多折角梯形台面折纸夹层结构的冲击防护性能

何远鹏 王凌峰 杨秋松 李哲健 郝洪 陈文苏

何远鹏, 王凌峰, 杨秋松, 李哲健, 郝洪, 陈文苏. 多折角梯形台面折纸夹层结构的冲击防护性能[J]. 爆炸与冲击, 2024, 44(4): 043103. doi: 10.11883/bzycj-2023-0315
引用本文: 何远鹏, 王凌峰, 杨秋松, 李哲健, 郝洪, 陈文苏. 多折角梯形台面折纸夹层结构的冲击防护性能[J]. 爆炸与冲击, 2024, 44(4): 043103. doi: 10.11883/bzycj-2023-0315
HE Yuanpeng, WANG Lingfeng, YANG Qiusong, LI Zhejian, HAO Hong, CHEN Wensu. Impact response of TPS folded sandwich structure[J]. Explosion And Shock Waves, 2024, 44(4): 043103. doi: 10.11883/bzycj-2023-0315
Citation: HE Yuanpeng, WANG Lingfeng, YANG Qiusong, LI Zhejian, HAO Hong, CHEN Wensu. Impact response of TPS folded sandwich structure[J]. Explosion And Shock Waves, 2024, 44(4): 043103. doi: 10.11883/bzycj-2023-0315

多折角梯形台面折纸夹层结构的冲击防护性能

doi: 10.11883/bzycj-2023-0315
基金项目: 国家自然科学基金(52208470);广州市科技局项目(SL2022A04J01102)
详细信息
    作者简介:

    何远鹏(1997- ),男,硕士研究生,2112216035@e.gzhu.edu.cn

    通讯作者:

    李哲健(1992- ),男,博士,教授,zhejian.li@gzhu.edu.cn

  • 中图分类号: O389

Impact response of TPS folded sandwich structure

  • 摘要: 多折角梯形台面折纸(truncated square pyramid, TSP)作为新型折叠结构,具有良好的抗冲击、能量吸收特性并具有模块化易加工的特点。基于此结构模块化形成了单层以及多层夹层板,利用空气炮试验装置研究了背板无支撑的夹层结构以及覆层结构,在不同冲击工况、边界条件下结构的冲击防护性能以及吸能特性。通过测量、对比单层夹层结构的位移时程及冲击后的失效模式,对抗冲击性能进行了评估。利用装于背板的多点压力传感器装置,测量冲击作用下覆层结构对背板不同位置的传递力时程,研究不同工况下的缓冲性能。对于背板无支撑夹层工况,背板的残余位移随冲击速度的增大而增大。对于覆层工况,双层覆层有较好的能量吸收和抗冲击性能,相比于单层表现出更充分的芯层利用率。此外,冲击位置通过改变模块单元的变形模式对覆层结构动态响应产生显著影响,尤其影响传递力峰值和峰值出现时间。研究结果可为TSP防护结构的工程设计和应用提供参考。
  • 图  1  TSP单元几何参数示意图

    Figure  1.  The TSP unit geometrical parameters

    图  2  螺丝固定边界

    Figure  2.  Bolt-constraint boundaries

    图  3  单层TSP结构试件及双层TSP结构试件

    Figure  3.  Single-layer-TSP and double-layer-TSP structural specimens

    图  4  两种材料真实应力-应变曲线

    Figure  4.  True stress-strain curves of two kind of materials

    图  5  不同边界条件下的试验台

    Figure  5.  Test rig with different boundary conditions

    图  6  弹丸冲击位置及传感器位置排布

    Figure  6.  Projectile impact locations and sensors arrangement

    图  7  椭球体弹头弹丸

    Figure  7.  Ellipsoidal-ended projectile

    图  8  单层TSP夹层结构试件背板中心位移

    Figure  8.  Displacement at the center of the back plate of single-layer TSP sandwich specimens

    图  9  TSP夹层结构试件在不同冲击速度下的变形

    Figure  9.  Deformation of TSP sandwich specimens under different impact velocities

    图  10  速度13.29、22.55 m/s的弹丸倾斜冲击试件

    Figure  10.  Inclined projectiles impacting specimens at 13.29 and 22.55 m/s

    图  11  冲击位置为L1时覆层结构试件的传递力时程曲线

    Figure  11.  Transmitted force- time histories for cladding specimens impacted at L1 position

