不同点火方式下HMX基PBX炸药反应演化过程的特征分析

楼建锋 张树道

楼建锋, 张树道. 不同点火方式下HMX基PBX炸药反应演化过程的特征分析[J]. 爆炸与冲击, 2024, 44(2): 022301. doi: 10.11883/bzycj-2023-0300
引用本文: 楼建锋, 张树道. 不同点火方式下HMX基PBX炸药反应演化过程的特征分析[J]. 爆炸与冲击, 2024, 44(2): 022301. doi: 10.11883/bzycj-2023-0300
LOU Jianfeng, ZHANG Shudao. Characteristic analysis of reaction evolution process of HMX-based PBX explosive under different ignition modes[J]. Explosion And Shock Waves, 2024, 44(2): 022301. doi: 10.11883/bzycj-2023-0300
Citation: LOU Jianfeng, ZHANG Shudao. Characteristic analysis of reaction evolution process of HMX-based PBX explosive under different ignition modes[J]. Explosion And Shock Waves, 2024, 44(2): 022301. doi: 10.11883/bzycj-2023-0300

不同点火方式下HMX基PBX炸药反应演化过程的特征分析

doi: 10.11883/bzycj-2023-0300
基金项目: 国家自然科学基金(12102063)
详细信息
    作者简介:

    楼建锋(1980- ),男,博士,研究员,jflou@iapcm.ac.cn

  • 中图分类号: O383

Characteristic analysis of reaction evolution process of HMX-based PBX explosive under different ignition modes

  • 摘要: 在长管强约束条件下对HMX基PBX炸药点火实验进行了数值模拟,分析了点火方式对炸药反应演化规律的影响,获得了弱冲击点火条件下炸药反应演化过程的特征图像。针对黑火药和雷管2种点火方式,分别构建了PBX炸药黑火药点燃和冲击起爆2类实验的唯象模型和数值模拟方法,通过数值模拟获得了钢管内炸药柱反应演化进程的特征图像,柱壳膨胀历程与实验结果符合较好。研究表明,不同点火方式下炸药反应演化进程存在较大差异。如果使用雷管点火,PBX炸药会在几微秒内发生爆轰反应;而使用黑火药点火,PBX炸药会在数毫秒内从缓慢燃烧转化为剧烈爆炸,但随着壳体破裂解体,管内压力骤降,抑制了反应演化向爆轰转变。黑火药点燃条件下整个反应演化过程可以分为4个主要阶段,其中管壁附近炸药柱表面燃烧传播优先于炸药柱中心基体反应,是弱冲击点火反应演化过程的重要特征之一。
  • 图  1  不同点火方式下点火阶段的压力曲线

    Figure  1.  Pressure curves of different ignition modes

    图  2  炸药柱点火实验的计算模型示意图(单位:mm)

    Figure  2.  Schematic diagram of calculation model of ignition experiment (unit: mm)

    图  3  典型时刻柱壳膨胀图像对比

    Figure  3.  Comparison of cylindrical shell expansion images at typical time

    图  4  柱壳上5个测点的径向膨胀速度曲线

    Figure  4.  Radial expansion velocity curves of five measuring points on cylindrical shell

    图  5  炸药柱反应演化过程及柱壳膨胀的计算图像

    Figure  5.  Simulation images of explosive column reaction evolution process and cylinder shell expansion

    图  6  炸药柱上的典型位置

    Figure  6.  Typical positions in explosive column

    图  7  炸药柱上典型测点的反应份额变化曲线

    Figure  7.  Reaction fraction curves of typical points in explosive column

    图  8  炸药柱上典型测点的压力变化曲线

    Figure  8.  Pressure curves of typical points in explosive column

    图  9  典型时刻柱壳膨胀破坏的实验图像[6]

    Figure  9.  Experimental images of expansion failure of cylindrical shell at typical times[6]

    图  10  钢柱壳上典型测点的径向速度曲线

    Figure  10.  Radial velocity curves of typical measuring points on cylindrical steel shell

    表  1  炸药的状态方程参数[12-13]

    Table  1.   Parameters of equation of state for PBXs[12-13]

    材料 A/GPa B/GPa R1 R2 ω cV/(MPa·K−1)
    未反应炸药[12] 48797 −9.388 10.59 1.62 0.85 2.78
    气态产物[13] 842.04 21.81 4.6 1.35 0.38 1.00
    下载: 导出CSV

