隧道表面爆破地震波的产生机制及传播特征

蒙贤忠 周传波 蒋楠 张玉琦 张震 吴迪

蒙贤忠, 周传波, 蒋楠, 张玉琦, 张震, 吴迪. 隧道表面爆破地震波的产生机制及传播特征[J]. 爆炸与冲击, 2024, 44(2): 025201. doi: 10.11883/bzycj-2023-0217
引用本文: 蒙贤忠, 周传波, 蒋楠, 张玉琦, 张震, 吴迪. 隧道表面爆破地震波的产生机制及传播特征[J]. 爆炸与冲击, 2024, 44(2): 025201. doi: 10.11883/bzycj-2023-0217
MENG Xianzhong, ZHOU Chuanbo, JIANG Nan, ZHANG Yuqi, ZHANG Zhen, WU Di. Generation mechanism and propagation characteristics of blasting seismic waves on tunnel surface[J]. Explosion And Shock Waves, 2024, 44(2): 025201. doi: 10.11883/bzycj-2023-0217
Citation: MENG Xianzhong, ZHOU Chuanbo, JIANG Nan, ZHANG Yuqi, ZHANG Zhen, WU Di. Generation mechanism and propagation characteristics of blasting seismic waves on tunnel surface[J]. Explosion And Shock Waves, 2024, 44(2): 025201. doi: 10.11883/bzycj-2023-0217

隧道表面爆破地震波的产生机制及传播特征

doi: 10.11883/bzycj-2023-0217
基金项目: 国家自然科学基金(41972286, 42102329)
详细信息
    作者简介:

    蒙贤忠(1997- ),男,博士研究生,mxianzhong97@cug.edu.cn

    通讯作者:

    周传波(1963- ),男,博士,教授,博士生导师,cbzhou@cug.edu.cn

  • 中图分类号: O382

Generation mechanism and propagation characteristics of blasting seismic waves on tunnel surface

  • 摘要: 为了研究隧道表面爆破地震波的产生机制及传播规律,提出了隧道表面爆破振动平面应变理论模型,得到了隧道表面爆破振动场积分形式解;以龙南隧道爆破工程为背景,建立了有限元数值模型,通过现场测试验证了数值模拟与理论解答的准确性;提出了基于高分辨率Radon变换的隧道爆破地震波波场分离方法,结合理论解析与数值模拟得到了P波、S波、R波的传播特征,最后综合理论结果与波场分离结果提出了隧道爆破地震波作用分区。结果表明:隧道爆破产生P波、S波,R波在自由面迅速发育,3类波呈现指数衰减特征,S波衰减快于P波快于R波。随着爆心距的增大,垂直方向主要成分由S波转变为R波,水平方向主要成分由S波转变为P波,P波转变为R波。Ⅳ级围岩工况下,隧道爆破地震波作用分区为:隧道轴向距掌子面0~6.44 m为爆破近区,主导波型为水平S波;6.44~21.23 m为爆破中区,主导波型为水平P波;21.23 m外为爆破远区,主导波型为垂直R波。爆破分区分界点与单段最大药量呈线性关系,可通过爆破药量得到隧道爆破分区位置,用于隧道安全稳定性分析。
  • 图  1  隧道爆破振动理论模型

