A review of the dynamic response and protection mechanism of liquid filled structures under impact loads
-
摘要: 工程实际中,飞机油箱、船舶液舱、油液储罐等各类蓄液结构可能面临炸药爆炸冲击波、弹丸侵彻等冲击载荷的威胁。在冲击载荷作用下,蓄液结构的动响应受载荷特性、结构形式、充液方式等多种因素影响,相应的结构防护机理涉及多相介质的流固耦合、波在不同介质中的传播、液体介质的空化、结构动态力学特性等多个科学问题。针对冲击载荷下蓄液结构的动响应及防护机理,总结了工程领域中典型的蓄液结构形式,分析了各类蓄液结构在爆炸冲击波、弹体侵彻及其联合作用等载荷下的结构动响应过程、结构破坏模式、载荷耗散过程、能量转化与吸收过程,总结了蓄液结构的冲击动响应特性,归纳了蓄液结构对各类冲击载荷的防护机理,从结构构型、结构动响应、理论研究方法、抗冲击防护技术等方面对蓄液结构抗冲击防护研究进行了展望。Abstract: Aircraft fuel tanks, marine liquid tanks, oil liquid storage tanks, and other types of liquid filled structures may be threatened by blast waves, projectile penetration, and other impact loads in engineering practice. The dynamic response of the liquid filled structure under impact load is affected by various factors such as the characteristics of the load, the configuration of the structure, and the way of liquid filling. Accordingly, the protection mechanism of the liquid filled structure against various types of shock loads involves the fluid-solid interaction of multiphase media, wave propagation in different media, cavitation of liquid media, dynamic mechanical properties of the structure, and several other scientific issues. In this paper, the dynamic response and protection mechanism of the liquid filled structures under different impact loads are reviewed, the typical forms of the liquid filled structures in engineering are summarized, and the dynamic response processes, damage modes, load dissipation processes, energy conversion and absorption processes of various types of the liquid filled structures under the loads of blast shock wave, projectile penetration and their combined effects are analyzed. Furthermore, the impact dynamic response characteristics of the liquid filled structures under the action of blast shock wave loading, projectile penetration loading, and the combined loads of blast shock wave and high-speed fragmentation group are