底隙对装药发射安全性影响机理的数值模拟研究

吴世博 陈卫东 路胜卓 吴培文 孙明武 焦子腾

吴世博, 陈卫东, 路胜卓, 吴培文, 孙明武, 焦子腾. 底隙对装药发射安全性影响机理的数值模拟研究[J]. 爆炸与冲击, 2024, 44(3): 032901. doi: 10.11883/bzycj-2023-0222
引用本文: 吴世博, 陈卫东, 路胜卓, 吴培文, 孙明武, 焦子腾. 底隙对装药发射安全性影响机理的数值模拟研究[J]. 爆炸与冲击, 2024, 44(3): 032901. doi: 10.11883/bzycj-2023-0222
WU Shibo, CHEN Weidong, LU Shengzhuo, WU Peiwen, SUN Mingwu, JIAO Ziteng. A numerical study of the impact mechanism of bottom gap on charge launch safety[J]. Explosion And Shock Waves, 2024, 44(3): 032901. doi: 10.11883/bzycj-2023-0222
Citation: WU Shibo, CHEN Weidong, LU Shengzhuo, WU Peiwen, SUN Mingwu, JIAO Ziteng. A numerical study of the impact mechanism of bottom gap on charge launch safety[J]. Explosion And Shock Waves, 2024, 44(3): 032901. doi: 10.11883/bzycj-2023-0222

底隙对装药发射安全性影响机理的数值模拟研究

doi: 10.11883/bzycj-2023-0222
详细信息
    作者简介:

    吴世博(1992- ),男,博士研究生,wushibo@hrbeu.edu.cn

    通讯作者:

    陈卫东(1966- ),男,博士,教授,chenweidong@hrbeu.edu.cn

  • 中图分类号: O383

A numerical study of the impact mechanism of bottom gap on charge launch safety

  • 摘要: 为研究底隙对装药发射安全性的影响机理,基于物质点法建立了冲击载荷下受底隙影响的热-力-固耦合装药燃烧模型。该模型模拟的PBX装药底部温度与实验结果基本一致,验证了模型的正确性。采用该模型模拟了不同底隙厚度时Composition B(COM B)装药的炮弹发射过程,分析了装药温度变化规律。结果表明:发射过程中,COM B装药温度从底部到顶部逐步降低,装药底部最可能出现点火反应;装药底部温度随着底隙厚度的增加而升高。弹底载荷峰值为324.7 MPa时,COM B装药处于安全状态的底隙厚度不超过0.062 cm。底隙中的空气在发射过程中被压缩,其温度极速升高,导致相邻的装药底部易出现点火反应。
  • 图  1  不同压缩率下的空气温度

    Figure  1.  The air temperatures at different compression ratios

    图  2  装药加热层温度的计算流程

    Figure  2.  Calculation flow of temperature at heating layer of charge

    图  3  黏弹性统计裂纹模型

    Figure  3.  Viscoelastic-statistical crack mechanics model

    图  4  多物质混合状态下的质点

    Figure  4.  Particles in mixed state of multiple substances

    图  5  物理模型

    Figure  5.  Physical model

    图  6  加载压力曲线

    Figure  6.  Loading pressure curve

    图  7  装药底部应力曲线

    Figure  7.  Stress curves of charge at bottom

    图  8  不同底隙厚度下装药的最高温度

    Figure  8.  Maximum temperature of charge with different bottom gap thicknesses

    图  9  炮弹的物理模型

    Figure  9.  Physical model of howitzer

    图  10  作用于炮弹的外部压力载荷

    Figure  10.  Pressure load acting on the howitzer

    图  11  δ=0 cm时典型时刻的装药温度云图

    Figure  11.  Temperature clouds of charge at typical moments when δ=0 cm

    图  12  不同位置的装药应力曲线

    Figure  12.  Stress curves of charge at different positions

    图  13  δ=0 cm时不同观察点的温度曲线

    Figure  13.  Temperature curves at different observationpositions when δ= 0 cm

    图  14  不同观察点处的装药应力曲线

    Figure  14.  Stress curves of charge at different observation positions

    图  15  δ=0.055 cm时典型时刻的装药温度云图

    Figure  15.  Temperature clouds of charge at typical moments when δ=0.055 cm

    图  16  δ=0.055 cm时不同观察点的温度曲线

    Figure  16.  Temperature curves at different observationpositions when δ=0.055 cm

