爆炸载荷下正弦曲边三维负泊松比夹芯板的动态响应和吸能特性

蒋舟顺 徐峰祥 邹震 周谦谋

蒋舟顺, 徐峰祥, 邹震, 周谦谋. 爆炸载荷下正弦曲边三维负泊松比夹芯板的动态响应和吸能特性[J]. 爆炸与冲击, 2024, 44(2): 021001. doi: 10.11883/bzycj-2023-0214
引用本文: 蒋舟顺, 徐峰祥, 邹震, 周谦谋. 爆炸载荷下正弦曲边三维负泊松比夹芯板的动态响应和吸能特性[J]. 爆炸与冲击, 2024, 44(2): 021001. doi: 10.11883/bzycj-2023-0214
JIANG Zhoushun, XU Fengxiang, ZOU Zhen, ZHOU Qianmou. Dynamic response and energy absorption properties of sinusoidally curved three-dimensional negative Poissonʼs ratio sandwich panels subjected to blast loading[J]. Explosion And Shock Waves, 2024, 44(2): 021001. doi: 10.11883/bzycj-2023-0214
Citation: JIANG Zhoushun, XU Fengxiang, ZOU Zhen, ZHOU Qianmou. Dynamic response and energy absorption properties of sinusoidally curved three-dimensional negative Poissonʼs ratio sandwich panels subjected to blast loading[J]. Explosion And Shock Waves, 2024, 44(2): 021001. doi: 10.11883/bzycj-2023-0214

爆炸载荷下正弦曲边三维负泊松比夹芯板的动态响应和吸能特性

doi: 10.11883/bzycj-2023-0214
基金项目: 国家自然科学基金(51975438);高等学校学科创新引智计划(B17034)
详细信息
    作者简介:

    蒋舟顺(1998- ),男,硕士研究生,17607249599@163.com

    通讯作者:

    徐峰祥(1985- ),男,博士,副教授,xufx@whut.edu.cn

  • 中图分类号: O347

Dynamic response and energy absorption properties of sinusoidally curved three-dimensional negative Poissonʼs ratio sandwich panels subjected to blast loading

  • 摘要: 具有优异能量吸收特性的负泊松比结构在抗爆炸冲击防护领域有广阔的应用前景。为进一步提升夹芯板的抗爆性能,提出了一种在XY方向力学特性相同的正弦曲边三维负泊松比夹芯板用于防爆保护。采用数值模拟方法,对夹芯板在空爆载荷下的动态响应和吸能特性进行了研究,分析了夹芯板塑性拉伸和弯曲对背面板变形模式和轴向偏转分布的影响,并探究了爆炸距离、炸药质量、面板厚度和芯层关键结构参数对夹芯板变形和能量吸收的影响。结果表明,在空爆载荷下,夹芯板的动态响应过程可分为芯层压缩、整体变形和自由振动3个阶段。后面板在纵向(X方向)和横向(Y方向)上的抗变形能力无明显差异。随着炸药质量增加和爆炸距离减小,夹芯板的后面板中心位移增加,芯层吸能占比减小。此外,采用薄前面板和厚后面板的夹芯板可以提高芯层的吸能占比。当分别增加相同的前、后面板厚度时,前面板厚度对减小后面板中心位移的影响更显著。当芯层厚度从0.6 mm减小至0.2 mm时,后面板中心位移减小49.0%,总能量吸收增加86.7%;芯层振幅从0.2 mm增大至1.0 mm时,后面板中心位移减小20.7%,总能量吸收大致不变;芯层高度从10 mm增大至18 mm时,后面板中心位移减小88.3%,总能量吸收增加56.9%;芯层宽长比从0.56减小至0.2时,后面板中心位移减小39%,总能量吸收增加47.4%。
  • 图  1  具有负泊松比效应的正弦曲边蜂窝

    Figure  1.  Sinusoidal curved honeycomb with negative Poissonʼs ratio effect

    图  2  爆炸载荷下三维负泊松比夹芯板数值模型(1/4模型)

    Figure  2.  A numerical model of 3D negative Poisson’s ratio sandwich panels under blast loading (1/4 of the model)

