二氧化碳爆破射流温度场演化规律实验研究

倪昊 杨仁树 谭卓英 丁晨曦 林海 王渝 吴浩天

倪昊, 杨仁树, 谭卓英, 丁晨曦, 林海, 王渝, 吴浩天. 二氧化碳爆破射流温度场演化规律实验研究[J]. 爆炸与冲击, 2023, 43(12): 123902. doi: 10.11883/bzycj-2023-0227
引用本文: 倪昊, 杨仁树, 谭卓英, 丁晨曦, 林海, 王渝, 吴浩天. 二氧化碳爆破射流温度场演化规律实验研究[J]. 爆炸与冲击, 2023, 43(12): 123902. doi: 10.11883/bzycj-2023-0227
NI Hao, YANG Renshu, TAN Zhuoying, DING Chenxi, LIN Hai, WANG Yu, WU Haotian. An experimental study on temperature field evolution of carbon dioxide blasting jets[J]. Explosion And Shock Waves, 2023, 43(12): 123902. doi: 10.11883/bzycj-2023-0227
Citation: NI Hao, YANG Renshu, TAN Zhuoying, DING Chenxi, LIN Hai, WANG Yu, WU Haotian. An experimental study on temperature field evolution of carbon dioxide blasting jets[J]. Explosion And Shock Waves, 2023, 43(12): 123902. doi: 10.11883/bzycj-2023-0227

二氧化碳爆破射流温度场演化规律实验研究

doi: 10.11883/bzycj-2023-0227
基金项目: 国家自然科学基金(51934001)
详细信息
    作者简介:

    倪 昊(1986- ),男,博士研究生,490614699@qq.com

    通讯作者:

    杨仁树(1963- ),男,博士,教授,博士生导师,yangrsustb@163.com

  • 中图分类号: O389

An experimental study on temperature field evolution of carbon dioxide blasting jets

  • 摘要: 为了研究二氧化碳爆破射流温度场的演化规律,构建了二氧化碳爆破红外热成像实验系统,开展了二氧化碳爆破实验,分析了二氧化碳爆破射流的空间发展和温度演变过程。研究结果表明:在出现超温现象之前,二氧化碳射流的温度梯度分别为外圈最高、内圈稍低,核心区域温度最低;当出现超温现象时,射流的温度梯度分别为外圈最低、内圈稍高,核心区域温度最高;射流周围的环境温度呈现先降低,后升高的现象。初始泄能压力越高,二氧化碳爆破射流的温度峰值越高,最高温度达到了133.7 ℃,到达温度峰值所需的时间越长;初始泄能压力越低,温度谷值越低,最低温度为−3.4 ℃,到达温度谷值所需的时间越短;射流温度的峰值基本出现在二氧化碳爆破器泄能的初始阶段,随后小幅度上升,再跌入谷值。射流升温的主要阶段在管内,二氧化碳爆破射流的温度总体呈现先上升后下降的趋势。
  • 图  1  二氧化碳压力-温度相图

    Figure  1.  Pressure-temperature phase diagram of carbon dioxide

    图  2  二氧化碳爆破器结构

    Figure  2.  Structure of a carbon dioxide blaster

    图  3  二氧化碳爆破射流红外热成像系统

    Figure  3.  Carbon dioxide blasting jet infrared shooting system

    图  4  pc=200 MPa时的二氧化碳爆破射流温度场云图

    Figure  4.  Cloud images of temperature field of carbon dioxide blasting jet at pc=200 MPa

    图  5  pc=250 MPa时的二氧化碳爆破射流温度场云图

    Figure  5.  Cloud images of temperature field of carbon dioxide blasting jet at pc=250 MPa

    图  6  pc=300 MPa时的二氧化碳爆破射流温度场云图

    Figure  6.  Cloud images of temperature field of carbon dioxide blasting jet at pc=300 MPa

    图  7  pc=200 MPa时二氧化碳爆破射流的温度-时间曲线

    Figure  7.  Temperature-time plots of the carbon dioxide blasting jet at pc=200 MPa