    图  12  覆层结构背板冲击压痕

    Figure  12.  Impact indentation of the back plate of the cladding structure

    图  13  TSP双覆层结构试件被速度29.76 m/s弹丸冲击在外围产生振荡

    Figure  13.  Oscillation of the double-layer-TSP cladding specimen after 29.76 m/s impact

    图  14  相似冲击速度下TSP覆层结构试件与TSP双覆层结构试件的变形

    Figure  14.  Deformation of TSP cladding specimen and double-layer-TSP cladding specimen at similar impact velocities

    图  15  冲击位置为L1、L2和L3时的TSP双覆层结构试件的传递力时程曲线

    Figure  15.  Transmitted force-time history curves for double-layer-TSP cladding specimens at L1, L2 and L3 positions

    图  16  相近速度冲击L2与L3位置时TSP双覆层结构试件的变形

    Figure  16.  Deformation of double-layer-TSP cladding specimens under impact at L2 and L3 positions with similar velocities

    表  1  TSP结构单元尺寸理论参数

    Table  1.   Theoretical parameters of TSP structural cell size

    a/mm b/mm H/mm c/mm l/mm γ/(°) β/(°) α/(°) x/mm
    80 40 40 44.7 48.9 65.9 54.7 20.9 41.3
    下载: 导出CSV

    表  2  铝板材料性能参数

    Table  2.   Material properties of Al1060 and Al5083

    铝板类型 密度/
    (kg·m−3)
    杨氏模量/
    GPa
    厚度/
    mm
    屈服强度/
    MPa
    泊松比 抗拉强度/
    MPa
    5083铝板 2650 72 3 185 0.3 256
    1060铝板 2700 69 0.47 126 0.3 142
    下载: 导出CSV

    表  3  试件的不同冲击场景

    Table  3.   Impact scenarios for specimens

    试验编号 试件 芯层层数 弹丸速度/(m·s−1 冲击位置 冲击能量/J
    1 单层TSP(夹层试验) 1 13.29 L1 883
    2 单层TSP(夹层试验) 1 17.30 L1 1497
    3 单层TSP(夹层试验) 1 18.15 L1 1647
    4 单层TSP(夹层试验) 1 22.55 L1 2542
    5 单层TSP(覆层试验) 1 19.58 L1 1917
    6 双层TSP(覆层试验) 2 21.88 L1 2394
    7 双层TSP(覆层试验) 2 29.76 L1 4428
    8 双层TSP(覆层试验) 2 24.80 L2 3075
    9 双层TSP(覆层试验) 2 28.62 L3 4096
    下载: 导出CSV
  • [1] ABBADI A, KOUTSAWA Y, CARMASOL A, et al. Experimental and numerical characterization of honeycomb sandwich composite panels [J]. Simulation Modelling Practice and Theory, 2009, 17(10): 1533–1547. DOI: 10.1016/j.simpat.2009.05.008.
    [2] REJAB M R M, CANTWELL W J. The mechanical behaviour of corrugated-core sandwich panels [J]. Composites Part B: Engineering, 2013, 47: 267–277. DOI: 10.1016/j.compositesb.2012.10.031.
    [3] HEIMBS S, CICHOSZ J, KLAUS M, et al. Sandwich structures with textile-reinforced composite foldcores under impact loads [J]. Composite Structures, 2010, 92(6): 1485–1497. DOI: 10.1016/j.compstruct.2009.11.001.
    [4] YOO S H, CHANG S H, SUTCLIFFE M P F. Compressive characteristics of foam-filled composite egg-box sandwich panels as energy absorbing structures [J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(3): 427–434. DOI: 10.1016/j.compositesa.2009.11.010.
    [5] WANG B, WU L, MA L, et al. Mechanical behavior of the sandwich structures with carbon fiber-reinforced pyramidal lattice truss core [J]. Materials & Design, 2010, 31(5): 2659–2663. DOI: 10.1016/j.matdes.2009.11.061.
    [6] MA Q, REJAB M R M, SIREGAR J P, et al. A review of the recent trends on core structures and impact response of sandwich panels [J]. Journal of Composite Materials, 2021, 55(18): 2513–2555. DOI: 10.1177/0021998321990734.
    [7] 廖就, 李志刚, 梁方正, 等. 高共面/异面抗冲击承载能力的新型蜂窝设计及吸能评估 [J]. 爆炸与冲击, 2021, 41(8): 083103. DOI: 10.11883/bzycj-2020-0262.

