冻结砂岩爆破破岩的能量耗散特性

蒋楠 张硕彦 姚颖康 周传波 罗学东 曹华彰

蒋楠, 张硕彦, 姚颖康, 周传波, 罗学东, 曹华彰. 冻结砂岩爆破破岩的能量耗散特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0258
引用本文: 蒋楠, 张硕彦, 姚颖康, 周传波, 罗学东, 曹华彰. 冻结砂岩爆破破岩的能量耗散特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0258
JIANG Nan, ZHANG Shuoyan, YAO Yingkang, ZHOU Chuanbo, LUO Xuedong, CAO Huazhang. Energy dissipation characteristics of fragmentation of frozen sandstone[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0258
Citation: JIANG Nan, ZHANG Shuoyan, YAO Yingkang, ZHOU Chuanbo, LUO Xuedong, CAO Huazhang. Energy dissipation characteristics of fragmentation of frozen sandstone[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0258

冻结砂岩爆破破岩的能量耗散特性

doi: 10.11883/bzycj-2023-0258
基金项目: 国家自然科学基金(41972286,42072309,42102329)
详细信息
    通讯作者:

    蒋 楠(1986- ),男,博士,副教授,jiangnan@cug.edu.cn

  • 中图分类号: O383

Energy dissipation characteristics of fragmentation of frozen sandstone

  • 摘要: 为探究冻结岩体的冲击力学性能,并提出寒区爆破开挖工程中合理的爆破炸药单耗,针对寒区典型分布的砂岩,采用室内分离式霍普金森压杆试验与理论分析相结合的方法,开展了冻结砂岩冲击力学性能及爆破破岩能量耗散特性研究。结果表明:(1) 冻结状态砂岩的动态抗压强度和动态弹性模量相比常温状态整体有所提升,而应变峰值整体有所下降。对比静载与动载试验结果,相同物理参数下,砂岩的抗压强度差距不大,而动态弹性模量要明显高于静态弹性模量。(2) 常温和冻结状态砂岩试件的耗散能量均随含水率的增大而逐渐减低,且冻结状态砂岩的耗散能量高于常温状态。相比常温状态,冻结砂岩在含水率为0、0.25ω、0.50ω、0.75ω、1.00ω时,其耗散能量增幅分别为21.6%、64.9%、80.3%、78.2%、83.3%。(3) 相同含水率下,冻结状态砂岩的炸药单耗均高于常温状态,在含水率为0、0.25ω、0.50ω、0.75ω、1.00ω时,冻结状态砂岩爆破炸药单耗相比常温状态分别增加20.4%、61.3%、60.0%、55.6%、66.7%。(4) 将常温与冻结状态砂岩爆破炸药单耗数值进行拟合,得到不同状态砂岩爆破破岩的单耗修正模型,可为寒区爆破工程提供参考。
  • 图  1  改进的SHPB试验装置

    Figure  1.  Improved SHPB test device

    图  2  常温状态下不同含水率砂岩的冲击破坏形态

    Figure  2.  Impact failure morphology of sandstones with different moisture contents at room temperature

    图  3  冻结状态下不同含水率砂岩的冲击破坏形态

    Figure  3.  Impact failure morphology of frozen sandstones with different moisture contents

    图  4  常温状态砂岩的动态抗压强度

    Figure  4.  Dynamic compressive strength of sandstones at room temperature

    图  5  冻结状态砂岩的动态抗压强度

    Figure  5.  Dynamic compressive strength of frozen sandstones

    图  6  常温状态砂岩的动态应变

    Figure  6.  Dynamic strain of sandstones at room temperature

    图  7  冻结状态砂岩的动态应变

    Figure  7.  Dynamic strain of frozen sandstones

    图  8  常温状态砂岩的动态弹性模量

    Figure  8.  Dynamic elastic modulus of sandstones at room temperature

    图  9  冻结状态砂岩的动态弹性模量

    Figure  9.  Dynamic elastic modulus of frozen sandstones

    图  10  动静载作用下冻结砂岩力学参数的对比

    Figure  10.  Comparison of mechanical parameters under dynamic and static loads

    图  11  常温状态砂岩试件的能量曲线

    Figure  11.  Energy curves of sandstone specimens at room temperature

    图  12  冻结状态砂岩试件的能量曲线

    Figure  12.  Energy curves of frozen sandstone specimens

    图  13  常温与冻结状态砂岩耗散能量的对比

    Figure  13.  Comparison of energy dissipation of sandstones at room temperature and frozen state

