZHANG P, et al. Experimental and numerical investigations into the ballistic performance of ultra-high molecular weight polyethylene fiber-reinforced laminates [J]. Composite Structures, 2022, 290: 115499. DOI: 10.1016/j.compstruct.2022.115499. [18] CAO M J, CHEN L, XU R Z, et al. Effect of the temperature on ballistic performance of UHMWPE laminate with limited thickness [J]. Composite Structures, 2021, 277: 114638. DOI: 10.1016/j.compstruct.2021.114638. [19] QU K F, WU C Q, LIU J, et al. Ballistic performance of multi-layered aluminium and UHMWPE fibre laminate targets subjected to hypervelocity impact by tungsten alloy ball [J]. Composite Structures, 2020, 253: 112785. DOI: 10.1016/j.compstruct.2020.112785. [20] 季海波, 王昕, 赵振宇, 等. 带攻角平头弹侵彻不同厚度芳纶层合板的数值模拟 [J]. 爆炸与冲击, 2023, 43(6): 063302. DOI: 10.11883/bzycj-2022-0231.JI H B, WANG X, ZHAO Z Y, et al. Simulation on penetration of a flat-nosed projectile with attack angle into aramid laminates having varying thickness [J]. Explosion and Shock Waves, 2023, 43(6): 063302. DOI: 10.11883/bzycj-2022-0231. [21] MEYER C S, CATUGAS I G, GILLESPIE J W JR, et al. Investigation of normal, lateral, and oblique impact of microscale projectiles into unidirectional glass/epoxy composites [J]. Defence Technology, 2022, 18(11): 1960–1978. DOI: 10.1016/j.dt.2021.08.012. [22] ZHU Y H, ZHANG X Y, XUE B Y, et al. High-strain-rate compressive behavior of UHMWPE fiber laminate [J]. Applied Sciences, 2020, 10(4): 1505. DOI: 10.3390/app10041505. [23] CARRASCO-BALTASAR D, GARCÍA-CASTILLO S, IVAÑEZ I, et al. Modelling of woven CFRP plates subjected to oblique high-velocity impact and membrane loads [J]. Composite Structures, 2023, 303: 116344. DOI: 10.1016/j.compstruct.2022.116344. [24] LÓPEZ-PUENTE J, ZAERA R, NAVARRO C. Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(2): 374–387. DOI: 10.1016/j.compositesa.2007.10.004. [25] HAZELL P J, KISTER G, STENNETT C, et al. Normal and oblique penetration of woven CFRP laminates by a high velocity steel sphere [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 866–874. DOI: 10.1016/j.compositesa.2008.01.007. [26] FAWAZ Z, ZHENG W, BEHDINAN K. Numerical simulation of normal and oblique ballistic impact on ceramic composite armours [J]. Composite Structures, 2004, 63(3/4): 387–395. DOI: 10.1016/S0263-8223(3)00187-9. [27] O’MASTA M R, CRAYTON D H, DESHPANDE V S, et al. Mechanisms of penetration in polyethylene reinforced cross-ply laminates [J]. International Journal of Impact Engineering, 2015, 86: 249–264. DOI: 10.1016/j.ijimpeng.2015.08.012. [28] 胡年明, 朱锡, 侯海量, 等. 高速破片侵彻下高分子聚乙烯层合板的弹道极限估算方法 [J]. 中国舰船研究, 2014, 9(4): 55–62. DOI: 10.3969/j.issn.1673-3185.2014.04.009.HU N M, ZHU X, HOU H L, et al. Estimating method for the ballistic limit of ultra-high molecular weight polyethylene fiber-reinforced laminates under high-velocity fragment penetration [J]. Chinese Journal of Ship Research, 2014, 9(4): 55–62. DOI: 10.3969/j.issn.1673-3185.2014.04.009. [29] XIE Y, WANG T, WANG L M, et al. Numerical investigation of ballistic performance of SiC/TC4/UHMWPE composite armor against 7.62 mm AP projectile [J]. Ceramics International, 2022, 48(16): 24079–24090. DOI: 10.1016/j.ceramint.2022.05.088. [30] LÄSSIG T, NGUYEN L, MAY M, et al. A non-linear orthotropic hydrocode model for ultra-high molecular weight polyethylene in impact simulations [J]. International Journal of Impact Engineering, 2015, 75: 110–122. DOI: 10.1016/j.ijimpeng.2014.07.004. [31] MALIK M A A. Experimental and numerical study on the mechanical properties of adhesive joints under impact loads using Ls-Dyna [D]. Di Torino: Politecnico di Torino, 2021: 17–30. [32] CAO D F, DUAN Q F, HU H X, et al. Computational investigation of both intra-laminar matrix cracking and inter-laminar delamination of curved composite components with cohesive elements [J]. Composite Structures, 2018, 192: 300–309. DOI: 10.1016/j.compstruct.2018.02.072. [33] JOHNSON W, SENGUPTA A K, GHOSH S K. High velocity oblique impact and ricochet mainly of long rod projectiles: an overview [J]. International Journal of Mechanical Sciences, 1982, 24(7): 425–436. DOI: 10.1016/0020-7403(82)90052-2. [34] BØRVIK T, OLOVSSON L, DEY S, et al. Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates [J]. International Journal of Impact Engineering, 2011, 38(7): 577–589. DOI: 10.1016/j.ijimpeng.2011.02.001. [35] IQBAL M A, GUPTA G, GUPTA N K. 3D numerical simulations of ductile targets subjected to oblique impact by sharp nosed projectiles [J]. International Journal of Solids and Structures, 2010, 47(2): 224–237. DOI: 10.1016/j.ijsolstr.2009.09.032. -