    图  3  数值模拟得到的不同网格尺寸下后面板中心点位移

    Figure  3.  Numerically-simulated central displacement-time curves of the back face sheet under different mesh sizes

    图  4  正六边形蜂窝夹芯板和胞元结构示意图[37]

    Figure  4.  Schematic diagrams of the regular hexagonal honeycomb sandwich panel and cell structure[37]

    图  5  蜂窝夹芯板变形模式数值模拟结果与实验结果的对比 (S4-1)[37]

    Figure  5.  Comparison between numerical simulation results and experimental results of deformation patterns of the honeycomb sandwich panel (S4-1)[37]

    图  6  实验和数值预测的后面板最终中心点位移比较

    Figure  6.  Comparison of the final center point displacement of the back face sheet between experimental and numerical predictions

    图  7  数值模拟得到的蜂窝夹芯板S4-1中各能量的时间曲线

    Figure  7.  Numerically-simulated energy history curves of the honeycomb sandwich panel S4-1

    图  8  前后面板中心的速度和位移以及芯层压缩量随时间的变化

    Figure  8.  Central velocity-time curves of the front and back face sheets as well as central displacement-time curves of the front and back face sheets, and core compression

    图  9  夹芯板在不同时刻的Z向位移云图

    Figure  9.  Contours of the Z-direction displacement of the sandwich panel at different times

    图  10  不同时刻前后面板距中心点不同距离处的位移分布

    Figure  10.  Displacement distribution of the front and back face sheets at different distances from the mid-point at different times

    图  11  后面板上选点的具体位置

    Figure  11.  Locations of the selected points on the back face sheet

    图  12  后面板上点的位移

    Figure  12.  Locations of the selected points on the back face sheet

    图  13  不同炸药质量下前后面板的中心位移和中心芯层压缩量对比

    Figure  13.  Comparison of central displacements of front and back face sheets and center core compression under different explosive masses

    图  14  不同炸药质量下后面板中心位移时间曲线

    Figure  14.  Center point displacement-time curves of back face sheets under different explosive masses

    图  15  不同炸药质量下夹芯板不同部件的能量吸收和芯层吸能在总吸能中的占比

    Figure  15.  Energy absorption of different parts of sandwich panel and core energy absorption percentages in the total energy absorption under different explosive masses

    图  16  不同炸药质量下夹芯板的变形分布

    Figure  16.  Deformation distributions of sandwich panels under different explosive masses

    图  17  不同爆距下的前后面板中心位移和芯层压缩量对比

    Figure  17.  Comparison of central displacements of front and back face sheets and center core compressionunder different stand-off distances

    图  18  不同爆距下夹芯板不同部件的能量吸收 和芯层吸能在总吸能中的占比

    Figure  18.  Energy absorption of different parts of sandwich panel and core energy absorption percentages in the total energy absorption under different stand-off distances

    图  19  不同前后面板厚度下前后面板的中心位移

    Figure  19.  Central displacements of front and back face sheets with different thicknesses

    图  20  不同前后面板厚度下各部件的能量吸收

    Figure  20.  Energy absorption of each component under different front and back face sheet thicknesses

    图  21  不同芯层厚度和振幅下前后面板的中心位移

    Figure  21.  Central displacements of front and back face sheets with different core thicknesses and amplitudes

    图  22  不同芯层厚度和振幅下各部件的能量吸收

    Figure  22.  Energy absorption of each component under different core thicknesses and amplitudes

    图  23  不同振幅和不同宽长比下夹芯板的Z向位移云图

    Figure  23.  Displacement contours in the Z direction for sandwich panels with different amplitudes and aspect ratios

    图  24  不同胞元高度和宽长比下前后面板的中心位移

    Figure  24.  Central displacements of front and back face sheets under different cell heights and aspect ratios

    图  25  不同胞元高度和宽长比下各部件的能量吸收

    Figure  25.  Energy absorption of each component under different cell heights and aspect ratios

    图  26  3种蜂窝夹芯板的芯层结构和胞元结构示意图

    Figure  26.  Schematic diagrams of core layer structure and cell structure for three sandwich panels

