含钢率对GFRP管-钢骨混凝土组合构件抗冲击性能的影响

张海霞 陈欢 鞠士龙

张海霞, 陈欢, 鞠士龙. 含钢率对GFRP管-钢骨混凝土组合构件抗冲击性能的影响[J]. 爆炸与冲击, 2024, 44(4): 043202. doi: 10.11883/bzycj-2023-0246
引用本文: 张海霞, 陈欢, 鞠士龙. 含钢率对GFRP管-钢骨混凝土组合构件抗冲击性能的影响[J]. 爆炸与冲击, 2024, 44(4): 043202. doi: 10.11883/bzycj-2023-0246
ZHANG Haixia, CHEN Huan, JU Shilong. Effect of steel ratio on the impact resistance of GFRP tube concrete-encased steel composite members[J]. Explosion And Shock Waves, 2024, 44(4): 043202. doi: 10.11883/bzycj-2023-0246
Citation: ZHANG Haixia, CHEN Huan, JU Shilong. Effect of steel ratio on the impact resistance of GFRP tube concrete-encased steel composite members[J]. Explosion And Shock Waves, 2024, 44(4): 043202. doi: 10.11883/bzycj-2023-0246

含钢率对GFRP管-钢骨混凝土组合构件抗冲击性能的影响

doi: 10.11883/bzycj-2023-0246
基金项目: 国家自然科学基金(52278196,51938009)
详细信息
    作者简介:

    张海霞(1976- ),女,博士,教授,iriszhx@163.com

    通讯作者:

    陈 欢(1997- ),女,博士研究生,chenhuanmissyou@163.com

  • 中图分类号: O347; TU398.9

Effect of steel ratio on the impact resistance of GFRP tube concrete-encased steel composite members

  • 摘要: 为了研究含钢率对GFRP(glass fiber reinforced polymer)管-钢骨混凝土组合构件抗冲击性能的影响,建立15个组合构件的数值模型,在验证模型正确的基础上,通过分析典型构件的冲击全过程、截面弯矩发展以及破坏时应变分布规律,研究构件在侧向冲击荷载作用下的破坏模式;通过分析构件冲击力时程曲线、侧移时程曲线以及能量变化情况,探究含钢率对不同长细比构件抗冲击性能的影响。结果表明:与未配置钢骨的构件相比,GFRP管-钢骨混凝土构件的抗冲击承载力提高了7%~134%,侧向位移减小了13%~68%。在侧向冲击荷载作用下,构件的破坏模式以弯曲破坏为主,同时伴随着GFRP管和混凝土冲击区域的局部破坏,抗弯刚度是影响构件抗冲击性能的主要因素之一。构件的抗冲击承载力随着含钢率的增高而提高,随着构件长细比的增大而降低。含钢率相差1.5%时,截面惯性矩较大的窄翼缘型钢对构件的抗冲击性能更有利。对于长细比大于20的构件,钢骨耗能是组合构件总能耗的主要组成部分。
  • 图  1  数值模型

    Figure  1.  Numerical model

    图  2  荷载-位移关系曲线

    Figure  2.  Load-displacement curves

    图  3  冲击力时程曲线

    Figure  3.  Impact-time history curves

    图  4  MJ3的归一化力学参数时程曲线

    Figure  4.  Time history curves for normalized mechanical parameters of MJ3

    图  5  A时刻应力云图

    Figure  5.  Stress nephogram at moment A

    图  6  B时刻应力云图

    Figure  6.  Stress nephogram at moment B

    图  7  C时刻应力云图

    Figure  7.  Stress nephogram at moment C

    图  8  截面弯矩

    Figure  8.  Bending moment of cross section

    图  9  L/2截面弯矩

    Figure  9.  Bending moment at the L/2 cross section

    图  10  能量耗散

    Figure  10.  Energy dissipation

    图  11  破坏云图

    Figure  11.  Failure nephograms

    图  12  相同长细比下不同含钢率构件的冲击力时程曲线

    Figure  12.  Time history curves of impact force of the specimens under different steel ratios with the same slenderness ratio