    图  14  不同状态砂岩爆破破岩的单耗修正模型

    Figure  14.  Unit consumption correction model for sandstone blasting fragmentation in different states

    表  1  砂岩的静力学参数

    Table  1.   Static parameters of sandstones

    ρ/(g·cm−3) T/℃ 含水率 cp/(m·s−1) σc/MPa σt/MPa E/GPa μ0
    2.02 20 0 2 800 58.62 16.2 33.52 0.27
    2.08 20 0.25ω 2 850 42.36 8.7 22.33 0.27
    2.15 20 0.50ω 2 970 34.70 4.7 18.26 0.28
    2.20 20 0.75ω 3 120 30.25 4.2 13.61 0.28
    2.25 20 1.00ω 3 200 25.63 3.0 11.62 0.28
    2.02 –20 0 2 830 60.64 18.4 32.74 0.27
    2.08 –20 0.25ω 2 800 50.45 9.5 27.72 0.28
    2.15 –20 0.50ω 2 950 46.68 5.6 23.71 0.28
    2.20 –20 0.75ω 3 100 41.22 4.4 19.45 0.30
    2.25 –20 1.00ω 3 180 35.70 3.8 18.28 0.30
    下载: 导出CSV

    表  2  砂岩SHPB压缩试验分组

    Table  2.   Grouping of sandstone SHPB compression test

    试件温度/℃ 含水率 平均撞击速度/(m·s−1) 平均应变率/s−1
    20 0 5.88 38.3
    0.25ω 5.83 47.3
    0.50ω 5.89 62.8
    0.75ω 5.96 77.5
    1.00ω 5.92 83.7
    –20 0 6.02 43.3
    0.25ω 5.85 46.9
    0.50ω 5.90 52.3
    0.75ω 5.95 46.1
    1.00ω 5.93 57.9
    下载: 导出CSV

    表  3  岩石乳化炸药的参数

    Table  3.   Parameters of rock emulsion explosive

    密度/(g·cm−3)爆速/(m·s−1)药卷直径/mm爆热/(MJ·kg−1)
    1.253 20018~1753.991
    下载: 导出CSV

    表  4  砂岩的力学参数

    Table  4.   Mechanical parameters of sandstones

    密度/(g·cm−3) 温度/℃ 含水率 声波速度/(m·s−1) 动态抗压强度/MPa 抗拉强度/MPa 动态弹性模量/GPa 动态泊松比
    2.02 20 0 2 800 63.75 16.2 66.50 0.216
    2.08 20 0.25ω 2 850 41.95 8.7 75.78 0.216
    2.15 20 0.50ω 2 970 36.88 4.7 58.63 0.224
    2.20 20 0.75ω 3 120 34.89 4.2 36.75 0.224
    2.25 20 1.00ω 3 200 29.60 3.0 23.87 0.224
    2.02 –20 0 2 830 64.82 18.4 62.94 0.216
    2.08 –20 0.25ω 2 800 45.56 9.5 83.72 0.224
    2.15 –20 0.50ω 2 950 45.52 5.6 97.74 0.224
    2.20 –20 0.75ω 3 100 43.68 4.4 68.45 0.240
    2.25 –20 1.00ω 3 180 30.19 3.8 28.10 0.240
    下载: 导出CSV