summarized. The protection mechanisms of the liquid filled structures against various types of impact loads are summarized from the perspectives of attenuating and dissipating loads, as well as the energy transformation and conversion. In the end, the prospects of the investigation on anti-impact characteristics of the liquid filled structures are described from the aspects of dynamic response and protection characteristics of the multi-cell liquid filled structures, mechanisms for destruction of the liquid filled structures by combined loads, efficient numerical computation methods, as well as the dynamic response and protection mechanism of the liquid filled structures made of new materials.
-
柱形弹体超高速撞击靶板研究是以空间碎片防护[1-2]、反装甲[3]等为背景的研究工作。数值模拟是相关研究手段之一,主要通过离散近似的方式求解带有初边值条件、材料广义应力应变关系的偏微分方程组,进而获得求解域内的力学参量和动力学行为。结果的准确性主要取决于离散求解的算法以及材料的广义应力应变关系(即本构模型)。在算法方面,粒子类无网格法在解决超高速撞击下材料大变形问题优势明显[4-6],目前光滑粒子流体动力学(smooth particle hydrodynamics,SPH)方法应用较为广泛。而在本构模型方面,如何更加准确地反映超高速撞击过程中材料的动力学行为,是力学工作者主要的研究方向,具有重要的学术意义和应用价值。
金属材料本构模型一般包括物态方程、强度模型和失效模型。在爆炸与冲击动力学问题的数值模拟中,金属材料普遍采用Grüneisen状态方程[7]。对于超高速撞击问题,为了能清楚地获得材料的相态情况,唐蜜[8]构建了GRAY三相完全物态方程并开展了相关研究。在强度模型方面,Johnson-Cook模型[4]和Steinberg模型[9]是超高速撞击数值模拟中普遍使用的强度模型。两个模型各有特点,Johnson-Cook模型基于一维应力实验得到,Steinberg模型基于一维应变实验得到。在超高速撞击后期的靶板惯性扩孔阶段,材料的压力、应变率开始下降,Johnson-Cook强度模型能很好地描述此时的材料动力学行为。在材料失效模型方面,Johnson-Cook失效模型[10-11]在超高速撞击过程中也有较为广泛的应用。但Johnson-Cook失效模型在计算压力远大于屈服强度的层裂问题上,并不能准确计算材料的层裂失效过程。Collé等[12]在材料层裂问题中采用当压力超过失效阈值后偏应力归零而压力不变的方法建立失效模型,处理方法不符合物理实际。Grady失效模型本质上是拉伸失效模型,能够反映材料层裂失效问题,广泛应用于超高速撞击数值模拟中[13-14]。Eftis等[15]基于微孔洞的成核和长大过程建立了损伤演化模型,并模拟了球形弹体超高速撞击问题,获得的靶板的层裂以及断口破坏形貌与实验结果一致。该模型主要考虑的是静水压力产生的层裂问题,没有考虑剪切失效机制。封加波损伤演化模型[16]是具有明确物理意义的描述材料内部微孔洞总体积演化导致层裂问题的材料模型,一般用于模拟飞片撞击、滑移内爆(或外爆)加载柱壳破坏等问题,在超高速撞击问题中的应用较少。Seisson等[17]在数值模拟钢球超高速撞击石墨成坑问题中,钢球材料的失效模型同时考虑了最大拉伸主应力和等效塑性变形两种失效准则。Corbett[18]在计算铝球超高速撞击铝靶问题中,弹体采用了最大拉应力以及最大剪应力失效模型,靶板选用了Johnson-Cook失效模型。Randles等[4]建立了拉伸损伤和Johnson-Cook损伤的联合损伤演化模型,并验证了数值模拟的准确性。因此,同时考虑拉伸和剪切失效是全面且准确的。但还需要注意的是:在大多数的数值模拟中,当材料满足失效准则后,材料立刻失效[19],相应的单元/粒子的屈服强度立刻为零并且不再承受拉伸应力。这将产生大量互相无作用力的单独单元/粒子,这和弹靶撞击形成破片群的物理现象不符。在韧性金属冲击碎裂问题方面,曹祥等[20]以韧性金属长杆动态拉伸碎裂为例,分析了非线性损伤演化过程对韧性碎裂过程的影响规律。该断裂演化模型应用于超高速撞击数值模拟中,将有助于相对准确地计算弹靶材料的碎裂过程。