    图  27  4种不同夹芯板的背面板的中心位移时间曲线

    Figure  27.  Central displacement-time curves of back face sheets of four different honeycomb sandwich panels

    表  1  数值模拟中采用的铝合金主要材料参数[37]

    Table  1.   Main material parameters of aluminum alloy used in numerical simulation[37]

    部件材料屈服应力/MPa拉伸强度/MPa杨氏模量/GPa密度/(g·cm−3)泊松比
    面板AL1200140160702.70.3
    芯层AL505270210702.70.3
    下载: 导出CSV

    表  2  爆炸载荷下三维负泊松比夹芯板设计方案

    Table  2.   Designs of 3D negative Poisson’s ratio sandwich panels subjected to blast loading

    编号 Tf/mm Tb/mm A/mm L2/mm 爆炸距离/mm Q/g 拉伸宽度L4/mm
    A-1 1.2 1.2 1 10 100 20 5
    Q-30 1.2 1.2 1 10 100 30 5
    Q-40 1.2 1.2 1 10 100 40 5
    S-80 1.2 1.2 1 10 80 20 5
    S-120 1.2 1.2 1 10 120 20 5
    下载: 导出CSV

    表  3  4组夹芯板的几何参数和爆炸参数[37]

    Table  3.   Geometric and explosion parameters for four sets of sandwich panels[37]

    夹芯板L2/mm蜂窝边长L1/mmTc/mmQ/g爆炸距离/mm
    S4-118.450.0410150
    S4-218.450.0410100
    S3-118.430.0415100
    S3-218.430.0420130
    下载: 导出CSV

    表  4  3种夹芯板的几何信息和模拟结果

    Table  4.   Geometric information and simulation results for three sandwich panels

    编号 胞元长度
    L1/mm
    胞元高度
    L2/mm
    胞元夹角
    θ/(°)
    胞元厚度
    Tc/mm
    夹芯板总质量
    M/g
    背面板中心最终
    位移Db/mm
    结构总能量
    吸收E/J
    比吸能
    e/(J·g−1)
    C-1 10 10 0.2 211.64 6.58 382.6 1.81
    C-2 10 10 120 0.2 257.66 8.67 316.1 1.23
    C-3 5.77 10 120 0.2 229.13 10.4 256.6 1.12
    C-4 5.77 10 120 0.2 226.20 11.4 236.3 1.04
    下载: 导出CSV
  • [1] DHARMASENA K P, WADLEY H N G, XUE Z Y, et al. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading [J]. International Journal of Impact Engineering, 2008, 35(9): 1063–1074. DOI: 10.1016/j.ijimpeng.2007.06.008.
    [2] ZHANG J X, ZHOU R F, WANG M S, et al. Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading [J]. International Journal of Impact Engineering, 2018, 122: 265–275. DOI: 10.1016/j.ijimpeng.2018.08.016.
    [3] UTH T, DESHPANDE V S. Response of clamped sandwich beams subjected to high-velocity impact by sand slugs [J]. International Journal of Impact Engineering, 2014, 69: 165–181. DOI: 10.1016/j.ijimpeng.2014.02.012.
    [4] 张豪, 常白雪, 赵凯, 等. 三种蜂窝夹芯板的抗爆性能分析 [J]. 北京理工大学学报, 2022, 42(6): 557–566. DOI: 10.15918/j.tbit1001-0645.2021.225.

    ZHANG H, CHANG B X, ZHAO K, et al. Anti-explosion analysis of honeycomb sandwich panels with three kinds of core structures [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 557–566. DOI: 10.15918/j.tbit1001-0645.2021.225.
    [5] 田力, 胡建伟. Ⅰ-Ⅴ型夹芯板在近爆冲击波和破片群联合作用下防爆性能研究 [J]. 湖南大学学报(自然科学版), 2019, 46(1): 32–46. DOI: 10.16339/j.cnki.hdxbzkb.2019.01.004.