    表  2  炸药燃烧反应增长唯象模型的主要参数

    Table  2.   The main parameters of the reaction growth model for PBXs

    a/(GPa−2·μs−1)uvwb/(GPa−2·μs−1)xyzf0
    2400.6670.2772.03370.3331.02.00.012
    下载: 导出CSV
  • [1] ASAY B W. Shock wave science and technology reference library, Vol. 5: non-shock initiation of explosives [M]. Berlin: Springer, 2010: 11–488.
    [2] MAČEK A. Transition from deflagration to detonation in cast explosives [J]. The Journal of Chemical Physics, 1959, 31(1): 162–167. DOI: 10.1063/1.1730287.
    [3] 黄毅民, 冯长根, 龙新平, 等. JOB-9003炸药燃烧转爆轰现象研究 [J]. 火炸药学报, 2002, 25(1): 54–56. DOI: 10.3969/j.issn.1007-7812.2002.01.017.

    HUANG Y M, FENG C G, LONG X P, et al. Deflagration to detonation transition behavior of explosive JOB-9003 [J]. Chinese Journal of Explosives & Propellants, 2002, 25(1): 54–56. DOI: 10.3969/j.issn.1007-7812.2002.01.017.
    [4] 王建, 文尚刚, 何智, 等. 压装高能炸药的燃烧转爆轰实验研究 [J]. 火炸药学报, 2009, 32(5): 25–28. DOI: 10.3969/j.issn.1007-7812.2009.05.008.

    WANG J, WEN S G, HE Z, et al. Experimental study on deflagration-to-detonation transition in pressed high-density explosives [J]. Chinese Journal of Explosives & Propellants, 2009, 32(5): 25–28. DOI: 10.3969/j.issn.1007-7812.2009.05.008.
    [5] HU H B, GUO Y W, LI T, et al. Reactive behavior of explosive billets in deflagration tube of varied confinements [J]. AIP Conference Proceedings, 2018, 1979(1): 150020. DOI: 10.1063/1.5044976.
    [6] 邱天, 文尚刚, 李涛, 等. 长管强约束条件下压装PBX炸药点火实验研究 [J]. 爆炸与冲击, 2020, 40(1): 011405. DOI: 10.11883/bzycj-2019-0360.

    QIU T, WEN S G, LI T, et al. Experimental study on initiated reaction evolution of pressed explosives in long thick wall cylinder confinement [J]. Explosion and Shock Waves, 2020, 40(1): 011405. DOI: 10.11883/bzycj-2019-0360.
    [7] 段卓平, 白志玲, 白孟璟, 等. 强约束固体炸药燃烧裂纹网络反应演化模型 [J]. 兵工学报, 2021, 42(11): 2291–2299.

    DUAN Z P, BAI Z L, BAI M J, et al. Burning-crack networks model for combustion reaction growth of solid explosives with strong confinement [J]. Acta Armamentarii, 2021, 42(11): 2291–2299.
    [8] 楼建锋, 张树道. 炸药装药爆炸反应演化过程和约束影响的数值模拟 [J]. 含能材料, 2021, 29(12): 1186–1191. DOI: 10.11943/CJEM2021055.

    LOU J F, ZHANG S D. Numerical simulation of explosive reaction evolution and effect of charge confinement [J]. Chinese Journal of Energetic Materials, 2021, 29(12): 1186–1191. DOI: 10.11943/CJEM2021055.
    [9] ANBARLOOEI H R, MAZAHERI K. Moment of fluid interface reconstruction method in multi-material arbitrary Lagrangian Eulerian (MMALE) algorithms [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(47/48): 3782–3794. DOI: 10.1016/j.cma.2009.08.009.
    [10] 孙锦山, 朱建士. 理论爆轰物理 [M]. 北京: 国防工业出版社, 1995: 88–105.
    [11] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. DOI: 10.1063/1.327799.
    [12] 黄奎邦. PBX炸药冲击起爆及爆轰传播数值模拟研究 [D]. 四川绵阳: 中国工程物理研究院, 2020: 22–23.

    HUANG K B. Numerical study on shock initiation and detonation of PBX explosive [D]. Mianyang, Sichuan: China Academy of Engineering Physics, 2020: 22–23.
    [13] 孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 286–296.

    SUN C W, WEI Y Z, ZHOU Z K. Applied detonation physics [M]. Beijing: National Defense Industry Press, 2000: 286–296.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  40
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-22
  • 修回日期:  2023-10-31
  • 网络出版日期:  2023-11-30
  • 刊出日期:  2024-02-06

目录

    /

    返回文章
    返回