海拔高度对长直坑道内爆炸冲击波传播的影响

李勇 雒泓宇 冯晓伟 胡宇鹏 张军 李海涛

李勇, 雒泓宇, 冯晓伟, 胡宇鹏, 张军, 李海涛. 海拔高度对长直坑道内爆炸冲击波传播的影响[J]. 爆炸与冲击, 2024, 44(3): 032201. doi: 10.11883/bzycj-2023-0230
引用本文: 李勇, 雒泓宇, 冯晓伟, 胡宇鹏, 张军, 李海涛. 海拔高度对长直坑道内爆炸冲击波传播的影响[J]. 爆炸与冲击, 2024, 44(3): 032201. doi: 10.11883/bzycj-2023-0230
LI Yong, LUO Hongyu, FENG Xiaowei, HU Yupeng, ZHANG Jun, LI Haitao. Influence of altitude on the propagation of explosion shock waves in a long straight tunnel[J]. Explosion And Shock Waves, 2024, 44(3): 032201. doi: 10.11883/bzycj-2023-0230
Citation: LI Yong, LUO Hongyu, FENG Xiaowei, HU Yupeng, ZHANG Jun, LI Haitao. Influence of altitude on the propagation of explosion shock waves in a long straight tunnel[J]. Explosion And Shock Waves, 2024, 44(3): 032201. doi: 10.11883/bzycj-2023-0230

海拔高度对长直坑道内爆炸冲击波传播的影响

doi: 10.11883/bzycj-2023-0230
基金项目: 国家重点研发计划青年科学家项目(2022YFC2905700);国家自然科学基金(12202424)
详细信息
    作者简介:

    李 勇(1985- ),男,博士,副教授,yong.li@cqu.edu.cn

    通讯作者:

    冯晓伟(1985- ),男,博士,副研究员,xiaowei_feng@126.com

  • 中图分类号: O382.1

Influence of altitude on the propagation of explosion shock waves in a long straight tunnel

  • 摘要: 为有效表征不同海拔坑道内爆炸冲击波的传播特征,利用非线性显式动力学有限元软件AUTODYN,研究了海拔高度对长直坑道内爆炸冲击波传播的影响规律,探讨了高海拔环境对坑道内冲击波传播的影响,基于量纲分析,建立了适用于不同海拔高度典型坑道内冲击波峰值超压的计算模型,并通过数值计算进行了验证。结果表明:随着海拔高度升高,坑道内爆炸冲击波波阵面传播速度与径向的冲击波参数偏差增大,平面波形成距离增加,冲击波峰值超压降低;在0~4000 m范围内,海拔高度每升高1000 m,冲击波冲量降低约0.91%。结合Sachs无量纲修正方法和量纲分析,推导出不同海拔高度冲击波峰值超压的理论分析模型,模型计算结果与数值计算结果的相对偏差不大于10%,能够为高海拔环境下坑道内爆炸冲击波的传播提供理论依据。
  • 图  1  激波管试验装置示意图

    Figure  1.  Schematic diagram of experimental shock tube

    图  2  距端口680 mm处的冲击波超压测试曲线

    Figure  2.  Curve of shock wave overpressure at 680 mm from the port

    图  3  激波管二维轴对称模型

    Figure  3.  2D axisymmetric shock tube model

    图  4  超压时程曲线的数值计算与试验结果对比

    Figure  4.  Comparison between numerical simulation and experiment of overpressure-time curves

    图  5  坑道二维轴对称模型

    Figure  5.  2D axisymmetric tunnel model

    图  6  不同网格尺寸下的冲击波超压时程曲线

    Figure  6.  Overpressure-time curves with different grid sizes

    图  7  不同网格尺寸下的计算时间

    Figure  7.  Computation time with different grid sizes

    图  8  h = 3000 m 时冲击波压力云图

    Figure  8.  Pressure nephograms of shock wave at h = 3000 m

    图  9  不同海拔高度下的峰值超压

    Figure  9.  Peak overpressures at different altitudes

    图  10  各测点区间段内冲击波阵面的平均速度

    Figure  10.  Average velocities of shock wave in different intervals

    图  11  冲击波阵面到达时间的标准偏差

    Figure  11.  Standard deviation of shock wave front arrival time

    图  12  冲击波峰值超压平均值

    Figure  12.  Average of peak overpressures

    图  13  不同监测位置的波形对比

    Figure  13.  Comparison of shock waves at typical points

    图  14  不同监测位置的冲击波冲量

    Figure  14.  Shock wave impulses of typical points

    图  15  不同海拔高度下理论与数值计算峰值超压比较

    Figure  15.  Comparison of peak overpressure between theory and numerical simulation at different altitudes