    图  13  相同长细比下不同含钢率构件的L/2处侧移时程曲线

    Figure  13.  Time history curves of lateral deflection of the specimens at L/2 under the different steel ratios with the same slenderness ratio

    图  14  长细比对冲击力和L/2处侧移的影响

    Figure  14.  Influence of slenderness ratio on impact force and lateral deflection

    图  15  相同含钢率下不同长细比构件的各阶段持时

    Figure  15.  Duration time of specimens with different slenderness ratios under the same steel ratio

    图  16  不同含钢率下相同长细比构件的耗能

    Figure  16.  Energy consumption of specimens under the different steel ratios with the same slenderness ratio

    图  17  钢骨塑性耗散能时程曲线

    Figure  17.  Time history curves of encased steel plastic dissipation energy

    图  18  相同含钢率下不同长细比构件耗能对比

    Figure  18.  Energy consumption of specimens with different slenderness ratios under the same steel ratio

    表  1  试件冲击力学性能

    Table  1.   Impact mechanical properties of specimens

    构件FmaxFoscΔmax
    模拟/kN试验/kN误差/%模拟/kN试验/kN误差/%模拟/mm试验/mm误差/%
    F2H109.0129.4[20]162528.4[20]12104.5105[20]0
    LCL1(1)252.3227.3[21]112832[21]1328.223[21]20
    下载: 导出CSV

    表  2  低速冲击模型的参数

    Table  2.   Parameters for low velocity impact model

    构件 L/mm λ H型钢 Fmax/kN Fosc/kN Δmax/mm
    翼缘类型 α/% h×b×t1×t2/mm Ix/cm4
    SW 700 8 0 318 518 18.7
    SJ1 700 8 4.8 100×50×5×7 192 388 558 15.6
    SJ2 700 8 7.1 150×75×5×7 679 548 651 11.2
    SJ3 700 8 8.6 100×100×6×8 383 520 587 12.7
    SJ4 700 8 11.9 125×125×6.5×9 847 634 629 11.0
    MW 1800 20 0 318 138 52.9
    MJ1 1800 20 4.8 100×50×5×7 192 377 174 42.0
    MJ2 1800 20 7.1 150×75×5×7 679 531 228 29.6
    MJ3 1800 20 8.6 100×100×6×8 383 478 200 34.4
    MJ4 1800 20 11.9 125×125×6.5×9 847 620 255 26.6
    LW 3000 33 0 283 53 116.2
    LJ1 3000 33 4.8 100×50×5×7 192 367 77 81.7
    LJ2 3000 33 7.1 150×75×5×7 679 529 108 56.7
    LJ3 3000 33 8.6 100×100×6×8 383 472 97 63.8
    LJ4 3000 33 11.9 125×125×6.5×9 847 572 124 47.9
    下载: 导出CSV

    表  3  构件耗能

    Table  3.   Energy consumption of members

    构件 EI/kJ EIC/kJ EIS/kJ EE/kJ EP/kJ EPS//kJ
    SW 6.46 4.10 2.94 3.38
    SJ1 6.66 2.95 1.95 2.15 4.20 1.86
    SJ2 6.81 2.41 3.06 1.79 4.79 2.93
    SJ3 6.46 2.53 2.34 1.97 4.14 2.24
    SJ4 6.47 2.08 2.93 1.77 4.41 2.80
    MW 7.42 4.04 4.16 3.16
    MJ1 7.33 2.88 2.24 2.66 4.36 2.17
    MJ2 7.32 2.22 3.95 1.82 5.34 3.82
    MJ3 7.07 2.13 3.38 2.00 4.84 3.31
    MJ4 6.90 1.60 4.47 1.19 5.50 4.39
    LW 7.60 4.02 4.23 3.25
    LJ1 7.55 3.00 2.50 2.77 4.58 2.39
    LJ2 7.50 2.29 4.12 1.78 5.56 4.01
    LJ3 7.30 2.25 3.56 2.42 4.64 3.37
    LJ4 7.09 1.81 4.52 1.25 5.60 4.37
    下载: 导出CSV
  • [1] 韩林海. 钢管混凝土结构-理论与实践 [M]. 3版. 北京: 科学出版社, 2017: 1–68.