    图  17  δ=0.062 cm时典型时刻的装药温度云图

    Figure  17.  Temperature clouds of charge at typical moments when δ=0.062 cm

    图  18  δ=0.062 cm时不同观察点的温度曲线

    Figure  18.  Temperature curves at different observation positionswhen δ=0.062 cm

    图  19  δ=0.063 cm时典型时刻的装药温度云图

    Figure  19.  Temperature clouds of charge at typical moments when δ=0.063 cm

    图  20  δ=0.063 cm时不同观察点的温度曲线

    Figure  20.  Temperature curves at different observationpositions when δ=0.063 cm

    图  21  观察点G5的压力曲线

    Figure  21.  Pressure curve at G5

    表  1  装药的热力学参数[33-35]

    Table  1.   Thermodynamic parameters of charges [33-35]

    名称 ρ1/(kg·m−3) cp1/(J·kg−1·K−1) λ1/(W·m−1·K−1) Q1/(J·kg−1) Z1/s−1 Ea1·R−1/K μd1
    COM B 1717 1780 0.246 5.82×106 2.01×1018 2.7×104 0.2
    PBX 1842 1810 0.5 5.6×106 5.5×1019 2.652×104 0.24
    下载: 导出CSV

    表  2  钢的Johnson-Cook模型参数[36]

    Table  2.   Parameters of Johnson-Cook model for steel[36]

    ρ/(kg·m−3)AJC/MPaBJC/MPanJCCJCmJCTmelt/K
    78307925100.260.0141.031793
    下载: 导出CSV

    表  3  装药的JWL方程参数[37-38]

    Table  3.   Parameters of JWL equation for charges[37-38]

    名称 ρ/(kg·m−3) A/GPa B/GPa R1 R2 W/(MPa·K−1)
    COM B 1717 7.781×104 −5.031 11.3 1.13 2.2229
    PBX 1842 9.522×105 −5.944 14.1 1.41 2.4656
    下载: 导出CSV

    表  4  钢材的Shock方程参数[37]

    Table  4.   Parameters of Shock equation for steel[37]

    ρst,0/(kg·m−3) C0/(m·s−1) s Γ
    7830 4610 1.73 1.67
    下载: 导出CSV

    表  5  不同底隙厚度时PBX装药的点火情况

    Table  5.   Ignition situation of PBX charge with different bottom gap thicknesses

    δ/cm 装药底部应力峰值 点火情况
    模拟/MPa 实验/MPa 误差/% 模拟 实验
    0 117.39 116.15[24] 1.07 未点火 未点火[24]
    0.05 111.52 110.06[24] 1.33 未点火 未点火[24]
    0.08 点火 点火[24]
    下载: 导出CSV

    表  6  不同底隙厚度时COM B装药的点火情况

    Table  6.   Ignition situations of COM Bwith different bottom gap thicknesses

    δ/cm装药底部温度
    峰值/K
    高温点高温区域点火情况
    0379.30G5装药底部未点火
    0.055491.39G5装药底部未点火
    0.062514.39G5装药底部未点火
    0.063>750.00G5装药底部点火
    下载: 导出CSV
  • [1] 杨京广, 余永刚. 随行装药方案提高大口径火炮初速的数值预测 [J]. 爆炸与冲击, 2008, 28(2): 161–165. DOI: 10.11883/1001-1455(2008)02-0161-05.

    YANG J G, YU Y G. Velocity prediction of big caliber gun based on traveling charge scheme [J]. Explosion and Shock Waves, 2008, 28(2): 161–165. DOI: 10.11883/1001-1455(2008)02-0161-05.
    [2] 彭嘉诚, 蒋建伟, 廖伟. 高速旋转弹丸炸药装药在膛内运动中底层温度的数值模拟 [J]. 兵工学报, 2020, 41(9): 1783–1791. DOI: 10.3969/j.issn.1000-1093.2020.09.010.

    PENG J C, JIANG J W, LIAO W. Bottom temperature simulation of explosive charge in high-speed rotating projectile in internal ballistic process [J]. Acta Armamentarii, 2020, 41(9): 1783–1791. DOI: 10.3969/j.issn.1000-1093.2020.09.010.
    [3] 张雯浩, 余永刚. 基于流固耦合的燃气冲刷烧蚀内膛特性分析 [J]. 爆炸与冲击, 2023, 43(3): 034201. DOI: 10.11883/bzycj-2022-0390.