    TIAN L, HU J W. Research on explosion protective properties of I-V sandwich panel under combined loading of close-range blast wave and fragments [J]. Journal of Hunan University (Natural Sciences), 2019, 46(1): 32–46. DOI: 10.16339/j.cnki.hdxbzkb.2019.01.004.
    [6] 田力, 张浩. 冲击波和预制破片复合作用下H型钢柱损伤效应分析 [J]. 同济大学学报(自然科学版), 2018, 46(3): 289–299. DOI: 10.11908/j.issn.0253-374x.2018.03.002.

    TIAN L, ZHANG H. Damage effect analysis of H-section steel columns subjected to synergistic effects of blast and prefabricated fragments [J]. Journal of Tongji University (Natural Science), 2018, 46(3): 289–299. DOI: 10.11908/j.issn.0253-374x.2018.03.002.
    [7] ZHANG C Z, CHENG Y S, ZHANG P, et al. Numerical investigation of the response of I-core sandwich panels subjected to combined blast and fragment loading [J]. Engineering Structures, 2017, 151: 459–471. DOI: 10.1016/j.engstruct.2017.08.039.
    [8] LI J F, QIN Q H, ZHANG J X. Internal blast resistance of sandwich cylinder with lattice cores [J]. International Journal of Mechanical Sciences, 2021, 191: 106107. DOI: 10.1016/j.ijmecsci.2020.106107.
    [9] 李勇, 肖伟, 程远胜, 等. 冲击波与破片对波纹杂交夹层板的联合毁伤数值研究 [J]. 爆炸与冲击, 2018, 38(2): 279–288. DOI: 10.11883/bzycj-2016-0224.

    LI Y, XIAO W, CHENG Y S, et al. Numerical research on response of hybrid corrugated sandwich plates subjected to combined blast and fragment loadings [J]. Explosion and Shock Waves, 2018, 38(2): 279–288. DOI: 10.11883/bzycj-2016-0224.
    [10] QIN Q H, CHEN S J, LI K K, et al. Structural impact damage of metal honeycomb sandwich plates [J]. Composite Structures, 2020, 252: 112719. DOI: 10.1016/j.compstruct.2020.112719.
    [11] ZHANG J X, QIN Q H, ZHANG J T, et al. Low-velocity impact on square sandwich plates with fibre-metal laminate face-sheets: analytical and numerical research [J]. Composite Structures, 2021, 259: 113461. DOI: 10.1016/j.compstruct.2020.113461.
    [12] QIN Q H, XIA Y M, LI J F, et al. On dynamic crushing behavior of honeycomb-like hierarchical structures with perforated walls: experimental and numerical investigations [J]. International Journal of Impact Engineering, 2020, 145: 103674. DOI: 10.1016/j.ijimpeng.2020.103674.
    [13] ZHANG J X, ZHU Y Q, LI K K, et al. Dynamic response of sandwich plates with GLARE face-sheets and honeycomb core under metal foam projectile impact: experimental and numerical investigations [J]. International Journal of Impact Engineering, 2022, 164: 104201. DOI: 10.1016/j.ijimpeng.2022.104201.
    [14] ZHANG X W, YANG D Q. Mechanical properties of auxetic cellular material consisting of Re-entrant hexagonal honeycombs [J]. Materials, 2016, 9(11): 900. DOI: 10.3390/ma9110900.
    [15] BEZAZI A, SCARPA F. Mechanical behaviour of conventional and negative Poisson's ratio thermoplastic polyurethane foams under compressive cyclic loading [J]. International Journal of Fatigue, 2007, 29(5): 922–930. DOI: 10.1016/j.ijfatigue.2006.07.015.
    [16] ABADA M, IBRAHIM A. Metallic ribbon-core sandwich panels subjected to air blast loading [J]. Applied Sciences, 2020, 10(13): 4500. DOI: 10.3390/app10134500.
    [17] WIERNICKI C J, LIEM P E F, WOODS G D, et al. Structural analysis methods for lightweight metallic corrugated core sandwich panels subjected to blast loads [J]. Naval Engineers Journal, 1991, 103(3): 192–202. DOI: 10.1111/j.1559-3584.1991.tb00949.x.
    [18] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. 2nd ed. Cambridge: Cambridge University Press, 1997. DOI: 10.1017/CBO9781139878326.
    [19] LU G X, YU T X. Energy absorption of structures and materials [M]. Cambridge: Woodhead Publishing, 2003.
    [20] JING L, WANG Z H, NING J G, et al. The dynamic response of sandwich beams with open-cell metal foam cores [J]. Composites Part B:Engineering, 2011, 42(1): 1–10. DOI: 10.1016/j.compositesb.2010.09.024.
    [21] ZHANG P W, LI X, JIN T, et al. Dynamic response of circular metallic sandwich panels under projectile impact [J]. Journal of Sandwich Structures and Materials, 2017, 19(5): 572–594. DOI: 10.1177/1099636215626596.
    [22] 孙晓旺, 陶晓晓, 王显会, 等. 负泊松比蜂窝材料抗爆炸特性及优化设计研究 [J]. 爆炸与冲击, 2020, 40(9): 095101. DOI: 10.11883/bzycj-2020-0011.