    表  1  TNT炸药的模型参数

    Table  1.   Parameters of models for TNT

    ρTNT/(kg·m−3) D/(m·s−1) pC-J/GPa E0/GPa A/GPa B/GPa R1 R2 ω
    1630 6930 21 6 374 3.75 4.15 0.9 0.35
    下载: 导出CSV

    表  2  空气模型参数

    Table  2.   Parameters of models for air

    ρk/(kg·m−3) γ Tk/K ${c_V}$/(J·kg−1·K−1) ek/(J·kg−1)
    1.225 1.4 288.2 717.6 2.068×105
    下载: 导出CSV

    表  3  4340钢模型参数

    Table  3.   Parameters of models for 4340 steel

    ρsteel/(kg·m-3) a/MPa b/MPa n c m $ {\dot \varepsilon _0} $/s−1 θm/K θr/K K/GPa
    7830 792 510 0.26 0.014 1.03 1 1793 288.2 159
    下载: 导出CSV

    表  4  海拔0 ~ 4000 m处的大气参数

    Table  4.   Parameters of the air at altitude from 0 to 4000 m

    h/m ρk-h/(kg·m−3) pk-h/kPa Tk-h/K ek-h/(kJ·kg−1)
    0 1.225 1013.25×102 288.15 2.068×102
    1000 1.112 898.75×102 281.65 2.021×102
    2000 1.006 794.95×102 275.15 1.974×102
    3000 0.909 701.08×102 268.65 1.928×102
    4000 0.819 616.40×102 262.15 1.881×102
    下载: 导出CSV

    表  5  不同网格尺寸下冲击波参数计算结果

    Table  5.   Simulated results of shock wave parameters with different grid sizes

    网格尺寸/mm x = 18 m x = 20 m
    ta/ms $\delta_{t_{\mathrm{a}}} $/% Δpm/MPa $\delta_{\Delta_{p_{\mathrm{m}}}}$/% ta/ms $\delta_{t_{\mathrm{a}}} $/% Δpm/MPa $\delta_{\Delta_{p_{\mathrm{m}}}} $/%
    50×50 18.180 5.46 0.464 16.55 20.990 6.12 0.420 17.81
    40×40 17.840 3.49 0.486 12.59 20.690 4.61 0.439 14.09
    30×30 17.720 2.79 0.511 8.09 20.290 2.59 0.456 10.76
    20×20 17.576 1.96 0.530 4.68 20.080 1.52 0.481 5.87
    10×10 17.350 0.65 0.537 3.42 19.832 0.27 0.494 3.33
    5×5 17.242 0.02 0.555 0.18 19.783 0.02 0.509 0.39
    2×2 17.239 0.556 19.779 0.511
    下载: 导出CSV

    表  6  不同海拔高度下平面波形成距离

    Table  6.   Plane wave formation distances at different altitudes

    h/m 0 1000 2000 3000 4000
    x/m 15.8 17.2 17.5 17.8 18.3
    下载: 导出CSV

    表  7  坑道内爆炸各物理量的量纲幂次

    Table  7.   Dimensional power coefficients of physical quantities in the problem of explosion in tunnel

    基本量纲 E pk-h ρk-h SΔx Δpm I ta
    M 1 1 1 0 1 1 0
    L 2 −1 −3 3 −1 −1 0
    T −2 2 0 0 −2 −1 1
    下载: 导出CSV

    表  8  坑道内爆炸各物理量的量纲幂次(初等变换)

    Table  8.   Dimensional power coefficients of physical quantities in the problem of explosion in tunnel (elemental transformation)

    参考物理量 E pk-h ρk-h SΔx Δpm I ta
    E 1 0 0 1 0 1/3 1/3
    pk-h 0 1 0 −1 1 1/6 −5/6
    ρk-h 0 0 1 0 0 1/2 1/2
    下载: 导出CSV
  • [1] 赵晓莉, 夏斌, 刘尊义, 等. 模拟高原环境对炸药爆速影响的试验研究 [J]. 爆破器材, 2015, 44(2): 36–39. DOI: 10.3969/j.issn.1001-8352.2015.02.009.