    ZHANG W H, YU Y G. Analysis of gas-eroding barrel characteristics based on fluid-solid interaction [J]. Explosion and Shock Waves, 2023, 43(3): 034201. DOI: 10.11883/bzycj-2022-0390.
    [4] LI C, RUI X T, WANG Y, et al. A novel method for gas generation law calculation of fractured propellant charge [J]. Propellants, Explosives, Pyrotechnics, 2018, 43(9): 898–903. DOI: 10.1002/prep.201800025.
    [5] 贠来峰, 芮筱亭, 王国平, 等. DCD格式在破碎发射药床两相流内弹道计算中的应用 [J]. 爆炸与冲击, 2010, 30(3): 295–300. DOI: 10.11883/1001-1455(2010)03-0295-06.

    YUN L F, RUI X T, WANG G P, et al. Application of DCD scheme to computation of two-phase flow interior ballistics for fractured propellant bed [J]. Explosion and Shock Waves, 2010, 30(3): 295–300. DOI: 10.11883/1001-1455(2010)03-0295-06.
    [6] ZHAO X, RUI X T, LI C, et al. Evaluation and prediction methods for launch safety of propellant charge based on support vector regression [J]. Applied Soft Computing, 2021, 109: 107527. DOI: 10.1016/j.asoc.2021.107527.
    [7] LIU W, WANG G P, RUI X T, et al. A hotspot model for PBX explosive charge ignition in a launch environment [J]. Combustion Science and Technology, 2022, 194(10): 1954–1972. DOI: 10.1080/00102202.2020.1849166.
    [8] GUO H F, ZHANG F, ZHAO C Z, et al. Influence of particle size of explosive on ignition mechanism under low velocity impact [J]. Propellants, Explosives, Pyrotechnics, 2021, 46(1): 46–51. DOI: 10.1002/prep.202000121.
    [9] 王世英, 胡焕性. B炸药装药发射安全性落锤模拟加载实验研究 [J]. 爆炸与冲击, 2003, 23(3): 275–278.

    WANG S Y, HU H X. Drop hammer simulation study on launch safety of composite B [J]. Explosion and Shock Waves, 2003, 23(3): 275–278.
    [10] 王燕, 芮筱亭, 宋振东, 等. 初始堆积对发射药床底部挤压应力的影响 [J]. 爆炸与冲击, 2014, 34(5): 560–566. DOI: 10.11883/1001-1455(2014)05-0560-07.

    WANG Y, RUI X T, SONG Z D, et al. Effect of original packing on compression stress at the bottom of propellant bed [J]. Explosion and Shock Waves, 2014, 34(5): 560–566. DOI: 10.11883/1001-1455(2014)05-0560-07.
    [11] ROY S, JOHNSON B P, ZHOU X, et al. Hot spot ignition and growth from tandem micro-scale simulations and experiments on plastic-bonded explosives [J]. Journal of Applied Physics, 2022, 131(20): 205901. DOI: 10.1063/5.0085356.
    [12] YANG K, WU Y Q, HUANG F L. Damage and hotspot formation simulation for impact-shear loaded PBXs using combined microcrack and microvoid model [J]. European Journal of Mechanics: A/Solids, 2020, 80: 103924. DOI: 10.1016/j.euromechsol.2019.103924.
    [13] LONG Y, CHEN J. Theoretical study of the critical dynamic behaviors for pore collapse in explosive [J]. Modelling and Simulation in Materials Science and Engineering, 2021, 29(5): 055009. DOI: 10.1088/1361-651X/abfd1c.
    [14] LI X, LIU Y Z, SUN Y. Dynamic mechanical damage and non-shock initiation of a new polymer bonded explosive during penetration [J]. Polymers, 2020, 12(6): 1342. DOI: 10.3390/polym12061342.
    [15] MA X, MA Q P, LI T, et al. A modified set of constitutive models for polymer-bonded explosives that consider heterogeneity of initial cracks and failure of damaged granules [J]. Propellants, Explosives, Pyrotechnics, 2022, 47(11): e202200032. DOI: 10.1002/prep.202200032.
    [16] MA X, ZHANG K, SHANG H L, et al. Measuring crack growth and rise in temperature around a cylindrical defect in explosive simulants under low-pressure and long-pulse loadings [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(10): 1654–1661. DOI: 10.1002/prep.202000057.
    [17] LIU R, CHEN P W, ZHANG X T, et al. Non-shock ignition probability of octahydro-1, 3, 5, 7-tetranitro-tetrazocine-based polymer bonded explosives based on microcrack stochastic distribution [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(4): 568–580. DOI: 10.1002/prep.201900313.
    [18] LIU R, WANG X J, CHEN P W, et al. The role of tension-compression asymmetrical microcrack evolution in the ignition of polymer-bonded explosives under low-velocity impact [J]. Journal of Applied Physics, 2021, 129(17): 175108. DOI: 10.1063/5.0046011.
    [19] 张瑞华, 芮筱亭, 赵宏立, 等. 基于离散单元法的发射装药挤压破碎模拟实验 [J]. 爆炸与冲击, 2021, 41(6): 062301. DOI: 10.11883/bzycj-2020-0157.