    图  8  pc=250 MPa时二氧化碳爆破射流的温度-时间曲线

    Figure  8.  Temperature-time plots of the carbon dioxide blasting jet at pc=200 MPa

    图  9  pc=300 MPa时二氧化碳爆破射流温度-时间曲线

    Figure  9.  Temperature-time plots of the carbon dioxide blasting jet at pc=300 MPa

    表  1  实验参数

    Table  1.   Experimental parameters

    实验
    二氧化碳爆破器
    爆破片
    材质
    爆破片厚度/
    mm
    爆破片抗剪
    强度/MPa
    额定液态二氧化碳
    充装压力/MPa
    额定液态二氧化
    碳充装量/g
    额定发热
    剂量/g
    1 MZL300-95/1300 Q235 4 200 10 1500 400
    2 MZL300-95/1300 Q235 5 250 10 1500 400
    3 MZL300-95/1300 Q235 6 300 10 1500 400
    下载: 导出CSV

    表  2  实验结果

    Table  2.   Experimental results

    实验 爆破片抗剪
    强度/MPa
    环境温度/℃ 峰值温度/℃ 峰值温度与环境
    温度之差/℃
    到达峰值温度
    的时间/ms
    谷值温度/
    谷值温度与峰值
    温度之差/℃
    到达谷值温度
    的时间/ms
    1 200 30.1 41.3 11.2 80.1 −3.4 44.7 129.5
    2 250 21.4 53.5 32.1 89.3 2.1 51.4 134.2
    3 300 20.5 133.7 113.2 97.4 10.2 123.5 133.7
    下载: 导出CSV
  • [1] LU T K, WANG Z F, YANG H M, et al. Improvement of coal seam gas drainage by under panel cross strata stimulation using highly pressurized gas [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77: 300–312. DOI: 10.1016/j.ijrmms.2015.03.034.
    [2] 张东明, 白鑫, 尹光志, 等. 低渗煤层液态CO2相变定向射孔致裂增透技术及应用 [J]. 煤炭学报, 2018, 43(7): 1938–1950. DOI: 10.13225/j.cnki.jccs.2018.0281.

    ZHANG D M, BAI X, YIN G Z, et al. Research and application on technology of increased permeability by liquid CO2 phase change directional jet fracturing in low-permeability coal seam [J]. Journal of China Coal Society, 2018, 43(7): 1938–1950. DOI: 10.13225/j.cnki.jccs.2018.0281.
    [3] PERERA M S A, RANJITH P G, VIETE D R. Effects of gaseous and supercritical carbon dioxide saturation on the mechanical properties of bituminous coal from the Southern Sydney Basin [J]. Applied Energy, 2013, 110(1): 73–81. DOI: 10.1016/j.apenergy.2013.03.069.
    [4] 周盛涛, 罗学东, 蒋楠, 等. 二氧化碳相变致裂技术研究进展与展望 [J]. 工程科学学报, 2021, 43(7): 883–893. DOI: 10.13374/j.issn2095-9389.2020.11.05.006.

    ZHOU S T, LUO X D, JIANG N, et al. A review on fracturing technique with carbon dioxide phase transition [J]. Chinese Journal of Engineering, 2021, 43(7): 883–893. DOI: 10.13374/j.issn2095-9389.2020.11.05.006.
    [5] 李启月, 刘小雄, 吴正宇, 等. 液态CO2相变破岩技术在地铁基坑开挖中的应用 [J]. 铁道科学与工程学报, 2018, 15(1): 163–169. DOI: 10.19713/j.cnki.43-1423/u.2018.01.021.