    ZHAO X L, XIA B, LIU Z Y, et al. Experimental research on detonation velocity of explosive in simulated plateau environment [J]. Explosive Materials, 2015, 44(2): 36–39. DOI: 10.3969/j.issn.1001-8352.2015.02.009.
    [2] 李秀地. T型坑道中爆炸冲击波传播规律的数值模拟 [J]. 后勤工程学院学报, 2011, 27(4): 8–12. DOI: 10.3969/j.issn.1672-7843.2011.04.002.

    LI X D. Numerical simulation for blast propagation and attenuation inside T-shaped tunnel from HE-charges detonation [J]. Journal of Logistical Engineering University, 2011, 27(4): 8–12. DOI: 10.3969/j.issn.1672-7843.2011.04.002.
    [3] 邓国强. 常规爆炸空气冲击波参数海拔高度影响分析 [J]. 防护工程, 2019, 41(3): 26–32.

    DENG G Q. Analysis on the altitude effects of air shock wave parameters of conventional explosion [J]. Protective Engineering, 2019, 41(3): 26–32.
    [4] BENSELAMA A M, WILLIAM-LOUIS M J P, MONNOYER F, et al. A numerical study of the evolution of the blast wave shape in tunnels [J]. Journal of Hazardous Materials, 2010, 181(1): 609–616. DOI: 10.1016/j.jhazmat.2010.05.056.
    [5] UYSTEPRUYST D, MONNOYER F. A numerical study of the evolution of the blast wave shape in rectangular tunnels [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 225–231. DOI: 10.1016/j.jlp.2015.03.003.
    [6] 杨科之, 杨秀敏. 坑道内化爆冲击波的传播规律 [J]. 爆炸与冲击, 2003, 23(1): 37–40.

    YANG K Z, YANG X M. Shock waves propagation inside tunnels [J]. Explosion and Shock Waves, 2003, 23(1): 37–40.
    [7] 李秀地, 郑颖人, 李列胜, 等. 长坑道中化爆冲击波压力传播规律的数值模拟 [J]. 爆破器材, 2005, 34(5): 4–7. DOI: 10.3969/j.issn.1001-8352.2005.05.002.

    LI X D, ZHENG Y R, LI L S, et al. Simulation of the pressure attenuation of chemical shock wave in long tunnels [J]. Explosive Materials, 2005, 34(5): 4–7. DOI: 10.3969/j.issn.1001-8352.2005.05.002.
    [8] KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. Berlin: Springer, 1962: 107–118. DOI: 10.1007/978-3-642-86682-1.
    [9] 刘晶波, 闫秋实, 伍俊. 坑道内爆炸冲击波传播规律的研究 [J]. 振动与冲击, 2009, 28(6): 8–11. DOI: 10.3969/j.issn.1000-3835.2009.06.003.

    LIU J B, YAN Q S, WU J. Analysis of blast wave propagation inside tunnels [J]. Journal of Vibration and Shock, 2009, 28(6): 8–11. DOI: 10.3969/j.issn.1000-3835.2009.06.003.
    [10] 耿振刚, 李秀地, 苗朝阳, 等. 温压炸药爆炸冲击波在坑道内的传播规律研究 [J]. 振动与冲击, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.

    GENG Z G, LI X D, MIAO C Y, et al. Propagation of blast wave of thermobaric explosive inside a tunnel [J]. Journal of Vibration and Shock, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.
    [11] 张玉磊, 王胜强, 袁建飞, 等. 方形坑道内爆炸冲击波传播规律 [J]. 含能材料, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305.