    SUN X W, TAO X X, WANG X H, et al. Research on explosion-proof characteristics and optimization design of negative Poisson’s ratio honeycomb material [J]. Explosion and Shock Waves, 2020, 40(9): 095101. DOI: 10.11883/bzycj-2020-0011.
    [23] 杨德庆, 张相闻, 吴秉鸿. 负泊松比效应防护结构抗爆抗冲击性能影响因素 [J]. 上海交通大学学报, 2018, 52(4): 379–387. DOI: 10.16183/j.cnki.jsjtu.2018.04.001.

    YANG D Q, ZHANG X W, WU B H. The influence factors of explosion and shock resistance performance of Auxetic sandwich defensive structures [J]. Journal of Shanghai Jiaotong University, 2018, 52(4): 379–387. DOI: 10.16183/j.cnki.jsjtu.2018.04.001.
    [24] 孙魁远, 孙晓旺, 张宏伟, 等. 厚度梯度型负泊松比蜂窝抗爆炸特性及优化 [J]. 兵器装备工程学报, 2022, 43(4): 190–197. DOI: 10.11809/bqzbgcxb2022.04.031.

    SUN K Y, SUN X W, ZHANG H W, et al. Anti-explosion characteristics and optimization of negative Poisson’s ratio honeycomb with thickness gradient [J]. Journal of Ordnance Equipment Engineering, 2022, 43(4): 190–197. DOI: 10.11809/bqzbgcxb2022.04.031.
    [25] 卫禹辰, 袁梦琦, 钱新明, 等. 爆炸冲击环境下内凹蜂窝型梯度结构响应特性研究 [J]. 中国安全生产科学技术, 2021, 17(1): 5–11. DOI: 10.11731/j.issn.1673-193x.2021.01.001.

    WEI Y C, YUAN M Q, QIAN X M, et al. Research on response characteristics of concave honeycomb gradient structure under explosive impact environment [J]. Journal of Safety Science and Technology, 2021, 17(1): 5–11. DOI: 10.11731/j.issn.1673-193x.2021.01.001.
    [26] 杨德庆, 吴秉鸿, 张相闻. 星型负泊松比超材料防护结构抗爆抗冲击性能研究 [J]. 爆炸与冲击, 2019, 39(6): 065102. DOI: 10.11883/bzycj-2018-0060.

    YANG D Q, WU B H, ZHANG X W. Anti-explosion and shock resistance performance of sandwich defensive structure with star-shaped auxetic material core [J]. Explosion and Shock Waves, 2019, 39(6): 065102. DOI: 10.11883/bzycj-2018-0060.
    [27] JIN X C, WANG Z H, NING J G, et al. Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading [J]. Composites Part B:Engineering, 2016, 106: 206–217. DOI: 10.1016/j.compositesb.2016.09.037.
    [28] GAO Q, GE C Q, ZHUANG W C, et al. Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading [J]. Materials and Design, 2019, 161: 22–34. DOI: 10.1016/j.matdes.2018.11.013.
    [29] BEHARIC A, EGUI R R, YANG L. Drop-weight impact characteristics of additively manufactured sandwich structures with different cellular designs [J]. Materials and Design, 2018, 145: 122–134. DOI: 10.1016/j.matdes.2018.02.066.
    [30] 杨泽水, 薛玉祥, 刘爱荣. 三维负泊松比星型结构冲击动力学研究 [J]. 工程力学, 2022, 39(S1): 356–363. DOI: 10.6052/j.issn.1000-4750.2021.05.S057.