    表  5  爆破能量分布

    Table  5.   Explosion energy distribution

    状态 含水率 E1/kJ E2/kJ E3/kJ E4/kJ E5/kJ 其他/kJ
    常温 0 15.36 2.01 1.89 0.75 1.48 41.16
    0.25ω 17.44 1.63 1.78 0.65 1.45 39.75
    0.50ω 18.49 0.81 2.41 0.53 2.51 37.95
    0.75ω 19.43 2.43 4.43 0.46 4.58 31.37
    1.00ω 20.51 6.12 7.01 0.38 7.24 21.44
    冻结 0 15.13 2.29 2.05 0.36 1.49 41.37
    0.25ω 17.07 2.34 1.83 0.71 1.51 39.24
    0.50ω 17.70 3.45 1.45 0.65 1.58 37.87
    0.75ω 18.53 7.07 2.38 0.62 2.75 31.35
    1.00ω 20.29 9.55 5.96 0.38 5.85 20.94
    下载: 导出CSV

    表  6  砂岩冲击及炸药爆破破岩耗能

    Table  6.   Energy consumption of sandstone impact and explosive blasting fragmentation

    状态 含水率 冲击破岩耗能/J 爆炸破岩耗能/kJ
    常温 0 26.4 17.37
    0.25ω 18.5 19.07
    0.50ω 14.7 19.30
    0.75ω 12.4 21.86
    1.00ω 10.2 26.63
    冻结 0 32.1 17.42
    0.25ω 30.5 19.41
    0.50ω 26.5 21.15
    0.75ω 22.1 25.60
    1.00ω 18.7 29.84
    下载: 导出CSV

    表  7  常温与冻结状态不同含水率砂岩爆破炸药单耗

    Table  7.   Unit explosive consumption of sandstones with different moisture contents at room temperature and frozen state

    含水率 炸药单耗/(kg·m−3)
    常温状态砂岩 冻结状态砂岩
    0 0.49 0.59
    0.25ω 0.31 0.50
    0.50ω 0.25 0.40
    0.75ω 0.18 0.28
    1.00ω 0.12 0.20
    下载: 导出CSV
  • [1] 杨更社, 吕晓涛. 富水基岩井筒冻结壁砂质泥岩力学特性试验研究 [J]. 采矿与安全工程学报, 2012, 29(4): 492–496.

    YANG G S, LV X T. Experimental study on the sandy mudstone mechanical properties of shaft sidewalls under the frozen conditions [J]. Journal of Mining & Safety Engineering, 2012, 29(4): 492–496.
    [2] 李云鹏, 王芝银. 岩石低温单轴压缩力学特性 [J]. 北京科技大学学报, 2011, 33(6): 671–675. DOI: 10.13374/j.issn1001-053x.2011.06.004.

    LI Y P, WANG Z Y. Uniaxial compressive mechanical properties of rock at low temperature [J]. Journal of University of Science and Technology Beijing, 2011, 33(6): 671–675. DOI: 10.13374/j.issn1001-053x.2011.06.004.
    [3] HE R, HE L, GUAN B, et al. Mechanical properties of a typical jurassic Shaximiao sandstone under subzero and deep in situ temperature conditions [J]. Frontiers in Earth Science, 2021, 9: 770272. DOI: 10.3389/feart.2021.770272.
    [4] ZHANG G, LIU E, CHEN S, et al. Damage constitutive model based on energy dissipation for frozen sandstone under triaxial compression revealed by X-ray tomography [J]. Experimental Techniques, 2019, 43(5): 545–560. DOI: 10.1007/s40799-019-00309-z.
    [5] WANG C, LI S Y, ZHANG T W, et al. Experimental study on mechanical characteristics and fracture patterns of unfrozen/freezing saturated coal and sandstone [J]. Materials, 2019, 12(6): 992. DOI: 10.3390/ma12060992.
    [6] 宋勇军, 杨慧敏, 张磊涛, 等. 冻结红砂岩单轴损伤破坏CT实时试验研究 [J]. 岩土力学, 2019, 40(S1): 152–160. DOI: 10.16285/j.rsm.2018.2371.

