掺氢比例对金属丝网阻抑掺氢甲烷燃烧火焰传播的影响

程方明 苟籽妍 罗振敏 葛天姣 葛汉漳

程方明, 苟籽妍, 罗振敏, 葛天姣, 葛汉漳. 掺氢比例对金属丝网阻抑掺氢甲烷燃烧火焰传播的影响[J]. 爆炸与冲击, 2024, 44(4): 045402. doi: 10.11883/bzycj-2023-0295
引用本文: 程方明, 苟籽妍, 罗振敏, 葛天姣, 葛汉漳. 掺氢比例对金属丝网阻抑掺氢甲烷燃烧火焰传播的影响[J]. 爆炸与冲击, 2024, 44(4): 045402. doi: 10.11883/bzycj-2023-0295
CHENG Fangming, GOU Ziyan, LUO Zhenmin, GE Tianjiao, GE Hanzhang. Effect of hydrogen ratio on inhibition property of wire mesh to propagation of the flame by methane premixed with hydrogen[J]. Explosion And Shock Waves, 2024, 44(4): 045402. doi: 10.11883/bzycj-2023-0295
Citation: CHENG Fangming, GOU Ziyan, LUO Zhenmin, GE Tianjiao, GE Hanzhang. Effect of hydrogen ratio on inhibition property of wire mesh to propagation of the flame by methane premixed with hydrogen[J]. Explosion And Shock Waves, 2024, 44(4): 045402. doi: 10.11883/bzycj-2023-0295

掺氢比例对金属丝网阻抑掺氢甲烷燃烧火焰传播的影响

doi: 10.11883/bzycj-2023-0295
基金项目: 国家自然科学基金(52174200)
详细信息
    作者简介:

    程方明(1982- ),男,博士,副教授, chengfm@xust.edu.cn

    通讯作者:

    苟籽妍(1998- ),女,硕士研究生, gouziyan@stu.xust.edu.cn

  • 中图分类号: O382; X932

Effect of hydrogen ratio on inhibition property of wire mesh to propagation of the flame by methane premixed with hydrogen

  • 摘要: 为进一步揭示金属丝网阻抑掺氢甲烷燃烧火焰传播特征的规律,通过实验研究了掺氢比例对不同孔隙密度金属丝网阻火过程的影响。结果表明:随着掺氢比例的增加,金属丝网的阻火难度加大,金属丝网的阻火效果可由成功转为失败,对火焰传播的影响作用可能从抑制转变为促进;当金属丝网阻火失败时,金属丝网会引起火焰褶皱并导致火焰加速,但郁金香形火焰的首现时间有所延迟;随着掺氢比例的增大,火焰穿过金属丝网后的加速现象更为明显;提高金属丝网孔隙密度可提高金属丝网对掺氢甲烷预混火焰的阻火能力,孔隙密度越大,阻火能力越强;60 mpi以上金属丝网能够有效淬熄掺氢甲烷预混火焰。
  • 图  1  实验装置示意图

    Figure  1.  Schematic of experimental device

    图  2  阻火结构

    Figure  2.  Fire resistance structure

    图  3  空管内不同掺氢比例的火焰传播图像

    Figure  3.  Flame propagation images with different hydrogen mixing ratios in the empty pipe

    图  4  掺氢比例为20%时不同孔隙密度金属丝网管道内的火焰传播图像

    Figure  4.  Flame propagation images with the hydrogen mixed ratio of 20% in tubes with different mesh density

    图  5  不同掺氢比例下的火焰在40 mpi金属丝网管道内的传播图像

    Figure  5.  Flame propagation images with different hydrogen mixing ratios in a 40 mpi wire mesh pipe

    图  6  空管火焰传播速度-距离变化曲线

    Figure  6.  Variation curves of flame propagation velocity and distance in an empty pipe

    图  7  不同掺氢比例下的火焰传播速度-距离变化曲线

    Figure  7.  Variation curves of flame propagation velocity and distance under different hydrogen mixing ratios

    表  1  金属丝网几何参数

    Table  1.   Geometric parameters of wire mesh

    序号 孔隙密度/mpi 孔径/mm 丝径/mm
    1 10 2.3 0.35
    2 20 1.1 0.21
    3 40 0.5 0.13
    4 60 0.3 0.10
    下载: 导出CSV

    表  2  当量比为1时掺氢甲烷混合气体配比

    Table  2.   Mixture ratio of hydrogen and methane when equivalent ratio is 1 %

    掺氢比例甲烷体积分数氢气体积分数空气体积分数掺氢比例甲烷体积分数氢气体积分数空气体积分数
    09.50090.50208.802.2089.00
    109.181.0289.80308.363.5888.06
    下载: 导出CSV

    表  3  各工况下金属丝网阻火情况

    Table  3.   Fire resistance effect of wire mesh under different working conditions

    孔隙密度/mpi阻火效果孔隙密度/mpi阻火效果
    φ=0%φ=10%φ=20%φ=30%φ=0%φ=10%φ=20%φ=30%
    10NNNN40YNNN
    20NNNN60YYYY
    下载: 导出CSV