    ZHANG Y L, WANG S Q, YUAN J F, et al. Experimental study on the propagation law of blast waves in a square tunnel [J]. Chinese Journal of Energetic Materials, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305.
    [12] 胡涛, 蒋海燕, 吴国东, 等. 坑道内爆炸平面波形成位置的数值分析 [J]. 火炸药学报, 2023, 46(7): 632–638. DOI: 10.14077/j.issn.1007-7812.202211022.

    HU T, JIANG H Y, WU G D, et al. Numerical analysis of the formation position of the explosion plane wave in the tunnel [J]. Chinese Journal of Explosives & Propellants, 2023, 46(7): 632–638. DOI: 10.14077/j.issn.1007-7812.202211022.
    [13] IZADIFARD R A, FOROUTAN M. Blastwave parameters assessment at different altitude using numerical simulation [J]. Turkish Journal of Engineering and Environmental Sciences, 2010, 34(1): 25–41. DOI: 10.3906/muh-0911-39.
    [14] 李科斌, 李晓杰, 闫鸿浩, 等. 不同真空度下空中爆炸近场特性的数值模拟研究 [J]. 振动与冲击, 2018, 37(17): 270–276. DOI: 10.13465/j.cnki.jvs.2018.17.038.

    LI K B, LI X J, YAN H H, et al. Numerical simulation for near-field characteristics of air explosion under different degrees of vacuum [J]. Journal of Vibration and Shock, 2018, 37(17): 270–276. DOI: 10.13465/j.cnki.jvs.2018.17.038.
    [15] 李志敏, 汪旭光, 汪泉, 等. 负压环境对炸药爆炸冲击波影响的实验研究 [J]. 火炸药学报, 2021, 44(1): 35–40. DOI: 10.14077/j.issn.1007-7812.202007025.

    LI Z M, WANG X G, WANG Q, et al. Experimental study on the effect of negative pressure environment on explosion shock wave [J]. Chinese Journal of Explosives & Propellants, 2021, 44(1): 35–40. DOI: 10.14077/j.issn.1007-7812.202007025.
    [16] 陈龙明, 李志斌, 陈荣, 等. 高原环境爆炸冲击波传播特性的实验研究 [J]. 爆炸与冲击, 2022, 42(5): 053206. DOI: 10.11883/bzycj-2021-0279.

    CHEN L M, LI Z B, CHEN R, et al. An experimental study on propagation characteristics of blast waves under plateau environment [J]. Explosion and Shock Waves, 2022, 42(5): 053206. DOI: 10.11883/bzycj-2021-0279.
    [17] SACHS R G. The dependence of blast on ambient pressure and temperature: 466 [R]. Aberdeen Proving Ground: Ballistic Research Laboratories, 1944. DOI: 10.21236/ada800535.
    [18] WANG F Q, WANG Q, WANG Y J, et al. Propagation rules of shock waves in confined space under different initial pressure environments [J]. Scientific Reports, 2022, 12(1): 14352. DOI: 10.1038/s41598-022-18567-0.
    [19] 汪泉, 陆军伟, 李志敏, 等. 负压条件下柱形爆炸罐内爆炸波传播规律 [J]. 兵工学报, 2021, 42(6): 1250–1256. DOI: 10.3969/j.issn.1000-1093.2021.06.015.

    WANG Q, LU J W, LI Z M, et al. Propagation law of explosion wave in columnar explosion tank under vacuum conditions [J]. Acta Armamentarii, 2021, 42(6): 1250–1256. DOI: 10.3969/j.issn.1000-1093.2021.06.015.
    [20] 李孝臣, 汪泉, 谢守冬, 等. 负压条件下球形爆炸容器内乳化炸药冲击波参数研究 [J]. 火炸药学报, 2023, 46(3): 252–259. DOI: 10.14077/j.issn.1007-7812.202207001.

    LI X C, WANG Q, XIE S D, et al. Study of shock wave parameters of emulsified explosives in spherical explosive containers under negative-pressure conditions [J]. Chinese Journal of Explosives & Propellants, 2023, 46(3): 252–259. DOI: 10.14077/j.issn.1007-7812.202207001.
    [21] 张广华, 李彪彪, 沈飞, 等. 真空条件下炸药爆炸特性试验研究 [J]. 火炸药学报, 2020, 43(3): 308–313. DOI: 10.14077/j.issn.1007-7812.201903005.