    LI Q Y, LIU X X, WU Z Y, et al. Application of liquid CO2 phase change rock breaking technology in metro foundation pit excavation [J]. Journal of Railway Science and Engineering, 2018, 15(1): 163–169. DOI: 10.19713/j.cnki.43-1423/u.2018.01.021.
    [6] WANG X F , HU S B , WANG E Y, et al. Experimental research and energy analysis of a new type of dry ice powder pneumatic rock breaking technology [J]. International Journal of Mining Science and Technology, 2023, 33(4): 423–435. DOI: 10.1016/j.ijmst.2022.12.010.
    [7] 倪昊. 煤矿竖井二氧化碳“二阶二段”筒形掏槽爆破技术及应用研究[J/OL]. 煤炭科学技术[2023-06-19]. https://doi.org/10.13199/j.cnki.cst.2023-0468.

    NI H. Research on the technology and application of carbon dioxide two-step barrel cut blasting in coal mine shaft [J]. Coal Science and Technology [2023-06-19]. https://doi.org/10.13199/j.cnki.cst.2023-0468.
    [8] 曹运兴, 张军胜, 田林, 等. 低渗煤层定向多簇气相压裂瓦斯治理技术研究与实践 [J]. 煤炭学报, 2017, 42(10): 2631–2641. DOI: 10.13225/j.cnki.jccs.2017.0500.

    CAO Y X , ZHANG J S, TIAN L, et al. Research and application of CO gas fracturing for gas control in low permeability coal seams [J]. Journal of China Coal Society, 2017, 42(10): 2631–2641. DOI: 10.13225/j.cnki.jccs.2017.0500.
    [9] 谢晓锋, 李夕兵, 李启月, 等. 液态CO2相变破岩桩井开挖技术 [J]. 中南大学学报(自然科学版), 2018, 49(8): 2031–2038. DOI: 10.11817/j.issn.1672−7207.2018.08.025.

    XIE X F, LI X B, LI Q Y, et al. Liquid CO2 phase-transforming rock fracturing technology in pile-well excavation [J]. Journal of Central South University (Science and Technology), 2018, 49(8): 2031–2038. DOI: 10.11817/j.issn.1672−7207.2018.08.025.
    [10] 周西华, 门金龙, 宋东平, 等. 液态CO2液态CO2爆破煤层增透最优钻孔参数研究 [J]. 岩石力学与工程学报, 2016, 35(3): 524–529. DOI: 10.13722/j.cnki.jrme.2015.0319.

    ZHOU X H, MEN J L, SONG D P, et al. Research on optimal borehole parameters of antireflection in coal seam by liquid CO2 blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 524–529. DOI: 10.13722/j.cnki.jrme.2015.0319.
    [11] DAVIES B, HAWKES I. The mechanics of blasting stratausing the cardox and air blasting systems [M]. London: London Toothill Press, 1984: 461–467.
    [12] 张东明, 白鑫, 尹光志, 等. 低渗煤层液态CO2相变射孔破岩及裂隙扩展力学机理 [J]. 煤炭学报, 2018, 43(11): 3154–3168. DOI: 10.13225/j.cnki.jccs.2018.0946.

    ZHANG D M, BAI X, YIN G Z, et al. Mechanism of breaking and fracture expansion of liquid CO2 phase change jet fracturing in low-permeability coal seam [J]. Journal of China Coal Society, 2018, 43(11): 3154–3168. DOI: 10.13225/j.cnki.jccs.2018.0946.
    [13] 白鑫, 张东明, 王艳, 等. 液态CO2相变射流压力变化及其煤岩致裂规律 [J]. 中国矿业大学学报, 2020, 49(4): 661–670. DOI: 10.13247/j.cnki.jcumt.001171.

    BAI X, ZHANG D M, WANG Y, et al. Pressure variation and coal fracturing law of liquid CO2 phase transition jet [J]. Journal of China University of Mining and Technology, 2020, 49(4): 661–670. DOI: 10.13247/j.cnki.jcumt.001171.
    [14] 孙可明, 辛利伟, 吴迪, 等. 初应力条件下超临界CO2气爆致裂规律模拟研究 [J]. 振动与冲击, 2018, 37(12): 232–238. DOI: 10.13465/j.cnki.jvs.2018.12.035.