    LIAO J, LI Z G, LIANG F Z, et al. Design and evaluation of new honeycomb configurations with high in-plane /out-of-plane loading-carrying capacity under impact [J]. Explosion and Shock Waves, 2021, 41(8): 083103. DOI: 10.11883/bzycj-2020-0262.
    [8] TOWNSEND S, ADAMS R, ROBINSON M, et al. 3D printed origami honeycombs with tailored out-of-plane energy absorption behavior [J]. Materials & Design, 2020, 195: 083103. DOI: 10.1016/j.matdes.2020.108930.
    [9] PYDAH A, BATRA R C. Crush dynamics and transient deformations of elastic-plastic Miura-ori core sandwich plates [J]. Thin-Walled Structures, 2017, 115: 311–322. DOI: 10.1016/j.tws.2017.02.021.
    [10] MA J, DAI H, CHAI S, et al. Energy absorption of sandwich structures with a kirigami-inspired pyramid foldcore under quasi-static compression and shear [J]. Materials & Design, 2021, 206: 083103. DOI: 10.1016/j.matdes.2021.109808.
    [11] ZHAI Z, WANG Y, JIANG H. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2032–2037. DOI: 10.1073/pnas.1720171115.
    [12] FANG H, LI S, JI H, et al. Dynamics of a bistable Miura-origami structure [J]. Physical Review E, 2017, 95(5): 052211. DOI: 10.1103/PhysRevE.95.052211.
    [13] 邱海, 方虹斌, 徐鉴. 多稳态串联折纸结构的非线性动力学特性 [J]. 力学学报, 2019, 51(4): 1110–1121. DOI: 10.6052/0459-1879-19-115.

    QIU H, FANG H B, XU J. Nonlinear dynamical characteristics of a multi-stable series origami structure [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1110–1121. DOI: 10.6052/0459-1879-19-115.
    [14] YASUDA H, YANG J. Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability [J]. Physical Review Letter, 2015, 114(18): 185502. DOI: 10.1103/PhysRevLett.114.185502.
    [15] WANG C, ZOU S, ZHAO W, et al. Multi-objective explosion-proof performance optimization of a novel vehicle door with negative Poisson’s ratio structure [J]. Structural and Multidisciplinary Optimization, 2018, 58(4): 1805–1822. DOI: 10.1007/s00158-018-2026-z.
    [16] BIRMAN V, KARDOMATEAS G A. Review of current trends in research and applications of sandwich structures [J]. Composites Part B: Engineering, 2018, 142: 221–240. DOI: 10.1016/j.compositesb.2018.01.027.
    [17] STARR C M, KRAUTHAMMER T. Cladding-structure interaction under impact loads [J]. Journal of Structural Engineering, 2005, 131(8): 1178–1185. DOI: 10.1061/(asce)0733-9445(2005)131:8(1178).
    [18] TARLOCHAN F. Sandwich structures for energy absorption applications: a review [J]. Materials, 2021, 14(16): 185502. DOI: 10.3390/ma14164731.
    [19] HOU S, SHU C, ZHAO S, et al. Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading [J]. Composite Structures, 2015, 126: 371–385. DOI: 10.1016/j.compstruct.2015.02.039.
    [20] GHATE N, GOEL M D. Influence of core topology on blast mitigation application of multi-layered honeycomb core sandwich panel [J]. Materials Today Communications, 2023, 36:106531. DOI: 10.1016/j.mtcomm.2023.106531.
    [21] LI Z, CHEN W, HAO H. Crushing behaviours of folded kirigami structure with square dome shape [J]. International Journal of Impact Engineering, 2018, 115: 94–105. DOI: 10.1016/j.ijimpeng.2018.01.013.
    [22] LI Z, CHEN W, HAO H. Numerical study of open-top truncated pyramid folded structures with interconnected side walls against flatwise crushing [J]. Thin-Walled Structures, 2018, 132: 537–548. DOI: 10.1016/j.tws.2018.08.023.
    [23] LI Z, FANG R, YANG Q, et al. Performance of sandwich cladding with modular truncated square pyramid foldcore under projectile impact [J]. International Journal of Impact Engineering, 2022, 166: 104258. DOI: 10.1016/j.ijimpeng.2022.104258.
    [24] CAO B T, HOU B, ZHAO H, et al. On the influence of the property gradient on the impact behavior of graded multilayer sandwich with corrugated cores [J]. International Journal of Impact Engineering, 2018, 113: 98–105. DOI: 10.1016/j.ijimpeng.2017.11.017.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  27
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-30
  • 修回日期:  2023-10-18
  • 网络出版日期:  2024-01-22
  • 刊出日期:  2024-04-07

目录

    /

    返回文章
    返回