氢气-甲烷-乙醇混合燃料的爆炸压力特性

郭宏展 张衍 王筱蓉

郭宏展, 张衍, 王筱蓉. 氢气-甲烷-乙醇混合燃料的爆炸压力特性[J]. 爆炸与冲击, 2023, 43(12): 125403. doi: 10.11883/bzycj-2023-0224
引用本文: 郭宏展, 张衍, 王筱蓉. 氢气-甲烷-乙醇混合燃料的爆炸压力特性[J]. 爆炸与冲击, 2023, 43(12): 125403. doi: 10.11883/bzycj-2023-0224
GUO Hongzhan, ZHANG Yan, WANG Xiaorong. Explosion pressure characteristics of hydrogen-methane-ethanol mixtures[J]. Explosion And Shock Waves, 2023, 43(12): 125403. doi: 10.11883/bzycj-2023-0224
Citation: GUO Hongzhan, ZHANG Yan, WANG Xiaorong. Explosion pressure characteristics of hydrogen-methane-ethanol mixtures[J]. Explosion And Shock Waves, 2023, 43(12): 125403. doi: 10.11883/bzycj-2023-0224

氢气-甲烷-乙醇混合燃料的爆炸压力特性

doi: 10.11883/bzycj-2023-0224
基金项目: 江苏省自然科学基金(BK20180982)
详细信息
    作者简介:

    郭宏展(2000- ),男,硕士,511203391@qq.com

    通讯作者:

    王筱蓉(1982-  ),女,博士,教授,ghz18755780815@163.com

  • 中图分类号: O389; O642.1

Explosion pressure characteristics of hydrogen-methane-ethanol mixtures

  • 摘要: 在初始温度为400 K,不同的初始压力(0.1、0.2、0.4 MPa)、乙醇体积分数(20%,50%,80%)和当量比(0.8~1.4)下,采用定容燃烧弹对氢气-甲烷-乙醇的爆炸特性进行研究。将实验中获得的原始电压信号转换为压力数据并进行高斯滤波降噪处理,通过爆炸压力、压力上升率、爆炸指数和爆炸时间等相关参数来分析爆炸特性,这些参数可以用于评估可燃物爆炸强烈程度,同时对燃料的层流燃烧速度、敏感性和反应路径进行分析。结果表明:随着初始压力的增加,预混燃料的爆炸压力峰值、最大压力上升速率、爆炸指数和爆炸时间均显著增加。乙醇比例的增加会降低最大压力上升速率和爆炸指数,但会增加爆炸压力和爆炸时间。燃料在不同的初始压力和乙醇比例下,总在当量比为1.2~1.3之间达到爆炸压力峰值、最大压力上升速率、爆炸指数的极大值和爆炸时间的极小值。此外,灵敏度分析表明预混燃料的爆炸反应程度与燃烧过程中生成的H和OH自由基数量有很大关系。总体而言,研究获得的爆炸指数在大多数工况下均低于20 MPa·m/s,表明该燃料处于相对安全水平。
  • 图  1  实验系统结构

    Figure  1.  Structure schematic of experimental system

    图  2  爆炸参数示意图

    Figure  2.  Schematic diagram of explosion parameters

    图  3  爆炸压力随时间变化规律

    Figure  3.  Explosion pressure changing with time

    图  4  p0=0.4 MPa、$ \varPhi $=1时C2H5OH体积分数φ对爆炸压力曲线的影响

    Figure  4.  Effect of the volume fraction of C2H5OH (φ) on explosion pressure while p0=0.4 MPa and $ \varPhi $=1

    图  5  φ=20%、$ \varPhi $=1时初始压力p0对爆炸压力曲线的影响

    Figure  5.  Effect of the initial pressure (p0) on explosion pressure while φ=20% and $ \varPhi $=1

    图  6  当量比$ \varPhi $对压力峰值pmax的影响

    Figure  6.  Effect of the equivalence ratio $ \varPhi $ on the peak pressure pmax

    图  7  初始压力p0对压力峰值pmax的影响

    Figure  7.  Effect of initial pressure p0 on the peak pressure pmax

    图  8  爆炸压力上升率随时间的变化曲线

    Figure  8.  Pressure rising rate by explosion changing with time

    图  9  不同C2H5OH体积分数φ下压力上升速率曲线

    Figure  9.  Pressure rise rate changing with time at different ethnol volume fractions (φ)

    图  10  不同初始压力p0条件下的爆炸压力上升率曲线

    Figure  10.  Explosion pressure rise rate curve at different initial pressures (p0)