    SUN K M, XIN L W, WU D, et al. Simulation of fracture law of supercritical CO2 explosion under initial stress condition [J]. Journal of Vibration and Shock, 2018, 37(12): 232–238. DOI: 10.13465/j.cnki.jvs.2018.12.035.
    [15] 孙可明, 辛利伟, 吴迪, 等. 初应力条件下超临界CO2气爆致裂规律研究 [J]. 固体力学学报, 2017, 38(5): 473–482. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2017.05.011.

    SUN K M, XIN L W, WU D, et al. Mechanism of fracture caused by supercritical CO2 explosion under the impact of initial stress [J]. Chinese Journal of Solid Mechanics, 2017, 38(5): 473–482. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2017.05.011.
    [16] 周科平, 柯波, 李杰林, 等. 液态CO2爆破系统压力动态响应及爆炸能量分析 [J]. 爆破, 2017, 34(3): 7–13. DOI: 10.3963/j.issn.1001-487X.2017.03.002.

    ZHOU K P, KE B, LI J L, et al. Pressure dynamic response and explosion energy of liquid carbon dioxide blasting system [J]. Blasting, 2017, 34(3): 7–13. DOI: 10.3963/j.issn.1001-487X.2017.03.002.
    [17] KOLLÉ J, MARVIN M. Jet-assisted coiled tubing drilling with supercritical carbon dioxide [C]// ASME Proceedings of ETCE /OMAE 2000 Joint Energy Conference. New Orleans, New York, USA, 2000.
    [18] DU Y K, WANG R H, NI H J, et al. Determination of rock-breaking performance of high-pressure supercritical carbon dioxide jet [J]. Journal of Hydrodynamics, Series B, 2012, 24(4): 554–560. DOI: 10.1016/S1001-6058(11)60277-1.
    [19] LI M K, NI H J, WANG R H, et al. Comparative simulation research on the stress characteristics of supercritical carbon dioxide jets, nitrogen jets and water jets [J]. Engineering Applications of Computational Fluid Mechanics, 2017, 11(1): 357–370. DOI: 10.1080/19942060.2017.1293565.
    [20] WANG H Z, LI G S, TIAN S C, et al. Flow field simulation of supercritical carbon dioxide jet: comparison and sensitivity analysis [J]. Journal of Hydrodynamics, 2015, 27(2): 210–215. DOI: 10.1016/S1001-6058(15)60474-7.
    [21] 李木坤, 王刚, 程卫民, 等. 超临界二氧化碳射流破岩的热流固耦合机理 [J]. 石油勘探与开发, 2021, 48(6): 1258–1268. DOI: 10.11698/PED.2021.06.18.

    LI M K, WANG G, CHENG W M, et al. Heat-fluid-solid coupling mechanism of supercritical carbon dioxide jet in rock-breaking [J]. Petroleum Exploration and Development, 2021, 48(6): 1258–1268. DOI: 10.11698/PED.2021.06.18.
    [22] 王海柱, 沈忠厚, 李根生. 超临界CO2钻井井筒压力温度耦合计算 [J]. 石油勘探与开发, 2011, 38(1): 97–102.

    WANG H Z, SHEN Z H, LI G S. Well bore temperature and pressure coupling calculation of drilling with supercritical carbon dioxide [J]. Petroleum Exploration and Development, 2011, 38(1): 97–102.
    [23] 程宇雄, 李根生, 王海柱, 等. 超临界二氧化碳喷射压裂井筒流体相态控制 [J]. 石油学报, 2014, 35(6): 1182–1187. DOI: 10.7623/syxb201406016.