    SONG Y J, YANG H M, ZHANG L T, et al. CT real-time monitoring on uniaxial damage of frozen red sandstone [J]. Rock and Soil Mechanics, 2019, 40(S1): 152–160. DOI: 10.16285/j.rsm.2018.2371.
    [7] 刘慧, 杨更社, 贾海梁, 等. 裂隙(孔隙)水冻结过程中岩石细观结构变化的实验研究 [J]. 岩石力学与工程学报, 2016, 35(12): 2516–2524. DOI: 10.13722/j.cnki.jrme.2016.0906.

    LIU H, YANG G S, JIA H L, et al. Experimental study on meso-structure of rock in the process of crack (pore) water freezing [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2516–2524. DOI: 10.13722/j.cnki.jrme.2016.0906.
    [8] 夏才初, 黄继辉, 韩常领, 等. 寒区隧道岩体冻胀率的取值方法和冻胀敏感性分级 [J]. 岩石力学与工程学报, 2013, 32(9): 1876–1885. DOI: 10.3969/j.issn.1000-6915.2013.09.020.

    XIA C C, HUANG J H, HAN C L, et al. Methods of frost-heave ratio evaluation and classification of frost-heave susceptibility of tunnel surrounding rocks in cold regions [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1876–1885. DOI: 10.3969/j.issn.1000-6915.2013.09.020.
    [9] CAI M, KAISER P K, SUORINENI F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8): 907–916. DOI: 10.1016/j.pce.2006.03.007.
    [10] CHEN R, XIA K, DAI F, et al. Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing [J]. Engineering Fracture Mechanics, 2009, 76(9): 1268–1276. DOI: 10.1016/j.engfracmech.2009.02.001.
    [11] 李二兵, 谭跃虎, 马聪, 等. 三向压力作用下盐岩SHPB试验及动力强度研究 [J]. 岩石力学与工程学报, 2015, 34(S2): 3742–3749. DOI: 10.13722/j.cnki.jrme.2015.0594.

    LI E B, TAN Y H, MA C, et al. Split Hopkinson pressure bar test and dynamic strength research of salt rock under three-pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3742–3749. DOI: 10.13722/j.cnki.jrme.2015.0594.
    [12] 王健, 李二兵, 谭跃虎, 等. 层状盐岩及泥岩夹层动态力学特性对比试验研究 [J]. 岩石力学与工程学报, 2017, 36(12): 3002–3011. DOI: 10.13722/j.cnki.jrme.2017.0727.

    WANG J, LI E B, TAN Y H, et al. Comparative experimental study on dynamic mechanical properties of bedded salt rock and mudstone interbed [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 3002–3011. DOI: 10.13722/j.cnki.jrme.2017.0727.
    [13] 贾蓬, 卢佳亮, 毛松泽, 等. 不同饱和度冻融砂岩动态冲击压缩特性及损伤机制研究 [J/OL]. 岩石力学与工程学报. DOI: 10.13722/j.cnki.jrme.2023.0242.

    JIA P, LU J L, MAO S Z, et al. Dynamic impact compression characteristics and damage mechanism of freeze-thaw sandstones with different saturation levels [J/OL]. Chinese Journal of Rock Mechanics and Engineering. DOI: 10.13722/j.cnki.jrme.2023.0242.
    [14] 姜亚成, 周磊, 朱哲明, 等. 冻融循环对含纯Ⅰ型裂隙围岩的动态起裂特性影响规律 [J]. 爆炸与冲击, 2021, 41(4): 043104. DOI: 10.11883/bzycj-2020-0330.

    JIANG Y C, ZHOU L, ZHU Z M, et al. Effects of freeze-thaw cycles on dynamic fracture initiation characteristics of surrounding rock with pure Ⅰ type fracture under impact loads [J]. Explosion and Shock Waves, 2021, 41(4): 043104. DOI: 10.11883/bzycj-2020-0330.
    [15] 赵忠虎, 谢和平. 岩石变形破坏过程中的能量传递和耗散研究 [J]. 四川大学学报(工程科学版), 2008, 40(2): 26–31.