    图  11  火焰不稳定图像

    Figure  11.  Flame instability image

    图  12  最大压力上升速率(dp/dt)max和爆炸指数KG

    Figure  12.  Maximum pressure rise rate ((dp/dt)max) and explosion index (KG)

    图  13  初始压力p0对爆炸压力上升率峰值((dp/dt)max)的影响

    Figure  13.  Effect of initial pressure (p0) on the peak rate of explosion pressure rise ((dp/dt)max)

    图  14  爆炸时间随当量比的变化曲线

    Figure  14.  Curve of explosion time with equivalence ratio

    图  15  初始压力对爆炸时间的影响

    Figure  15.  The effect of initial pressure on explosion time

    图  16  本文方法得到的层流燃烧速度与文献[38, 40-41]的对比

    Figure  16.  Laminar burning velocity according to this paper compared with the result from reference [38, 40-41]

    图  17  H2/CH4/C2H5OH实验和模拟层流燃烧速度的比较

    Figure  17.  Comparison of experimental and simulated results of laminar combustion velocity

    图  18  不同C2H5OH体积分数φ下的灵敏度数据(400 K, 0.1 MPa, Φ=1.2)

    Figure  18.  Sensitivity coeffient at different vulume fractions (φ) under the condition of 400 K, 0.1 MPa, Φ=1.2)

    图  19  不同初始压力p0下的灵敏度数据(400 K, φ=50%, Φ=1.2)

    Figure  19.  Sensitivity coeffient of at different pressures under the condition of (400 K, φ=50%, Φ=1.2)

    图  20  不同C2H5OH体积分数(φ)的反应路径图(0.1 MPa, 400 K, Φ=1.2)

    Figure  20.  The reaction pathway due to different volume fractions (φ) under the condition of 0.1 MPa, 400 K and Φ=1.2

  • [1] ALANNE K, CAO S L. An overview of the concept and technology of ubiquitous energy [J]. Applied Energy, 2019, 238: 284–302. DOI: 10.1016/j.apenergy.2019.01.100.
    [2] SUN X Y, LIU H L, DUAN X B, et al. Effect of hydrogen enrichment on the flame propagation, emissions formation and energy balance of the natural gas spark ignition engine [J]. Fuel, 2022, 307: 121843. DOI: 10.1016/j.fuel.2021.121843.
    [3] ORUC O, DINCER I. Assessing the potential of thermo-chemical water splitting cycles: a bridge towards clean and sustainable hydrogen generation [J]. Fuel, 2021, 286: 119325. DOI: 10.1016/j.fuel.2020.119325.
    [4] SHARMA Y C, KUMAR A, PRASAD R, et al. Ethanol steam reforming for hydrogen production: latest and effective catalyst modification strategies to minimize carbonaceous deactivation [J]. Renewable and Sustainable Energy Reviews, 2017, 74: 89–103. DOI: 10.1016/j.rser.2017.02.049.
    [5] ABDIN Z, ZAFARANLOO A, RAFIEE A, et al. Hydrogen as an energy vector [J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109620. DOI: 10.1016/j.rser.2019.109620.
    [6] MA Y, WANG X R, LI T, et al. Hydrogen and ethanol: production, storage, and transportation [J]. International Journal of Hydrogen Energy, 2021, 46(54): 27330–27348. DOI: 10.1016/j.ijhydene.2021.06.027.
    [7] NYKYFORCHYN H, UNIGOVSKYI L, ZVIRKO O, et al. Pipeline durability and integrity issues at hydrogen transport via natural gas distribution network [J]. Procedia Structural Integrity, 2021, 33: 646–651. DOI: 10.1016/j.prostr.2021.10.071.
    [8] ZHANG Y, CAO W G, SHU C M, et al. Dynamic hazard evaluation of explosion severity for premixed hydrogen–air mixtures in a spherical pressure vessel [J]. Fuel, 2020, 261: 116433. DOI: 10.1016/j.fuel.2019.116433.
    [9] LI Q, CHENG Y, HUANG Z H. Comparative assessment of the explosion characteristics of alcohol-air mixtures [J]. Journal of Loss Prevention in the Process Industries, 2015, 37: 91–100. DOI: 10.1016/j.jlp.2015.07.003.
    [10] MITU M, BRANDES E. Influence of pressure, temperature and vessel volume on explosion characteristics of ethanol/air mixtures in closed spherical vessels [J]. Fuel, 2017, 203: 460–468. DOI: 10.1016/j.fuel.2017.04.124.
    [11] OPPONG F, XU C S, LUO Z Y, et al. Evaluation of explosion characteristics of 2-methylfuran/air mixture [J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103954. DOI: 10.1016/j.jlp.2019.103954.
    [12] LI Y C, BI M S, LI B, et al. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels [J]. Fuel, 2018, 233: 269–282. DOI: 10.1016/j.fuel.2018.06.042.
    [13] HU E J, TIAN H Z, ZHANG X Y, et al. Explosion characteristics of n-butanol/iso-octane-air mixtures [J]. Fuel, 2017, 188: 90–97. DOI: 10.1016/j.fuel.2016.10.002.
    [14] ZHANG B, NG H D. Explosion behavior of methane–dimethyl ether/air mixtures [J]. Fuel, 2015, 157: 56–63. DOI: 10.1016/j.fuel.2015.04.058.
    [15] ZHENG L G, ZHU X C, WANG Y L, et al. Combined effect of ignition position and equivalence ratio on the characteristics of premixed hydrogen/air deflagrations [J]. International Journal of Hydrogen Energy, 2018, 43(33): 16430–16441. DOI: 10.1016/j.ijhydene.2018.06.189.
    [16] 时高龙, 温小萍, 王发辉, 等. 预混气体爆炸火焰与压力的耦合振荡特性 [J]. 化工学报, 2019, 70(7): 2811–2818. DOI: 10.11949/0438-1157.20190070.