    Figure  1.  Theoretical models for tunnel blasting vibration

    图  2  爆破荷载时间函数

    Figure  2.  Time decay function of blasting load

    图  3  η-平面积分路径

    Figure  3.  η-plane integral path

    图  4  龙南隧道试验段炮孔布置

    Figure  4.  Layout of blast holes in the test section of the Longnan tunnel

    图  5  龙南隧道爆破振动现场测试

    Figure  5.  Field test of blasting vibration in the Longnan tunnel

    图  6  龙南隧道爆破数值模型

    Figure  6.  A numerical model for Longnan tunnel blasting

    图  7  数值模拟结果验证

    Figure  7.  Validation of numerical simulation results

    图  8  理论与数值模拟结果对比

    Figure  8.  Comparison of theoretical and numerical simulation results

    图  9  τ-p正变换和逆变换的空间映射关系

    Figure  9.  Spatial mappings of τ-p forward and inverse transformations

    图  10  爆破地震波波场分离流程

    Figure  10.  Separation process of blasting seismic wave field

    图  11  垂直位移波场分离结果

    Figure  11.  Separation results of vertical displacement wave field

    图  12  水平位移波场分离结果

    Figure  12.  Separation results of horizontal displacement wave field

    图  13  输入质点位移与反演位移的比较

    Figure  13.  Comparison of input and inversion particle displacements

    图  14  隧道表面P波、R波的传播规律

    Figure  14.  Propagation laws of P-wave and R-wave on tunnel surface

    图  15  P波、R波峰值振速比分布

    Figure  15.  Distribution patterns of P-wave-to-R-wave PPV ratios

    图  16  垂向、水平向峰值振速比分布

    Figure  16.  Distribution patterns of vertical-to-horizontal PPV ratios

    图  17  隧道表面S波的传播规律

    Figure  17.  Propagation law of S-wave on tunnel surface

    图  18  P波、S波峰值振速比的分布规律

    Figure  18.  Distribution patterns of P-wave-to-S-wave peak particle velocity ratios

    图  19  垂直与水平方向隧道表面爆破地震波作用范围

    Figure  19.  Action ranges of blasting seismic waves on tunnel surface in vertical and horizontal directions

    图  20  隧道表面爆破地震波作用分区

    Figure  20.  Blasting seismic wave action zones on tunnel surface

    图  21  分区位置与炸药量关系

    Figure  21.  Relationships of partition positions with explosive mass

    表  1  数值模型材料参数

    Table  1.   Material parameters of the numerical model

    结构 密度/(kg·m−3) 弹性模量/GPa 泊松比 屈服强度/MPa 切线模量/MPa
    Ⅳ级围岩 2300 4.00 0.31 5.0 2.2
    初衬 2200 23.00 0.25 4.2 2.5
    二衬 2500 32.00 0.20 6.0 2.4
    下载: 导出CSV
  • [1] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 爆破安全规程: GB 6722-2014 [S]. 北京: 中国标准出版社, 2015.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. Safety regulations for blasting: GB 6722-2014 [S]. Beijing: Standards Press of China, 2015.
    [2] 唐海, 李海波. 反映高程放大效应的爆破振动公式研究 [J]. 岩土力学, 2011, 32(3): 820–824. DOI: 10.3969/j.issn.1000-7598.2011.03.030.

    TANG H, LI H B. Study of blasting vibration formula of reflecting amplification effect on elevation [J]. Rock and Soil Mechanics, 2011, 32(3): 820–824. DOI: 10.3969/j.issn.1000-7598.2011.03.030.
    [3] 蒋楠. 露天转地下开采边坡爆破动力特性研究 [D]. 武汉: 中国地质大学, 2013: 30–32.

    JIANG N. Study on blasting dynamic characteristics of open pit to underground mining slope [D]. Wuhan: China University of Geosciences, 2013: 30–32.
    [4] 夏祥, 李俊如, 李海波, 等. 爆破荷载作用下岩体振动特征的数值模拟 [J]. 岩土力学, 2005, 26(1): 50–56. DOI: 10.3969/j.issn.1000-7598.2005.01.011.

    XIA X, LI J R, LI H B, et al. Udec modeling of vibration characteristics of jointed rock mass under explosion [J]. Rock and Soil Mechanics, 2005, 26(1): 50–56. DOI: 10.3969/j.issn.1000-7598.2005.01.011.
    [5] 夏文俊, 卢文波, 陈明, 等. 白鹤滩坝址柱状节理玄武岩爆破损伤质点峰值振速安全阈值研究 [J]. 岩石力学与工程学报, 2019, 38(S1): 2997–3007. DOI: 10.13722/j.cnki.jrme.2018.0036.