    CHENG Y X, LI G S, WANG H Z, et al. Phase control of well bore fluid during supercritical CO2 jet fractureing [J]. Acta Petrolei Sinica, 2014, 35(6): 1182–1187. DOI: 10.7623/syxb201406016.
    [24] 沈维道, 童均耕. 工程热力学 [M]. 4版. 北京: 高等教育出版社, 2007: 31–32.
    [25] 童景山. 化工热力学 [M]. 北京: 清华大学出版社, 1995: 27–28.
    [26] 童景山. 流体的热物理性质 [M]. 北京: 中国石化出版社, 1996: 15–16.
    [27] FENGHOUR A, WAKEHAM W A, VESOVIC V. The viscosity of carbon dioxide [J]. Journal of Physical and Chemical Reference Data, 1998, 27(1): 31–44. DOI: 10.1063/1.556013.
    [28] 波林B E, 普劳斯尼茨J M, 奥康奈尔J P. 气液物性估算手册 [M]. 赵红玲, 译. 北京: 化学工业出版社, 2006: 79–80.
    [29] 孙小辉, 孙宝江, 王志远. 超临界二氧化碳压裂裂缝温度场模型 [J]. 石油学报, 2015, 36(12): 1586–1592. DOI: 10.7623/syxb201512014.

    SUN X H, SUN B J, WANG Z Y. Fissure temperature field model of supercritical CO2 fracturing [J]. Acta Petrolei Sinica, 2015, 36(12): 1586–1592. DOI: 10.7623/syxb201512014.
    [30] ZHANG B J, HOU Y J. A theoretical form of the Martin-Hou equation of statet [J]. Science in China Series B: Chemistry,, 1999, 42(1): 9–95. DOI: 10.1007/bf02883042.
    [31] SPAN R, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa [J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509–1596. DOI: 10.1063/1.555991.
    [32] 霍中刚. 二氧化碳致裂器深孔预裂爆破煤层增透新技术 [J]. 煤炭科学技术, 2015, 43(2): 80–83. DOI: 10.13199/j.cnki.cst.2015.02.018.

    HUO Z G. New technology of carbon dioxide fracturer applied to deep borehole pre-cracking blasting for seam permeability improvement [J]. Coal Science and Technology, 2015, 43(2): 80–83. DOI: 10.13199/j.cnki.cst.2015.02.018.
    [33] 刘旭, 孙玉利, 张桂冠, 等. 液氮射流冲击冷却聚二甲基硅氧烷的温度场仿真和实验研究 [J]. 中国机械工程, 2022, 33(18): 2161–2171. DOI: 10.3969/j.issn.1004-132X.2022.18.002.

    LIU X, SUN Y L, ZHANG G G, et al. Simulation and experimental research about temperature fields of PDMS cooled by liquid nitrogen jet impingement [J]. China Mechanical Engineering, 2022, 33(18): 2161–2171. DOI: 10.3969/j.issn.1004-132X.2022.18.002.
    [34] 王宏, 符彬, 刘桂生, 等. 用热像仪测试发动机燃气流场温度 [J]. 固体火箭技术, 2003, 26(2): 65–67. DOI: 10.3969/j.issn.1006-2793.2003.02.018.

    WANG H, FU B, LIU G S, et al. Temperature test of motor combustion gas flow field with thermographic instrument [J]. Journal of Solid Rocket Technology, 2003, 26(2): 65–67. DOI: 10.3969/j.issn.1006-2793.2003.02.018.
    [35] 杜玉昆, 陈晓红, 王瑞和, 等. 超临界二氧化碳粒子射流破岩性能分析 [J]. 中国石油大学学报(自然科学版), 2019, 43(2): 85–90. DOI: 10.3969/j.issn.16735005.2019.02.010.

    DU Y K, CHEN X H, WANC R H, et al. Analysis on rock-reaking property of supercritical carbon dioxide particles jet [J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(2): 85–90. DOI: 10.3969/j.issn.16735005.2019.02.010.
    [36] 杜玉昆, 王瑞和, 倪红坚, 等. 超临界二氧化碳射流破岩试验 [J]. 中国石油大学学报(自然科学版), 2012, 36(4): 93–96. DOI: 10.3969/j.issn.16735005.2012.04.017.

    DU Y K, WANG R H, NI H J, et al. Rock-breaking experiment with supercritical carbon dioxide jet [J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(4): 93–96. DOI: 10.3969/j.issn.16735005.2012.04.017.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  38
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-29
  • 修回日期:  2023-10-06
  • 网络出版日期:  2023-10-08
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回