    SHI G L, WEN X P, WANG F H, et al. Coupling oscillation characteristics of premixed gas explosion flame and pressure [J]. CIESC Journal, 2019, 70(7): 2811–2818. DOI: 10.11949/0438-1157.20190070.
    [17] 余明高, 马梓茂, 韩世新, 等. 障碍物阻塞率梯度对甲烷爆炸特性影响研究 [J]. 化工学报, 2021, 72(10): 5430–5439. DOI: 10.11949/0438-1157.20210525.

    YU M G, MA Z M, HAN S X, et al. Study on influence of obstacle blockage rate gradient on methane explosion characteristics [J]. CIESC Journal, 2021, 72(10): 5430–5439. DOI: 10.11949/0438-1157.20210525.
    [18] SUN Z Y. Experimental studies on the explosion indices in turbulent stoichiometric H2/CH4/air mixtures [J]. International Journal of Hydrogen Energy, 2019, 44(1): 469–476. DOI: 10.1016/j.ijhydene.2018.02.094.
    [19] CAMMAROTA F, DI BENEDETTO A, DI SARLI V, et al. Combined effects of initial pressure and turbulence on explosions of hydrogen-enriched methane/air mixtures [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(5): 607–613. DOI: 10.1016/j.jlp.2009.05.001.
    [20] CAMMAROTA F, DI BENEDETTO A, DI SARLI V, et al. The effect of hydrogen addition on the explosion of ethanol/air mixtures [J]. Chemical Engineering Transactions, 2012, 26: 405–410. DOI: 10.3303/CET1226068.
    [21] 韦双明, 余明高, 裴蓓, 等. 三元混合气体燃料爆炸特性实验研究 [J]. 化工学报, 2022, 73(1): 451–460. DOI: 10.11949/0438-1157.20211256.