    ZHAO Z H, XIE H P. Energy transfer and energy dissipation in rock deformation and fracture [J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(2): 26–31.
    [16] 张文清, 石必明, 穆朝民. 冲击载荷作用下煤岩破碎与耗能规律实验研究 [J]. 采矿与安全工程学报, 2016, 33(2): 375–380. DOI: 10.13545/j.cnki.jmse.2016.02.029.

    ZHANG W Q, SHI B M, MU C M. Experimental research on failure and energy dissipation law of coal under impact load [J]. Journal of Mining & Safety Engineering, 2016, 33(2): 375–380. DOI: 10.13545/j.cnki.jmse.2016.02.029.
    [17] 张广辉, 欧阳振华, 邓志刚, 等. 循环加载下冲击倾向性煤能量耗散与损伤演化研究 [J]. 煤炭科学技术, 2017, 45(2): 59–64. DOI: 10.13199/j.cnki.cst.2017.02.010.

    ZHANG G H, OUYANG Z H, DENG Z G, et al. Study on energy dissipation and damage evolution of bump proneness coal under cyclic loadings [J]. Coal Science and Technology, 2017, 45(2): 59–64. DOI: 10.13199/j.cnki.cst.2017.02.010.
    [18] 李少华, 朱万成, 牛雷雷, 等. 加载速率对砂岩破碎及能耗特征的影响 [J]. 东北大学学报(自然科学版), 2017, 38(10): 1459–1463. DOI: 10.12068/j.issn.1005-3026.2017.10.018.

    LI S H, ZHU W C, NIU L L, et al. Effect of loading rate on fragmentation and energy dissipation characteristics of sandstone [J]. Journal of Northeastern University (Natural Science), 2017, 38(10): 1459–1463. DOI: 10.12068/j.issn.1005-3026.2017.10.018.
    [19] 王宇, 翟成, 唐伟, 等. 循环冲击载荷作用下页岩动力学响应及能量耗散特征 [J]. 爆炸与冲击, 2023, 43(6): 063102. DOI: 10.11883/bzycj-2022-0248.

    WANG Y, ZHAI C, TANG W, et al. Dynamic response and energy dissipating characteristics of shale under cyclic impact loadings [J]. Explosion and Shock Waves, 2023, 43(6): 063102. DOI: 10.11883/bzycj-2022-0248.
    [20] 中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013 [S]. 北京: 中国计划出版社, 2013.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of engineering rock mass: GB/T 50266—2013 [S]. Beijing: China Planning Press, 2013.
    [21] 苗胜军, 刘泽京, 赵星光, 等. 循环荷载下北山花岗岩能量耗散与损伤特征 [J]. 岩石力学与工程学报, 2021, 40(5): 928–938. DOI: 10.13722/j.cnki.jrme.2020.0953.

    MIAO S J, LIU Z J, ZHAO X G, et al. Energy dissipation and damage characteristics of Beishan granite under cyclic loading and unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 928–938. DOI: 10.13722/j.cnki.jrme.2020.0953.
    [22] 张慧梅, 陈世官, 王磊, 等. 扰动冲击下弱胶结红砂岩的能量耗散与分形特征 [J]. 岩土工程学报, 2022, 44(4): 622–631. DOI: 10.11779/CJGE202204004.

    ZHANG H M, CHEN S G, WANG L, et al. Energy dissipation and fractal characteristics of weakly cemented red sandstone under disturbance impact [J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 622–631. DOI: 10.11779/CJGE202204004.
    [23] 吴亮, 卢文波, 宗琦. 岩石中柱状装药爆炸能量分布 [J]. 岩土力学, 2006, 27(5): 735–739. DOI: 10.16285/j.rsm.2006.05.010.

    WU L, LU W B, ZONG Q. Distribution of explosive energy consumed by column charge in rock [J]. Rock and Soil Mechanics, 2006, 27(5): 735–739. DOI: 10.16285/j.rsm.2006.05.010.
    [24] 申艳军, 杨更社, 荣腾龙, 等. 岩石冻融循环试验建议性方案探讨 [J]. 岩土工程学报, 2016, 38(10): 1775–1782. DOI: 10.11779/CJGE201610005.