    表  4  不同掺氢比例预混气体的最大试验安全间隙

    Table  4.   Maximum examination saftey gap of premixed gas with different ratio of hydrogen

    掺氢比例/%MESG/mm掺氢比例/%MESG/mm
    01.14200.90
    101.03300.83
    下载: 导出CSV
  • [1] ZOU C N, XIONG B, XUE H Q, et al. The role of new energy in carbon neutral [J]. Petroleum Exploration and Development, 2021, 48(2): 480–491. DOI: 10.1016/S1876-3804(21)60039-3.
    [2] GONDAL I A, SAHIR M H. Prospects of natural gas pipeline infrastructure in hydrogen transportation [J]. International Journal of Energy Research, 2012, 36(15): 1338–1345. DOI: 10.1002/er.1915.
    [3] SHEN X B, XIU G L, WU S Z. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition [J]. Applied Thermal Engineering, 2017, 120: 741–747. DOI: 10.1016/j.applthermaleng.2017.04.040.
    [4] 马秋菊, 邵俊程, 王众山, 等. 氢气比例和点火能量对CH4-H2混合气体爆炸强度影响的实验研究 [J]. 高压物理学报, 2020, 34(1): 015201. DOI: 10.11858/gywlxb.20190803.

    MA Q J, SHAO J C, WANG Z S, et al. Experimental study of the hydrogen proportion and ignition energy effects on the CH4-H2 mixture explosion intensity [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015201. DOI: 10.11858/gywlxb.20190803.
    [5] CAI P, LIU Z Y, LI P L, et al. Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel [J]. Energy, 2023, 265: 126302. DOI: 10.1016/j.energy.2022.126302.
    [6] PALMER K N. The quenching of flame by wire gauzes [J]. Symposium (International) on Combustion, 1958, 7(1): 497–503. DOI: 10.1016/s0082-0784(58)80084-3.
    [7] PALMER K N, TONKIN P S. The quenching of flames of various fuels in narrow apertures [J]. Combustion and Flame, 1963, 7: 121–127. DOI: 10.1016/0010-2180(63)90169-X.
    [8] 喻健良, 孟伟, 王雅杰. 多层丝网结构抑制管内气体爆炸的试验 [J]. 天然气工业, 2005, 25(6): 116–118. DOI: 10.3321/j.issn:1000-0976.2005.06.036.

    YU J L, MENG W, WANG Y J. Experiment to suppress gas explosion in pipe with structure of multi-layer wire mesh [J]. Natural Gas Industry, 2005, 25(6): 116–118. DOI: 10.3321/j.issn:1000-0976.2005.06.036.
    [9] CUI Y Y, WANG Z R, ZHOU K B, et al. Effect of wire mesh on double-suppression of CH4/air mixture explosions in a spherical vessel connected to pipelines [J]. Journal of Loss Prevention in the Process Industries, 2017, 45: 69–77. DOI: 10.1016/j.jlp.2016.11.017.
    [10] 童宇, 刘天生. 金属网对瓦斯爆炸抑制作用的实验研究 [J]. 中北大学学报(自然科学版), 2018, 39(5): 591–594. DOI: 10.3969/j.issn.1673-3193.2018.05.018.

    TONG Y, LIU T S. Experiment of suppressing the gas explosion with metal mesh [J]. Journal of North University of China (Natural Science Edition), 2018, 39(5): 591–594. DOI: 10.3969/j.issn.1673-3193.2018.05.018.
    [11] 喻健良, 孟伟, 王雅杰. 评价多层丝网结构阻火性能的试验研究 [J]. 含能材料, 2005, 13(6): 416–420. DOI: 10.3969/j.issn.1006-9941.2005.06.019.

    YU J L, MENG W, WANG Y J. Appraisal of capability of flame arrest by multi-layer wire mesh structure [J]. Chinese Journal of Energetic Materials, 2005, 13(6): 416–420. DOI: 10.3969/j.issn.1006-9941.2005.06.019.
    [12] 喻健良, 蔡涛, 李岳, 等. 丝网结构对爆炸气体淬熄的试验研究 [J]. 燃烧科学与技术, 2008, 14(2): 97–100. DOI: 10.3321/j.issn:1006-8740.2008.02.001.

    YU J L, CAI T, LI Y, et al. Experiment to quench explosive gas with structure of wire mesh [J]. Journal of Combustion Science and Technology, 2008, 14(2): 97–100. DOI: 10.3321/j.issn:1006-8740.2008.02.001.
    [13] JU X Y, MATSUOKA T, YAMAZAKI T, et al. Effect of single-layer metal wire mesh insertion on the burning behavior of laminar coflow propane/air diffusion flames [J]. Combustion and Flame, 2021, 234: 111612. DOI: 10.1016/j.combustflame.2021.111612.
    [14] ZHANG S F, WANG Z R, ZUO Q Q, et al. Suppression effect of explosion in linked spherical vessels and pipelines impacted by wire-mesh structure [J]. Process Safety Progress, 2016, 35(1): 68–75. DOI: 10.1002/prs.11728.
    [15] 陈鹏, 杨永波, 郭实龙, 等. 金属丝网对甲烷/空气预混火焰传播影响的研究 [J]. 中国安全科学学报, 2014, 24(7): 33–36. DOI: 10.16265/j.cnki.issn1003-3033.2014.07.014.