    HAN L H. Concrete filled steel tubular structures-theory and practice [M]. 3rd ed. Beijing: Science Press, 2017: 1–68.
    [2] 吴智深, 汪昕, 吴刚. FRP增强工程结构体系 [M]. 北京: 科学出版社, 2017: 1–106.

    WU Z S, WANG X, WU G. FRP reinforced engineering structural systems [M]. Beijing: Science Press, 2017: 1–106.
    [3] 于冬雪, 于化杰, 黎红兵, 等. FRP建筑材料的结构性能及应用综述 [J]. 材料导报, 2021, 35(S2): 660–668.

    YU D X, YU H J, LI H B, et al. Structure, property and application as building materials of FRP: a review [J]. Materials Reports, 2021, 35(S2): 660–668.
    [4] 张海霞, 刘鹤, 孙云杰. 内置钢骨GFRP管混凝土中长柱偏压承载力分析 [J]. 合肥工业大学学报(自然科学版), 2017, 40(7): 965–970. DOI: 10.3969/j.issn.1003-5060.2017.07.020.

    ZHANG H X, LIU H, SUN Y J. Analysis of bearing capacity of steel-encased concrete filled GFRP tubes middle-long column subjected to eccentric compression load [J]. Journal of Hefei University of Technology (Natural Science), 2017, 40(7): 965–970. DOI: 10.3969/j.issn.1003-5060.2017.07.020.
    [5] HUANG L, YU T, ZHANG S S. FRP-confined concrete-encased cross-shaped steel columns: effects of key parameters [J]. Composite Structures, 2021, 272: 114252. DOI: 10.1016/j.compstruct.2021.114252.
    [6] KARIMI K, TAIT M J, EL-DAKHAKHNI W W. Analytical modeling and axial load design of a novel FRP-encased steel-concrete composite column for various slenderness ratios [J]. Engineering Structures, 2013, 46: 526–534. DOI: 10.1016/j.engstruct.2012.08.016.
    [7] YU T, LIN G, ZHANG S S. Compressive behavior of FRP-confined concrete-encased steel columns [J]. Composite Structures, 2016, 154: 493–506. DOI: 10.1016/j.compstruct.2016.07.027.
    [8] 曹朋朋. FRP管约束钢骨混凝土中长柱偏压力学性能研究 [D]. 沈阳: 沈阳建筑大学, 2013: 13–63.

    CAO P P. Mechanical behavior of steel-encased concrete filled FRP tube column under unidirectional eccentric compression [D]. Shenyang: Shenyang Jianzhu University, 2013: 13–63.
    [9] PAN M L, WANG D Y, PEI W C, et al. Monotonic and cyclic compression behavior of axially loaded FRP-confined concrete-encased cross-shaped steel columns [J]. Composite Structures, 2023, 307: 116632. DOI: 10.1016/j.compstruct.2022.116632.
    [10] ZHANG H X, JU S L, CHEN H. Seismic performance of GFRP tube concrete-encased steel composite columns under axial compression [J]. Journal of Constructional Steel Research, 2023, 200: 107641. DOI: 10.1016/j.jcsr.2022.107641.
    [11] 孙浩. 两端固支的GFRP管-钢骨混凝土构件抗冲击性能研究 [D]. 沈阳: 沈阳建筑大学, 2023: 13–73. DOI: 10.27809/d.cnki.gsjgc.2022.000253.

    SUN H. Study on impact resistance of steel-encased concrete filled GFRP tubes member with fixed ends [D]. Shenyang: Shenyang Jianzhu University, 2023: 13–73. DOI: 10.27809/d.cnki.gsjgc.2022.000253.
    [12] 白慧宇. GFRP管约束十字钢骨混凝土方柱轴向冲击性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2022: 14–100. DOI: 10.27061/d.cnki.ghgdu.2022.004620.