    ZHANG R H, RUI X T, ZHAO H L, et al. Simulational experiment on compression and fracture of propellant charge based on the discrete element method [J]. Explosion and Shock Waves, 2021, 41(6): 062301. DOI: 10.11883/bzycj-2020-0157.
    [20] LI C, RUI X T, GU J J, et al. Influences of the random stacking and charge’s diameter on compression and fracture process of propellant charge [J]. Propellants, Explosives, Pyrotechnics, 2022, 47(1): e202100177. DOI: 10.1002/prep.202100177.
    [21] WANG Y, RUI X, LI C, et al. Analysis on affecting factors of the fragmentation degree of propellant charge [C]//1st International Conference on Mechanical System Dynamics. Nanjing, China: IET, 2022: 647–651. DOI: 10.1049/icp.2022.1890.
    [22] 周培毅, 徐更光, 张景云, 等. 改性B炸药装药发射安全性实验研究 [J]. 火炸药学报, 1999, 22(4): 34–35. DOI: 10.3969/j.issn.1007-7812.1999.04.010.

    ZHOU P Y, XU G G, ZHANG J Y, et al. The experimental study of lunching safety of modified Comp-B explosive charge [J]. Chinese Journal of Explosives & Propellants, 1999, 22(4): 34–35. DOI: 10.3969/j.issn.1007-7812.1999.04.010.
    [23] 肖玮, 李亮亮, 苏健军, 等. TNT在热和撞击加载作用下的点火性能 [J]. 火炸药学报, 2013, 36(2): 38–41. DOI: 10.14077/j.issn.1007-7812.2013.02.009.

    XIAO W, LI L L, SU J J, et al. Ignition performances of TNT under temperature and impact loading actions [J]. Chinese Journal of Explosives & Propellants, 2013, 36(2): 38–41. DOI: 10.14077/j.issn.1007-7812.2013.02.009.
    [24] LIU W, WANG G P, RUI X T, et al. A test method for launch safety of explosive charge accurately simulating launch overload [J]. Journal of Energetic Materials, 2022: 1-21. DOI: 10.1080/07370652.2022.2108165.
    [25] 李文彬, 王晓鸣, 赵国志, 等. 装药底隙对弹底应力及发射安全性影响研究 [J]. 弹道学报, 2001, 13(3): 64–67, 72. DOI: 10.3969/j.issn.1004-499X.2001.03.013.

    LI W B, WANG X M, ZHAO G Z, et al. The research of the effect of base gap on the stress of explosives and the lunching safety [J]. Journal of Ballistics, 2001, 13(3): 64–67, 72. DOI: 10.3969/j.issn.1004-499X.2001.03.013.
    [26] 陈力, 丁雁生. 炸药装药撞击起爆低速气炮模拟实验系统 [C]//第三届全国爆炸力学实验技术交流会论文集. 黄山: 中国科学技术大学冲击动力学实验室, 2004: 280–284.
    [27] 高玉玲, 肖玮, 杜振华. 在撞击作用下炸药装药的底隙制作研究 [J]. 火炸药学报, 2001, 24(3): 35–36. DOI: 10.3969/j.issn.1007-7812.2001.03.012.