在现有的数值模拟研究中,失效模型还不能全面反映超高速撞击下材料在层裂、剪切断裂时的失效机制,并给出失效后的应力归零的断裂演化过程。因此,本文中拟针对超高速撞击问题,在材料本构模型方面,引入GRAY三相物态方程以描述材料相态变化,采用Johnson-Cook强度模型描述靶板后期动态扩孔,结合封加波损伤演化模型[16]以及Johnson-Cook失效模型,描述不同应力三轴度下材料的层裂、剪切失效行为,并引入曹祥断裂演化模型[20],描述材料失效后应力归零的过程。并将该修正金属本构模型应用于柱形93钨超高速撞击Q345钢板数值模拟中。通过与实验结果的对比,验证本构模型的适用性和准确性。初步分析典型弹靶撞击条件下破片群的空间分布特征。
1. 修正金属本构模型简介
1.1 GRAY物态方程
GRAY物态方程[21]通过初始熔化内能
Em1 、完全熔化内能Em2 、恒定容比热初始内能EGG ,将材料的固相-液相区分为固相、熔化相、液相以及热液相。计算中可根据内能E 判断材料所处相态,进而给出相应的修正压力pc 以及温度T ,具体表达式如下。当
E≤Em1 时:T=1G′{−3R′+[(3R′)2+2G′(E−E0)]1/122} (1) pc=12V0(1−x)(γe−γ0+ax)G′T2 (2) 式中:
x=1−V/V0 ,V/V0为比体积,V 为当前体积,V0 为初始体积;E0 为冷能;G′=ge/Ma ;ge、Ma、R′ 、γe 、γ0 、a 均为材料参数。当
Em1<E<Em2 时:T=1G′{−[3R′+ν(ΔS′−α′)]+[(3R′+ν(ΔS′−α′))2+2G′(E−E0+ν2δ T(ΔS′−α′))]1/2} (3) pc=1V0(1−x){12(γe−γ0+ax)G′T2−ν(ΔS′−α′)[λTm+(T−νδ T)(γ0−ax)]} (4) 式中:
Tm 为材料熔化温度;δT 为温度改变量;v=(E−Em1)/(Em2−Em1) ;ΔS′ 、α′ 为材料参数。当
Em2≤E≤EGG 时:T=1G′−α′Tm{−3R′+[(3R′)2+2(G′−α′Tm)×(E−E0−Tm(ΔS′−12α′))]1/122} (5) pc=1V0(1−x){12(γe−γ0+ax)G′T2−Tm[ΔS′−12α′(1+T2Tm2)](λ+γ0−ax)} (6) 式中:
λ 为与Grüneisen系数相关的参量。当
E>EGG 时:T=1G′{−(3R′−Γα′)+[(3R′−Γα′)2+2G′(E−E0−Tm(ΔS′−12α′(1−Γ2)))]1/122} (7) pc=1V0(1−x){12(γe−γ0+ax)G′T2−Tm[ΔS′−12α′(1−Γ2+2ΓTTm)](λ+γ0−ax)} (8) 式中:
Γ 为材料参数。在此基础上,结合线性Grüneisen压力
p1 ,以及修正压力项pc 、pcc ,可获得材料的实际压力p :p=p1+pc+pcc (9) p1(x,E)=c20xV0(1−x)(1−sx)2[1−(1+12γ0)x+12ax2]+γ0−axV0(1−x)E (10) pcc=12V0T20G′(γ0−γe) (11) 式中:
T0 为材料初始温度,c0 、s 、γ0 为材料的冲击雨贡纽参数。在液-气相区方面,GRAY物态方程基于Young和Alder的修正气体物态方程描述气相区,在液气共存区采用Maxwell等面积法进行处理。那么在液-气相区需满足条件V>VJ,VJ为搭接比体积。液-气相区的压力和温度采用下式计算:
p=R′TVbz(1+z+z2−z3)(1−z)3−a′yV2bz2+FP(C1+C2T+C3T2) (12) T=14(C3Fe−H3){(3R′+2H2)−[(3R′+2H2)2−16(E+a′yVbz−C1Fe−H1)(C3Fe−H3)]1/2} (13) FP=[z(θ−zJ)zJ(θ−z)]3 (14) Fe=Vb2[(θ−zJ)3(2z−2+θ)z3J(θ−z)2−(θ−zJ)(2zJ−2+θ)z3J] (15) 式中:
z=Vb/V ,a′y=ay/Ma ,Vb、ay、C1、C2、C3、H1、H2、H3、θ、zJ均为材料参数。1.2 Johnson-Cook强度模型
Johnson-Cook强度模型主要考虑了材料在冲击动力学问题中面临的大变形、高温、高应变率问题,该模型假设材料的应变硬化、应变率效应以及热软化效应相互独立可解耦。屈服强度
Y 的表达式为:Y=(Q1+Q2εQ3p)(1+Q4ln˙εp˙ε0)[1−(T−T0Tm−T0)Q5] (16) 式中:
εp 为等效塑性应变;˙εp 为等效塑性应变率;˙ε0 为参考应变率;T 为材料温度,T0 为参考温度,Tm 为材料熔化温度;Q1 、Q2 、Q3 、Q4 、Q5 为材料参数。1.3 Johnson-Cook失效模型
Johnson-Cook失效模型主要包含了应力三轴度、应变率以及温度对材料失效的影响。失效应变的表达式为:
εf=[D1+D2exp(D3σ∗)](1+D4ln˙εp˙ε0)[1+D5(T−T0Tm−T0)] (17) 式中:
D1 ~D5 为材料参数;σ∗ = −p/σeq 为应力三轴度,其中p 为压力,σeq 为等效应力。模型假设当材料发生塑性变形时损伤同时产生积累,引入损伤变量DY ,单元的损伤演化定义为:DY=∑Δεeq/εf (18) 式中:
Δεeq 为每一次损伤积累时的等效塑性应变增量,εf 取损伤积累时应力状态下的断裂失效应变。DY 的初始值为0,当DY 达到1时,材料失效。在此之前的损伤发展过程中,材料强度由强度模型决定,不受失效模型影响。为了避免材料失效后应力立刻归零,引入曹祥提出的非线性断裂演化模型[20]。该模型以线性内聚力断裂假设Mott-Grady模型为基础,描述了材料在满足失效准则后的断裂(裂纹软化)过程。即材料在达到失效阈值后,材料应力存在一个逐渐卸载至零的过程。此时损伤屈服强度Y与内聚力断裂假设下的损伤因子Dcs、材料初始失效时的等效应力Y0的关系为:
Y=(1−Dcs)Y0 (19) 损伤因子假设为:
Dcs=1−e−β(upl/uplufplufpl)1−e−β (20) 式中:upl为损伤启动后单元的塑性位移;β为内聚力断裂的非线性系数,
uplf 为完全断裂时的塑性位移,其计算公式为:uplf=WeY0(1β−1eβ−1)−1β≠0 (21) 式中:We为材料断裂过程中消耗的表面能,即材料的断裂能。因此,材料的损伤演化过程主要取决于材料断裂能、非线性系数以及单元的尺寸。
1.4 封加波损伤演化模型
封加波等[16]将材料宏观微元中的微损伤(微裂纹、微孔洞)总体积与宏观微元体积之比定义为损伤度函数DV。基于Griffith-Orowan提出的裂纹扩展能量观点,假设微孔洞长大过程中因表面积增加所需要的表面能由微孔洞周围介质所存储的应变能提供。此外,提供微孔洞动态长大的周围介质范围由应力波扰动传播的速度即材料声速来确定。损伤度函数的演化方程为:
˙DV={DV(ps2−σ02)(4/3)B(ω/c0)−DVV˙V|ps|>σ00|ps|≤σ0 (22) 式中:ps为拉伸状态下基体材料的压力,σ0为孔洞长大的初始应力阈值,B为基体材料的体积模量,ω为表面功(断裂比功)。
在材料损伤的后期,微孔洞相互间开始连通,材料的损伤快速增长,材料发生分离性断裂,并且所承受的应力在断裂发生后下降到零。为近似描述材料损伤后期的应力状态,仍采用曹祥等[20]提出的断裂演化模型,含损伤的本构关系定义为:
p=ps[V(1−DV),e](1−DV)(1−Dcs) (23) G=Gs(1−DV15B+20Gs9B+8Gs)(1−Dcs) (24) Y=Ys(1−4DV)(1−Dcs) (25) Dcs=1−e−β(vpl/vplvfplvfpl)1−e−β (26) 式中:e为质量内能,G为剪切模量,Gs为基体材料的剪切模量,vpl为损伤启动后当前单元体积相对初始损伤时的膨胀值,
vplf 为完全断裂时的单元体积相对初始损伤时的膨胀值,其计算公式为:vplf=Wep0(1β−1eβ−1)−1β≠0 (27) 式中:p0为单元损伤启动时的静水压力。代表材料成核、长大过程的损伤度DV的初始值为D0,代表材料微孔洞聚集并导致最终破坏的损伤函数Dcs的初始值为0。材料的损伤演化过程是:首先,Dcs为0并且不变,DV由D0起始随损伤演化逐渐增加,当达到Dc时,DV值不再变化,Dcs开始随损伤演化而逐渐增加,当Dcs增加到1时表示材料完全层裂破坏。
2. 超高速撞击数值模拟