    WEI S M, YU M G, PEI B, et al. Experimental study on explosion characteristics of ternary mixed gas fuel [J]. CIESC Journal, 2022, 73(1): 451–460. DOI: 10.11949/0438-1157.20211256.
    [22] ZHOU Q, CHEUNG C S, LEUNG C W, et al. Effects of fuel composition and initial pressure on laminar flame speed of H2/CO/CH4 bio-syngas [J]. Fuel, 2019, 238: 149–158. DOI: 10.1016/j.fuel.2018.10.106.
    [23] WEI S M, YU M G, PEI B, et al. Effect of hydrogen enrichment on the laminar burning characteristics of dimethyl-ether/methane fuel: experimental and modeling study [J]. Fuel, 2021, 305: 121475. DOI: 10.1016/j.fuel.2021.121475.
    [24] FAGHIH M, GOU X L, CHEN Z. The explosion characteristics of methane, hydrogen and their mixtures: a computational study [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 131–138. DOI: 10.1016/j.jlp.2015.12.015.
    [25] ZHOU Q, CHEUNG C S, LEUNG C W, et al. Explosion characteristics of bio-syngas at various fuel compositions and dilutions in a confined vessel [J]. Fuel, 2020, 259: 116254. DOI: 10.1016/j.fuel.2019.116254.
    [26] ZHANG L, MA H H, PAN J, et al. Effects of hydrogen addition on the explosion characteristics of n-hexane/air mixtures [J]. International Journal of Hydrogen Energy, 2019, 44(3): 2029–2038. DOI: 10.1016/j.ijhydene.2018.11.085.
    [27] DAI T K, ZHANG B, LIU H. On the explosion characteristics for central and end-wall ignition in hydrogen-air mixtures: a comparative study [J]. International Journal of Hydrogen Energy, 2021, 46(60): 30861–30869. DOI: 10.1016/j.ijhydene.2021.06.213.
    [28] LIU Y, ZHANG Y G, ZHAO D F, et al. Effects of initial temperature and pressure on explosion characteristics of propane-diluent-air mixtures [J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104585. DOI: 10.1016/j.jlp.2021.104585.
    [29] National Fire Protection Association. Guide for venting of deflagrations: NFPA 68 [R]. USA: National Fire Protection Association, 2002.
    [30] CUI G, WANG S, LIU J G, et al. Explosion characteristics of a methane/air mixture at low initial temperatures [J]. Fuel, 2018, 234: 886–893. DOI: 10.1016/j.fuel.2018.07.139.
    [31] ZHANG B, XIU G L, BAI C H. Explosion characteristics of argon/nitrogen diluted natural gas-air mixtures [J]. Fuel, 2014, 124: 125–132. DOI: 10.1016/j.fuel.2014.01.090.
    [32] SHEN X B, ZHANG B, ZHANG X L, et al. Explosion characteristics of methane-ethane mixtures in air [J]. Journal of Loss Prevention in the Process Industries, 2017, 45: 102–107. DOI: 10.1016/j.jlp.2016.11.012.
    [33] LI Q Q, CHENG Y, JIN W, et al. Comparative study on the explosion characteristics of pentanol isomer-air mixtures [J]. Fuel, 2015, 161: 78–86. DOI: 10.1016/j.fuel.2015.08.027.
    [34] XU C S, WANG H Y, LI X L, et al. Explosion characteristics of a pyrolysis biofuel derived from rice husk [J]. Journal of Hazardous Materials, 2019, 369: 324–333. DOI: 10.1016/j.jhazmat.2019.01.101.
    [35] MITU M, GIURCAN V, RAZUS D, et al. Temperature and pressure influence on ethane-air deflagration parameters in a spherical closed vessel [J]. Energy Fuels, 2012, 26(8): 4840–4848. DOI: 10.1021/ef300849r.
    [36] DAHOE A E, DE GOEY L P H. On the determination of the laminar burning velocity from closed vessel gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2003, 16(6): 457–478. DOI: 10.1016/S0950-4230(03)00073-1.
    [37] SHEN X B, XIU G L, WU S Z. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition [J]. Applied Thermal Engineering, 2017, 120: 741–747. DOI: 10.1016/j.applthermaleng.2017.04.040.
    [38] WANG X, FU J Q, XIE M K, et al. Numerical investigation of laminar burning velocity for methane-hydrogen-air mixtures at wider boundary conditions [J]. Aerospace Science and Technology, 2022, 121: 107393. DOI: 10.1016/j.ast.2022.107393.
    [39] MARINOV N M. A detailed chemical kinetic model for high temperature ethanol oxidation [J]. International Journal of Chemical Kinetics, 1999, 31(3): 183–220. DOI: 10.1002/(SICI)1097-4601(1999)31:3<183::AID-KIN3>3.0.CO;2-X.
    [40] XIANG L K, JIANG H T, REN F, et al. Numerical study of the physical and chemical effects of hydrogen addition on laminar premixed combustion characteristics of methane and ethane [J]. International Journal of Hydrogen Energy, 2020, 45(39): 20501–20514. DOI: 10.1016/j.ijhydene.2019.11.040.
    [41] ECKART S, PIZZUTI L, FRITSCHE C, et al. Experimental study and proposed power correlation for laminar burning velocity of hydrogen-diluted methane with respect to pressure and temperature variation [J]. International Journal of Hydrogen Energy, 2022, 47(9): 6334–6348. DOI: 10.1016/j.ijhydene.2021.11.243.
    [42] OPPONG F, XU C S, LUO Z Y, et al. Investigating the explosion of ethyl acetate in the presence of hydrogen [J]. International Journal of Hydrogen Energy, 2020, 45(39): 20400–20407. DOI: 10.1016/j.ijhydene.2019.12.136.
    [43] 周康泉. 容弹上用定容法测量层流燃烧速度的研究 [D]. 杭州: 浙江大学, 2019: 9–11.

    ZHOU K Q. The research of measuring the laminar buring velocity using CVM in the constant volume burning vessel [D]. Hangzhou: Zhejiang University, 2019: 9–11.
  • 加载中
图(20)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  57
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 修回日期:  2023-08-30
  • 网络出版日期:  2023-10-25
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回