    YANG Z S, XUE Y X, LIU A R. Study on the impact dynamics of three-dimensional star-shaped structure with negative Poisson’s ratio [J]. Engineering Mechanics, 2022, 39(S1): 356–363. DOI: 10.6052/j.issn.1000-4750.2021.05.S057.
    [31] WANG Y L, ZHAO W Z, ZHOU G, et al. Analysis and parametric optimization of a novel sandwich panel with double-V auxetic structure core under air blast loading [J]. International Journal of Mechanical Sciences, 2018, 142/143: 245–254. DOI: 10.1016/j.ijmecsci.2018.05.001.
    [32] IMBALZANO G, TRAN P, NGO T D, et al. Three-dimensional modelling of auxetic sandwich panels for localised impact resistance [J]. Journal of Sandwich Structures and Materials, 2017, 19(3): 291–316. DOI: 10.1177/1099636215618539.
    [33] IMBALZANO G, TRAN P, LEE P V S, et al. Influences of material and geometry in the performance of auxetic composite structure under blast loading [J]. Applied Mechanics and Materials, 2016, 846: 476–481. DOI: 10.4028/www.scientific.net/AMM.846.476.
    [34] XU F X, YU K J, HUA L. In-plane dynamic response and multi-objective optimization of negative Poisson's ratio (NPR) honeycomb structures with sinusoidal curve [J]. Composite Structures, 2021, 269: 114018. DOI: 10.1016/j.compstruct.2021.114018.
    [35] 虞科炯, 徐峰祥, 华林. 正弦曲边负泊松比蜂窝结构面内冲击性能研究 [J]. 振动与冲击, 2021, 40(13): 51–59. DOI: 10.13465/j.cnki.jvs.2021.13.007.

    YU K J, XU F X, HUA L. In plane impact performance of honeycomb structure with sinusoidal curved edge and negative Poisson’s ratio [J]. Journal of Vibration and Shock, 2021, 40(13): 51–59. DOI: 10.13465/j.cnki.jvs.2021.13.007.
    [36] 邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析 [J]. 振动与冲击, 2017, 36(13): 103–109,154. DOI: 10.13465/j.cnki.jvs.2017.13.016.

    DENG X L, LIU W Y. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative Poisson’s ratio [J]. Journal of Vibration and Shock, 2017, 36(13): 103–109,154. DOI: 10.13465/j.cnki.jvs.2017.13.016.
    [37] LI X, ZHANG P W, WANG Z H, et al. Dynamic behavior of aluminum honeycomb sandwich panels under air blast: experiment and numerical analysis [J]. Composite Structures, 2014, 108: 1001–1008. DOI: 10.1016/j.compstruct.2013.10.034.
    [38] NEUBERGER A, PELES S, RITTEL D. Scaling the response of circular plates subjected to large and close-range spherical explosions. Part II: buried charges [J]. International Journal of Impact Engineering, 2007, 34(5): 874–882. DOI: 10.1016/j.ijimpeng.2006.04.002.
    [39] LIU J F, WANG Z G, HUI D. Blast resistance and parametric study of sandwich structure consisting of honeycomb core filled with circular metallic tubes [J]. Composites Part B: Engineering, 2018, 145: 261–269. DOI: 10.1016/j.compositesb.2018.03.005.
    [40] WANG E D, LI Q, SUN G Y. Computational analysis and optimization of sandwich panels with homogeneous and graded foam cores for blast resistance [J]. Thin-Walled Structures, 2020, 147: 106494. DOI: 10.1016/j.tws.2019.106494.
  • 加载中
图(27) / 表(4)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  85
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-16
  • 修回日期:  2023-10-24
  • 网络出版日期:  2023-12-03
  • 刊出日期:  2024-02-06

目录

    /

    返回文章
    返回