选用ANSYS AUTODYN 3D中的光滑粒子流体动力学(SPH)方法模拟超高速撞击过程。根据软件接口编写修正金属本构模型的自定义子程序模块,再通过数值模拟结果和实验结果的对比来验证本构模型的准确性。选取柱形93钨弹体超高速撞击Q345靶板问题进行计算,材料模型参数见表1~3。GRAY物态方程的其他材料参数可参考Royce[21]的研究工作。
表 1 93钨合金、Q345钢GRAY物态方程及损伤演化模型材料参数Table 1. The material parameters of the GRAY equation of state and the damage evolution model for 93 tungsten alloy and Q345 steel表 2 93钨合金、Q345钢Johnson-Cook强度模型材料参数Table 2. The material parameters of the Johnson-Cook yield criterion for 93 tungsten alloy and Q345 steel材料 G/GPa Q1/MPa Q2/MPa Q3 Q4 Q5 Tm/K ˙ε0/s−1 93钨合金 132.00 600.8 1200 0.4944 0.059 0.8203 3683 0.001 Q345钢[24] 80.47 374 795.7 0.4545 0.01586 0.8856 1795 0.001 表 3 93钨合金、Q345钢Johnson-Cook失效模型材料参数Table 3. The material parameters of the Johnson-Cook failure model for 93 tungsten alloy and Q345 steel材料 D1 D2 D3 D4 D5 Tm/K ˙ε0/s−1 93钨合金 0.09100 0.40900 −2.4600 −0.21800 1.613 3683 0.001 Q345钢 0.09436 1.15059 −3.0597 0.01645 0.240 1795 0.001 上述Johnson-Cook强度模型、Johnson-Cook失效模型以及封加波损伤演化模型对应的材料参数中,除部分参数引用了相关文献外,其他参数均为实验所得。包括SHPB实验、缺口拉伸实验、飞片撞击实验等。
2.1 数值模拟与实验宏观测量结果对比
针对柱形93钨弹体超高速撞击Q345钢板问题,可通过实验后效以及高速摄像获得靶板穿孔直径、破片群扩展速度、弹体剩余长度的测量结果。因此,根据实验弹靶结构和撞击条件,建立数值模拟模型(光滑长度为0.1 mm)并开展计算。获得的相应参量的数值模拟结果与实验结果一同列于表4~5中。其中,vx,max为破片群轴向最大速度,vr,max为破片群横向最大速度,ΔL为弹体侵蚀长度。需要说明的是,实验1~6中未使用高速摄像,实验8~9中受弹托材料撞击影响无法获得靶板穿孔直径数据。
表 4 靶板穿孔直径的数值模拟结果与实验结果对比Table 4. Comparison of numerical simulation results and experimental results of perforation diameter of the target plate实验 弹直径/mm 弹长/mm 靶厚/mm 撞击速度/(m·s−1) 实验穿孔直径/mm 数值模拟穿孔直径/mm 误差/% 1 2.32 23.2 1.5 2847 5.357 5.493 2.54 2 2.92 14.6 1.5 3140 6.420 6.761 5.31 3 2.32 23.2 1.5 2300 5.008 4.907 −2.02 4 2.92 14.6 1.5 2180 5.566 5.755 3.40 5 3.45 10.5 1.5 3000 6.917 7.277 5.20 6 3.45 10.5 1.5 3010 6.808 7.279 6.92 7 3.45 10.5 1.5 3160 6.826 7.370 7.97 表 5 破片群扩展速度、弹体侵蚀长度数值模拟结果与实验结果对比Table 5. Comparison of numerical simulation results and experimental results of fragment group expansion speed and erosion length of projectile实验 弹直径/
mm弹长/