    CHEN P, YANG Y B, GUO S L, et al. Study on influence of metal mesh on methane/air premixed mixture flame propagation [J]. China Safety Science Journal, 2014, 24(7): 33–36. DOI: 10.16265/j.cnki.issn1003-3033.2014.07.014.
    [16] 孙玮康, 陈先锋, 冯梦梦, 等. 金属丝网对甲烷/空气爆燃火焰传播特性的影响 [J]. 高压物理学报, 2020, 34(5): 055201. DOI: 10.11858/gywlxb.20200536.

    SUN W K, CHEN X F, FENG M M, et al. Effect of the wire mesh structure on the flame characteristics of methane/air deflagration [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 055201. DOI: 10.11858/gywlxb.20200536.
    [17] JIN K Q, DUAN Q L, CHEN J Y, et al. Experimental study on the influence of multi-layer wire mesh on dynamics of premixed hydrogen-air flame propagation in a closed duct [J]. International Journal of Hydrogen Energy, 2017, 42(21): 14809–14820. DOI: 10.1016/j.ijhydene.2017.03.232.
    [18] JIN K Q, WANG Q S, DUAN Q L, et al. Effect of metal wire mesh on premixed H2/air flame quenching behaviors in a closed tube [J]. Process Safety and Environmental Protection, 2021, 146: 770–778. DOI: 10.1016/j.psep.2020.12.020.
    [19] JIN K Q, WANG Q S, DUAN Q L, et al. Effect of single-layer wire mesh on premixed methane/air flame dynamics in a closed pipe [J]. International Journal of Hydrogen Energy, 2020, 45(56): 32664–32675. DOI: 10.1016/j.ijhydene.2020.08.159.
    [20] CHENG F M, CHANG Z C, LUO Z M, et al. Large eddy simulation and experimental study of the effect of wire mesh on flame behaviours of methane/air explosions in a semi-confined pipe [J]. Journal of Loss Prevention in the Process Industries, 2020, 68: 104258. DOI: 10.1016/j.jlp.2020.104258.
    [21] 路长, 于子凯, 刘洋, 等. 氢气对预混甲烷/空气燃爆过程的影响 [J]. 安全与环境学报, 2017, 17(6): 2240–2245. DOI: 10.13637/j.issn.1009-6094.2017.06.038.

    LU C, YU Z K, LIU Y, et al. Impact of hydrogen addition on the premixed methane/air deflagration process [J]. Journal of Safety and Environment, 2017, 17(6): 2240–2245. DOI: 10.13637/j.issn.1009-6094.2017.06.038.
    [22] 尚融雪, 杨悦, 高俊豪, 等. 掺氢天然气层流火焰传播速度试验研究 [J]. 中国安全科学学报, 2019, 29(11): 103–108. DOI: 10.16265/j.cnki.issn1003-3033.2019.11.017.

    SHANG R X, YANG Y, GAO J H, et al. Experimental study on laminar flame speed of H2/CH4/air mixtures [J]. China Safety Science Journal, 2019, 29(11): 103–108. DOI: 10.16265/j.cnki.issn1003-3033.2019.11.017.
    [23] 王晓飞. 石油化工企业爆炸性气体混合物分级计算方法分析 [J]. 炼油技术与工程, 2021, 51(4): 47–50. DOI: 10.3969/j.issn.1002-106X.2021.04.012.

    WANG X F. Study on grading calculation method of explosive gas mixture in petrochemical enterprises [J]. Petroleum Refinery Engineering, 2021, 51(4): 47–50. DOI: 10.3969/j.issn.1002-106X.2021.04.012.
    [24] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 13347—2010 石油气体管道阻火器 [S]. 北京: 中国标准出版社, 2011.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 13347—2010 Flame arresters for petroleum gas pipeline systems [S]. Beijing: Standards Press of China, 2011.
    [25] 陈先锋, 孙金华, 姚礼殷, 等. Tulip火焰形成过程中的细微结构特性 [J]. 燃烧科学与技术, 2008, 14(4): 350–354. DOI: 10.3321/j.issn:1006-8740.2008.04.012.

    CHEN X F, SUN J H, YAO L Y, et al. Characteristics of fine structure during tulip flame forming [J]. Journal of Combustion Science and Technology, 2008, 14(4): 350–354. DOI: 10.3321/j.issn:1006-8740.2008.04.012.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  30
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-16
  • 修回日期:  2023-11-16
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2024-04-07

目录

    /

    返回文章
    返回