    BAI H Y. Axial impact behavior of GFRP tube-confined concrete-encased cross-shaped steel square columns [D]. Harbin: Harbin Institute of Technology, 2022: 14–100. DOI: 10.27061/d.cnki.ghgdu.2022.004620.
    [13] 刘烨, 王蕊, 李志刚. CFRP-混凝土-钢管组合结构在低速侧向撞击下的动力响应 [J]. 爆炸与冲击, 2018, 38(4): 759–767. DOI: 10.11883/bzycj-2016-0349.

    LIU Y, WANG R, LI Z G. Finite element analysis of CFRP-concrete-steel composite structure under low velocity lateral impact loading [J]. Explosion and Shock Waves, 2018, 38(4): 759–767. DOI: 10.11883/bzycj-2016-0349.
    [14] HSIAO H M, DANIEL I M, CORDES R D. Strain rate effects on the transverse compressive and shear behavior of unidirectional composites [J]. Journal of Composite Materials, 1999, 33(17): 1620–1642. DOI: 10.1177/002199839903301703.
    [15] HALLETT S R, RUIZ C, HARDING J. The effect of strain rate on the interlaminar shear strength of a carbon/epoxy cross-ply laminate: comparison between experiment and numerical prediction [J]. Composites Science and Technology, 1999, 59(5): 749–758. DOI: 10.1016/S0266-3538(98)00117-1.
    [16] LAM L, TENG J G. Stress-strain model for FRP-confined concrete under cyclic axial compression [J]. Engineering Structures, 2009, 31(2): 308–321. DOI: 10.1016/j.engstruct.2008.08.014.
    [17] TAO Z, WANG Z B, YU Q. Finite element modelling of concrete-filled steel stub columns under axial compression [J]. Journal of Constructional Steel Research, 2013, 89: 121–131. DOI: 10.1016/j.jcsr.2013.07.001.
    [18] Fib model code for concrete structures 2010 [Z]. Berlin: Ernst & Sohn, 2013.
    [19] 侯川川. 低速横向冲击荷载下圆钢管混凝土构件的力学性能研究 [D]. 北京: 清华大学, 2012: 50–51.

    HOU C C. Study on performance of circular concrete-filled steel tubular (CFST) members under low velocity transverse impact [D]. Beijing: Tsinghua University, 2012: 50–51.
    [20] WANG R, HAN L H, TAO Z. Behavior of FRP-concrete-steel double skin tubular members under lateral impact: experimental study [J]. Thin-Walled Structures, 2015, 95: 363–373. DOI: 10.1016/j.tws.2015.06.022.
    [21] CHEN C, ZHAO Y H, LI J. Experimental investigation on the impact performance of concrete-filled FRP steel tubes [J]. Journal of Engineering Mechanics, 2015, 141(2): 04014112. DOI: 10.1061/(ASCE)EM.1943-7889.0000833.
    [22] 中华人民共和国住房和城乡建设部. 组合结构设计规范: JGJ 138—2016 [S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of composite structures: JGJ 138—2016 [S]. Beijing: China Architecture & Building Press, 2016.
    [23] WU Q J, ZHI X D, LI Q X, et al. Experimental and numerical studies of GFRP-reinforced steel tube under low-velocity transverse impact [J]. International Journal of Impact Engineering, 2019, 127: 135–153. DOI: 10.1016/j.ijimpeng.2019.01.010.
    [24] SHARMA H, HURLEBAUS S, GARDONI P. Performance-based response evaluation of reinforced concrete columns subject to vehicle impact [J]. International Journal of Impact Engineering, 2012, 43: 52–62. DOI: 10.1016/j.ijimpeng.2011.11.007.
    [25] ZHU X, ZHAO P J, TIAN Y, et al. Experimental study of RC columns and composite columns under low-velocity impact [J]. Thin-Walled Structures, 2021, 160: 107374. DOI: 10.1016/j.tws.2020.107374.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  39
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-13
  • 修回日期:  2023-11-21
  • 网络出版日期:  2023-12-27
  • 刊出日期:  2024-04-07

目录

    /

    返回文章
    返回