mm靶厚/
mm初速度/
(m·s−1)实验 数值模拟 误差 vx,max/(m·s−1) vr,max/(m·s−1) ΔL/mm vx,max/(m·s−1) vr,max/(m·s−1) ΔL/mm ε(vx,max) /% ε(vr,max)/% ε(ΔL)/% 7 3.45 10.5 1.5 3160 3143 837 3.40 3116 875 3.60 −0.86 4.54 5.88 8 2.92 14.6 1.5 2975 2953 738 3.21 2947 780 2.99 −0.20 5.69 −6.85 9 2.32 23.2 2.0 2180 2123 460 3.10 2149 458 2.84 1.22 −0.44 −8.39 对比表4~5中数据可知,在靶板穿孔直径、破片群扩展速度、弹体剩余长度方面,数值模拟结果和实验结果一致性较好,大部分误差在8%以内。
2.2 靶板层裂失效对破片群形貌的影响
实验研究发现,所有靶板厚度(tt)小于0.72倍[25]弹体直径(dp)的实验中,弹靶撞击后将在靶后破片群前部形成“尖端”。主要是因为弹靶撞击产生向靶板内部传播的强冲击波来不及被来自弹体头部侧向自由面、靶板正向自由面的卸载波及时追赶卸载,导致冲击波在靶板背表面反射形成较强的拉伸波,进而使靶板产生拉伸层裂破坏并形成速度较高的“尖端”破片。而在数值模拟中,弹靶材料模型包含反映材料层裂失效机制的损伤演化模型。因此,数值模拟应能够有效预测靶板是否产生与实验相同的层裂结果。根据实验条件建模并开展数值模拟,对比靶后破片群形貌数值模拟结果与实验结果,如表6所示。
表 6 不同靶厚与弹体直径比的破片群实验结果与数值模拟结果对比Table 6. Comparison of experimental results and numerical simulation results of fragment group with different target thickness and projectile diameter ratio实验 tt /dp 是否有“尖端” 高速摄像结果 数值模拟结果 7 0.435 有 8 0.514 有 9 0.862 无 从表6可以看出,在靶后破片群前部是否形成“尖端”问题上,数值模拟能够获得同实验一致的现象,这一定程度上验证了数值模拟中靶板材料模型所包含的反映材料层裂失效机制的损伤演化模型的准确性。
2.3 超高速撞击下材料的熔化情况
为验证修正金属本构模型中GRAY物态方程计算材料相态的准确性,数值模拟了弹体超高速撞击双层靶板问题,分析了首层靶板穿孔及第2层靶板破片撞击坑的材料熔化情况。弹体尺寸为
∅ 3.5 mm×17.5 mm,撞击速度为2.76 km/s,两层靶板厚度均为1.5 mm,建立三维面对称模型,光滑长度为0.1 mm。弹体穿透首层靶板后,破片群形貌如图1所示,图中标记了材料所处相态,蓝色为固相,绿色为固液混合相,红色为液相。弹体撞击首层靶后,有部分粒子发生熔化,但总体上,破片群没有发生大范围的熔化。破片群“尖端”部分的破片均为固相。
对实验结果的分析表明,在该速度段下,首层靶后破片群没有产生大范围材料熔化。而当剩余弹体及破片群撞击第2层靶板后,受二次加载作用影响,撞击区附近将发生大范围的材料熔化。典型实验获得的首层、第2层靶板中心穿孔断口扫描电子显微镜(SEM)结果如图2所示,第1层靶板断口较为光滑,未发现大范围熔化,而第2层靶板断口则有较多熔融后凝固组织。在图1的数值模拟中,能够观察到首层靶板断口、整个破片群尚未发生大范围的材料熔化。
在数值模拟中,当剩余弹体穿透第2层靶板时,除靶板中心区域受剩余弹体撞击外,其他区域均为破片群撞击影响区。如图3所示,在破片群撞击后的撞击坑处,大量的SPH粒子发生熔化。对比图1中撞击前的破片群的熔化状态,可以判断在图3中靶板破片撞击坑中的SPH粒子的熔化,大部分是破片在撞击第2层靶板过程中发生的。
上述关于材料熔化的数值模拟分析结果和实验中靶板破片撞击坑微观组织分析的结论是一致的,实验通过扫描电镜获得的破片撞击坑的形貌如图4所示。可以看出,撞击坑表面圆润光滑,像液体浇筑后的表面形貌,说明撞击坑中的材料已经发生了熔化。因此,认为数值模拟基本能够反映超高速撞击过程中弹靶材料所处的相态。
2.4 破片群对效应靶的穿孔统计分析