    SHEN Y J, YANG G S, RONG T L, et al. Proposed scheme for freeze-thaw cycle tests on rock [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1775–1782. DOI: 10.11779/CJGE201610005.
    [25] 王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005.
    [26] DAVIES E D H, HUNTER S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar [J]. Journal of the Mechanics and Physics of Solids, 1963, 11(3): 155–179. DOI: 10.1016/0022-5096(63)90050-4.
    [27] 王斌, 李夕兵, 尹土兵, 等. 饱水砂岩动态强度的SHPB试验研究 [J]. 岩石力学与工程学报, 2010, 29(5): 1003–1009.

    WANG B, LI X B, YIN T B, et al. Split Hopkinson pressure bar (SHPB) experiments on dynamic strength of water-saturated sandstone [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 1003–1009.
    [28] 平琦, 马芹永, 张经双, 等. 高应变率下砂岩动态拉伸性能SHPB试验与分析 [J]. 岩石力学与工程学报, 2012, 31(S1): 3363–3369. DOI: 10.3969/j.issn.1000-6915.2012.z1.102.

    PING Q, MA Q Y, ZHANG J S, et al. SHPB test and analysis of dynamic tensile performance of sandstone under high strain rate [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3363–3369. DOI: 10.3969/j.issn.1000-6915.2012.z1.102.
    [29] 朱晶晶, 李夕兵, 宫凤强, 等. 冲击载荷作用下砂岩的动力学特性及损伤规律 [J]. 中南大学学报(自然科学版), 2012, 43(7): 2701–2707.

    ZHU J J, LI X B, GONG F Q, et al. Experimental test and damage characteristics of sandstone under uniaxial impact compressive loads [J]. Journal of Central South University (Science and Technology), 2012, 43(7): 2701–2707.
    [30] 贾海梁, 赵思琪, 丁顺, 等. 含水裂隙冻融过程中冻胀力演化及影响因素研究 [J]. 岩石力学与工程学报, 2022, 41(9): 1832–1845. DOI: 10.13722/j.cnki.jrme.2021.1147.

    JIA H L, ZHAO S Q, DING S, et al. Study on the evolution and influencing factors of frost heaving force of water-bearing cracks during freezing-thawing process [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9): 1832–1845. DOI: 10.13722/j.cnki.jrme.2021.1147.
    [31] 宗琦, 杨吕俊. 岩石中爆炸冲击波能量分布规律初探 [J]. 爆破, 1999, 16(2): 1–6.

    ZONG Q, YANG L J. Shock energy distribution of column charge in rock [J]. Blasting, 1999, 16(2): 1–6.
    [32] 张奇. 工程爆破动力学分析及其应用 [M]. 北京: 煤炭工业出版社, 1998.

    ZHANG Q. Analyses on engineering blasting dynamics and its application [M]. Beijing: China Coal Industry Publishing House, 1998.
    [33] 戴俊. 岩石动力学特性与爆破理论 [M]. 北京: 冶金工业出版社, 2002.
    [34] 冷振东. 岩石爆破中爆炸能量的释放与传输机制 [D]. 武汉: 武汉大学, 2017.

    LENG Z D. Explosion energy release and transmission mechanism in rock blasting [D]. Wuhan: Wuhan University, 2017.
    [35] 杨善元. 岩石爆破动力学基础 [M]. 北京: 煤炭工业出版社, 1993.
    [36] 李夕兵. 岩石动力学基础与应用 [M]. 北京: 科学出版社, 2014.

    LI X B. Rock dynamics fundamentals and applications [M]. Beijing: Science Press, 2014.
  • 加载中
图(14) / 表(7)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  29
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-23
  • 修回日期:  2023-11-20
  • 网络出版日期:  2023-12-25

目录

    /

    返回文章
    返回