    ZHANG G H, LI B B, SHEN F, et al. Experimental research on the explosion performance of explosives under vacuum conditions [J]. Chinese Journal of Explosives & Propellants, 2020, 43(3): 308–313. DOI: 10.14077/j.issn.1007-7812.201903005.
    [22] 吴勇. 负压环境对乳化炸药爆轰性能影响及爆炸焊接应用研究 [D]. 安徽, 淮南: 安徽理工大学, 2022. DOI: 10.26918/d.cnki.ghngc.2022.000418.

    WU Y. Effect of negative pressure on detonation performance of emulsion explosive and application of explosive welding [D]. Huainan, Anhui: Anhui University of Science & Technology, 2022. DOI: 10.26918/d.cnki.ghngc.2022.000418.
    [23] LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products: UCRL-50422 [R]. Livermore: Lawrence Radiation Laboratory, University of California, 1968. DOI: 10.2172/4783904.
    [24] JOHN SHEPHERD P. A course in theoretical physics [M]. Chichester: John Wiley & Sons, Ltd. , 2013: 116–117. DOI: 10.1002/9781118516911.
    [25] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [26] 张军, 黄含军, 王军评, 等. 炸药驱动式爆炸管的载荷计算 [J]. 装备环境工程, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.

    ZHANG J, HUANG H J, WANG J P, et al. Simulation on the blast load inside the explosively drived shock tube [J]. Equipment Environmental Engineering, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.
    [27] 高轩能, 吴彦捷. TNT爆炸的数值计算及其影响因素 [J]. 火炸药学报, 2015, 38(3): 32–39. DOI: 10.14077/j.issn.1007-7812.2015.03.006.

    GAO X N, WU Y J. Numerical calculation and influence parameters for TNT explosion [J]. Chinese Journal of Explosives & Propellants, 2015, 38(3): 32–39. DOI: 10.14077/j.issn.1007-7812.2015.03.006.
    [28] 尤祖明, 祝逢春, 王永旭, 等. 模拟高原环境条件下C5-C6燃料的爆轰特性研究 [J]. 爆炸与冲击, 2018, 38(6): 1303–1309. DOI: 10.11883/bzycj-2017-0185.

    YOU Z M, ZHU F C, WANG Y X, et al. Detonation characteristics of C5-C6 fuels under simulated plateau-condition [J]. Explosion and Shock Waves, 2018, 38(6): 1303–1309. DOI: 10.11883/bzycj-2017-0185.
    [29] 高玉刚, 赵晓莉, 徐龙, 等. 高海拔压力环境对炸药猛度影响的实验研究 [J]. 火工品, 2013(5): 36–39. DOI: 10.3969/j.issn.1003-1480.2013.05.009.

    GAO Y G, ZHAO X L, XU L, et al. Experimental research on brisance of explosive in simulated high altitude environment [J]. Initiators & Pyrotechnics, 2013(5): 36–39. DOI: 10.3969/j.issn.1003-1480.2013.05.009.
    [30] 李瑞, 李孝臣, 汪泉, 等. 低温和低压环境下炸药爆炸冲击波的传播特性 [J]. 爆炸与冲击, 2023, 43(2): 022301. DOI: 10.11883/bzycj-2022-0188.

    LI R, LI X C, WANG Q, et al. Propagation characteristics of blast wave in diminished ambient temperature and pressure environments [J]. Explosion and Shock Waves, 2023, 43(2): 022301. DOI: 10.11883/bzycj-2022-0188.
    [31] LEMONS D S. A student's guide to dimensional analysis [M]. Cambridge: Cambridge University Press, 2017: 33–48. DOI: 10.1017/9781316676165.
    [32] RAMAMURTHI K. TNT equivalence and yield from explosions [M]// RAMAMURTHI K. Modeling Explosions and Blast Waves. Cham: Springer International Publishing, 2021: 309–319. DOI: 10.1007/978-3-030-74338-3_12.
  • 加载中
图(15) / 表(8)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  46
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-29
  • 修回日期:  2023-11-20
  • 网络出版日期:  2023-12-27
  • 刊出日期:  2024-03-14

目录

    /

    返回文章
    返回