    GAO Y L, XIAO W, DU Z H. Research on the making of base-gap of the explosive under impact in steel sleeve [J]. Chinese Journal of Explosives & Propellants, 2001, 24(3): 35–36. DOI: 10.3969/j.issn.1007-7812.2001.03.012.
    [28] 周培毅, 徐更光, 王廷增. 炸药装药在后座冲击条件下的点火模型研究 [J]. 火炸药学报, 2000, 23(1): 1–5. DOI: 10.3969/j.issn.1007-7812.2000.01.001.

    ZHOU P Y, XU G G, WANG T Z. Ignition models of explosive charge subjected to setback impact [J]. Chinese Journal of Explosives & Propellants, 2000, 23(1): 1–5. DOI: 10.3969/j.issn.1007-7812.2000.01.001.
    [29] YU Y C, YAN H, CHEN W D, et al. Finite volume method for the launch safety of energetic materials [J]. Shock and Vibration, 2021, 2021: 9609557. DOI: 10.1155/2021/9609557.
    [30] 李德聪, 陈力, 丁雁生. 装药弹体侵彻混凝土厚靶中的炸药摩擦起爆模型 [J]. 爆炸与冲击, 2009, 29(1): 13–17. DOI: 10.11883/1001-1455(2009)01-0013-05.

    LI D C, CHEN L, DING Y S. A model of explosion induced by friction in the process of loaded projectiles penetrating into concrete targets [J]. Explosion and Shock Waves, 2009, 29(1): 13–17. DOI: 10.11883/1001-1455(2009)01-0013-05.
    [31] 赵泽灏, 张金龙, 董宇红. 多孔介质传热模型在多孔壁湍流中的适用性 [J]. 空气动力学学报, 2023, 41(0): 1–10. DOI: 10.7638/kqdlxxb-2023.0084.

    ZHAO Z H, ZHANG J L, DONG Y H. Heat transfer models for porous media in porous-walled turbulent flows [J]. Acta Aerodynamica Sinica, 2023, 41(0): 1–10.DOI: 10.7638/kqdlxxb-2023.0084.
    [32] CHEN W D, MA J X, SHI Y Q, et al. A mesoscopic numerical analysis for combustion reaction of multi-component PBX explosives [J]. Acta Mechanica, 2018, 229(5): 2267–2286. DOI: 10.1007/s00707-017-2098-7.
    [33] MCCLELLAND M A, GLASCOE E A, NICHOLS A L, et al. ALE3D simulation of incompressible flow, heat transfer, and chemical decomposition of Comp B in slow cookoff experiments: DE-AC52-07NA27344 [R]. Livermore: Lawrence Livermore National Laboratory, 2014.
    [34] HOBBS M L, KANESHIGE M J, ANDERSON M U. Cookoff of a melt-castable explosive (compb-B): SAND2012-10207C [R]. Albuquerque: Sandia National Laboratory, 2012.
    [35] 马敬鑫. 基于物质点法的非均质炸药燃烧细观响应机理研究 [D]. 哈尔滨: 哈尔滨工程大学, 2021: 55–68. DOI: 10.27060/d.cnki.ghbcu.2021.000050.

    MA J X. Mechanism research of combustion reaction of multi-component explosives at mesoscale based on material point method [D]. Harbin: Harbin Engineering University, 2021: 55–68. DOI: 10.27060/d.cnki.ghbcu.2021.000050.
    [36] CHEN W D, SHI Y Q, YAN H, et al. A stochastic material point method for probabilistic dynamics and reliability [J]. Computational Mechanics, 2019, 63(5): 1069–1082. DOI: 10.1007/s00466-018-1667-5.
    [37] CHEN W D, WU S B, MA J X, et al. Numerical simulation of the deflagration to detonation transition behavior in explosives based on the material point method [J]. Combustion and Flame, 2022, 238: 111920. DOI: 10.1016/j.combustflame.2021.111920.
    [38] TARVER C M. Jones-Wilkins-Lee unreacted and reaction product equations of state for overdriven detonations in octogen- and triaminotrinitrobenzene-based plastic-bonded explosives [J]. The Journal of Physical Chemistry A, 2020, 124(7): 1399–1408. DOI: 10.1021/acs.jpca.9b10804.
  • 加载中
图(21) / 表(6)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  85
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 修回日期:  2023-12-19
  • 网络出版日期:  2024-01-06
  • 刊出日期:  2024-03-14

目录

    /

    返回文章
    返回