    XIA W J, LU W B, CHEN M, et al. Study on safety threshold of peak particle velocity about blasting damage of columnar jointed basalt rock mass in Baihetan Dam site [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2997–3007. DOI: 10.13722/j.cnki.jrme.2018.0036.
    [6] WU D, LI H B, FUKUDA D, et al. Development of a finite-discrete element method with finite-strain elasto-plasticity and cohesive zone models for simulating the dynamic fracture of rocks [J]. Computers and Geotechnics, 2023, 156: 105271. DOI: 10.1016/j.compgeo.2023.105271.
    [7] SHARPE J A. The production of elastic waves by explosion pressures: I. theory and empirical field observations [J]. Geophysics, 1942, 7(2): 144–154. DOI: 10.1190/1.1445002.
    [8] BLAKE JR F G. Spherical wave propagation in solid media [J]. The Journal of the Acoustical Society of America, 1952, 24(2): 211–215. DOI: 10.1121/1.1906882.
    [9] RICKER N. The form and laws of propagation of seismic wavelets [J]. Geophysics, 1953, 18(1): 10–40. DOI: 10.1190/1.1437843.
    [10] HEELAN P A. Radiation from a cylindrical source of finite length [J]. Geophysics, 1953, 18(3): 685–696. DOI: 10.1190/1.1437923.
    [11] JORDAN D W. The stress wave from a finite, cylindrical explosive source [J]. Journal of Mathematics and Mechanics, 1962, 11(4): 503–551.
    [12] ABO-ZENA A. Radiation from a finite cylindrical explosive source [J]. Geophysics, 1977, 42(7): 1384–1393. DOI: 10.1190/1.1440799.
    [13] LAMB H. I. On the propagation of tremors over the surface of an elastic solid [J]. Philosophical Transactions of the Royal Society A, 1904, 203(359): 1–42.
    [14] EASON G. The displacements produced in an elastic half-space by a suddenly applied surface force [J]. IMA Journal of Applied Mathematics, 1966, 2(4): 299–326. DOI: 10.1093/imamat/2.4.299.
    [15] 王小岗. 横观各向同性饱和地基三维瞬态Lamb问题 [J]. 岩土力学, 2011, 32(1): 253–260. DOI: 10.3969/j.issn.1000-7598.2011.01.040.

    WANG X G. Three-dimensional transient Lamb’s problem of transversely isotropic saturated soils [J]. Rock and Soil Mechanics, 2009, 32(1): 253–260. DOI: 10.3969/j.issn.1000-7598.2011.01.040.
    [16] 徐则民, 黄润秋. 岩爆与爆破的关系 [J]. 岩石力学与工程学报, 2003, 22(3): 414–419. DOI: 10.3321/j.issn:1000-6915.2003.03.014.

    XU Z M, HUANG R Q. Relationship between rock burst and blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(3): 414–419. DOI: 10.3321/j.issn:1000-6915.2003.03.014.
    [17] 王立安, 赵建昌, 侯小强, 等. 非均匀饱和半空间的Lamb问题 [J]. 岩土力学, 2020, 41(5): 1790–1798. DOI: 10.16285/j.rsm.2019.0591.

    WANG L A, ZHAO J C, HOU X Q, et al. Lamb problem for non-homogeneous saturated half-space [J]. Rock and Soil Mechanics, 2020, 41(5): 1790–1798. DOI: 10.16285/j.rsm.2019.0591.
    [18] 周红敏, 赵事成, 赵文清, 等. 基于改进的MEEMD的隧道掘进爆破振动信号去噪优化分析 [J]. 振动与冲击, 2023, 42(10): 74–81. DOI: 10.13465/j.cnki.jvs.2023.010.010.

    ZHOU H M, ZHAO S C, ZHAO W Q, et al. Vibration signal denoising optimization analysis in tunnel excavation based on improved MEEMD [J]. Journal of Vibration and Shock, 2023, 42(10): 74–81. DOI: 10.13465/j.cnki.jvs.2023.010.010.
    [19] 付晓强, 麻岩, 俞缙, 等. 隧道爆破振动信号时频谱增强优化分析 [J]. 矿业科学学报, 2023, 8(3): 348–356. DOI: 10.19606/j.cnki.jmst.2023.03.008.

    FU X Q, MA Y, YU J, et al. Optimization analysis of time frequency spectrum enhancement of tunnel blasting vibration signal [J]. Journal of Mining Science and Technology, 2023, 8(3): 348–356. DOI: 10.19606/j.cnki.jmst.2023.03.008.
    [20] 高启栋, 卢文波, 杨招伟, 等. 水平光面爆破激发地震波的成分及衰减特征 [J]. 爆炸与冲击, 2019, 39(8): 085201. DOI: 10.11883/bzycj-2018-0280.

    GAO Q D, LU W B, YANG Z W, et al. Components and attenuation of seismic wavesinduced by horizontal smooth blasting [J]. Explosion and Shock Waves, 2019, 39(8): 085201. DOI: 10.11883/bzycj-2018-0280.
    [21] 高启栋, 卢文波, 杨招伟, 等. 垂直孔爆破诱发地震波的成分构成及演化规律 [J]. 岩石力学与工程学报, 2019, 38(1): 18–27. DOI: 10.13722/j.cnki.jrme.2018.0824.

    GAO Q D, LU W B, YANG Z W, et al. Components and evolution laws of seismic waves induced by vertical-hole blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1): 18–27. DOI: 10.13722/j.cnki.jrme.2018.0824.
    [22] 陈士海, 魏海霞, 杜荣强. 爆破震动信号的多分辨小波分析 [J]. 岩土力学, 2009, 30(S1): 135–139, 143. DOI: 10.3969/j.issn.1000-7598.2009.z1.027.

    CHEN S H, WEI H X, DU R Q. Multi-resolution wavelet analysis of blasting vibration signals [J]. Rock and Soil Mechanics, 2009, 30(S1): 135–139, 143. DOI: 10.3969/j.issn.1000-7598.2009.z1.027.
    [23] 杨年华. 爆破振动理论与测控技术 [M]. 北京: 中国铁道出版社, 2014: 112–116.
    [24] BIOT M A. Propagation of elastic waves in a cylindrical bore containing a fluid [J]. Journal of Applied Physics, 1952, 23(9): 997–1005. DOI: 10.1063/1.1702365.
    [25] MA G W, AN X M. Numerical simulation of blasting-induced rock fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 966–975. DOI: 10.1016/j.ijrmms.2007.12.002.
    [26] 尤金 D. Mathematica使用指南 [M]. 邓建松, 彭冉冉, 译. 北京: 科学出版社, 2002: 204–209.
    [27] 周海孝, 高启栋, 王亚琼, 等. 隧洞全断面开挖中不同爆破孔作用边界及其诱发振动特性的比较分析 [J]. 岩石力学与工程学报, 2022, 41(4): 785–797. DOI: 10.13722/j.cnki.jrme.2021.1078.

    ZHOU H X, GAO Q D, WANG Y Q, et al. Comparative analysis of vibration characteristics induced by different kinds of boreholes and their blasting boundaries during full-face tunnel blasting excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(4): 785–797. DOI: 10.13722/j.cnki.jrme.2021.1078.
    [28] 杨建华, 卢文波, 陈明, 等. 岩石爆破开挖诱发振动的等效模拟方法 [J]. 爆炸与冲击, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07.

    YANG J H, LU W B, CHEN M, et al. An equivalent simulation method for blasting vibration of surrounding rock [J]. Explosion and Shock Waves, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07.
    [29] 黄德智. 基于反射波信号相似性的地震波场分离方法研究 [D]. 长春: 吉林大学, 2021: 11–13.

    HUANG D Z. Study on the wave field separation of seismic based on the similarity of reflected wave signal [D]. Changchun: Jilin University, 2021: 11–13.
    [30] TRAD D, ULRYCH T, SACCHI M. Latest views of the sparse Radon transform [J]. Geophysics, 2003, 68(10): 386–399. DOI: 10.1190/1.1543224.
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  51
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-19
  • 修回日期:  2023-12-18
  • 网络出版日期:  2023-12-19
  • 刊出日期:  2024-02-06

目录

    /

    返回文章
    返回