当93钨合金弹体以2~3.5 km/s速度撞击钢板时,撞击后弹靶材料破碎将形成平均尺寸较大的破片群。为了获得破片群特征尺寸的分布规律,可在首层靶板后设置一层薄效应靶。通过统计效应靶穿孔面积与累积数量的关系,间接分析破片群特征尺寸分布规律以及材料的动态破碎行为。因此,为了进一步验证修正金属本构模型的计算结果,参照实验条件建模并开展计算。弹体直径15 mm、长15 mm。首层靶板厚度10 mm,后效靶板厚度1 mm,两层靶板间距1014 mm。实验弹体速度为2.25 km/s,模型光滑长度为0.25 mm。选取数值模拟弹体撞击首层靶板后1 ms时刻后效靶板的穿孔结果进行分析,实验和数值模拟效应靶穿孔形貌对比如图5所示。图6为效应靶穿孔的累积数量与穿孔面积曲线的对比情况。其中,累积数量表示大于横坐标穿孔面积的穿孔总数。需要说明的是,实验中,弹体撞击首层靶板后形成的破片群经历了与空气介质短暂的热量交换才撞击到薄效应靶上,而数值模拟中,则考虑短暂热交换所引起的温度变化对破片穿孔尺寸的影响相对破片密度以及速度对穿孔尺寸的影响是次要因素,因而忽略了空气的影响。
在效应靶穿孔形貌上,由于实验难以保证绝对的轴对称撞击,并且材料破碎有一定的随机性,导致实验效应靶穿孔形貌对称性不明显,而数值模拟有明显的对称性。但总的来说,较大破片穿孔更趋近于效应靶中心区域,效应靶边缘区域穿孔较小,这是实验以及数值模拟的共同特征。从图6可以看出,后效靶穿孔累积数量与穿孔面积统计曲线的数值模拟结果和实验结果一致性较好,仅在统计曲线两端略有差距。那么从统计角度讲,数值模拟获得的超高速撞击破片群符合实验破片群的特征尺寸分布规律。
2.5 典型弹靶撞击下破片群的空间分布
开展典型93钨弹体超高速撞击Q345钢板问题的数值模拟,弹体直径3.2 mm,长径比5,靶板厚度1.5 mm,撞击速度为3.0 km/s,模型光滑长度取0.1 mm。保存模拟结果中的SPH粒子位置坐标,参照Liang等[26]所使用的广度优先搜索(BFS)算法,识别破片并统计分析相关物理量的空间分布情况。
图7~8为破片群的数量和质量在各轴向比速度段、横向比速度段内的累计情况。在每个柱形图内,不同颜色代表不同质量范围破片的累积结果。vx为破片轴向速度,v0为弹体初始速度,vr为破片横向速度,vr,max为破片群的最大横向速度。从图7可以看出,在轴向方向上破片群前端的破片数量高、总质量占比高。而低速段的大质量破片主要为靶板扩孔末期剥落的低速破片。从图8中可以看出,在横向方向上,各比速度段的数量基本相同。大质量破片主要集中在低横向速度段内,即破片群的前端和尾端。
图9为破片轴向动量、横向动量(绝对值)在各轴向比速度段内的累积结果。其中,不同颜色代表不同动量范围内的累积情况。可以看出,随轴向比速度的增大,轴向动量呈指数增长形式分布,高轴向动量破片集中分布于破片群前端。另一方面,高横向动量也集中于破片群的前端,结合破片群质量分布特征认为,这是由于该区域的破片群累积质量较高。综上,破片群的前端具有较高的质量、轴向动量以及横向动量(绝对值)。
3. 结 论
为建立适用于超高速撞击问题的修正金属本构模型,引入GRAY三相物态方程描述材料相态变化,采用Johnson-Cook强度模型描述撞击后期材料的力学行为,综合封加波损伤演化模型以及Johnson-Cook失效模型描述层裂、剪切失效机制,并引用曹祥断裂演化模型,描述材料失效后应力归零的过程。通过柱形93钨超高速撞击Q345钢板数值模拟结果与实验结果的对比,验证了本构模型的适用性。分析了典型弹靶撞击条件下破片群的空间分布特征,得出结论如下。
(1)基于修正金属本构模型,开展了不同撞击条件的柱形93钨超高速撞击Q345钢板数值模拟,获得的靶板穿孔直径、弹体侵蚀长度、破片群扩展速度结果与实验结果一致。
(2)GRAY三相物态方程能够相对准确地计算93钨合金撞击Q345钢靶过程中弹靶材料所处的相态。数值模拟发现,撞击速度在2~3.5 km/s时,弹靶材料并不会发生大范围熔化,但当剩余弹体和破片群撞击第2层靶板时,破片撞击坑将产生大范围熔化,该现象与实验结果是一致的。
(3)封加波损伤演化模型能够准确得出超高速撞击过程中靶板是否产生层裂破坏,对于不同靶板厚度与弹体直径比值的撞击问题,数值模拟获得的靶板是否产生层裂破坏的结果与实验结果一致。
(4)综合封加波损伤演化模型、Johnson-Cook失效模型以及曹祥提出的断裂演化模型后,典型条件下数值模拟获得的破片群对后效靶板穿孔的面积与累积数量统计曲线和实验结果一致。
(5)基于修正金属本构模型,获得了典型条件下柱形93钨弹体超高速撞击Q345靶板破片群空间分布统计结果,破片群的前端具有较高的质量、轴向动量以及横向动量(绝对值)。
-
表 1 Taylor模型与改进模型的比较
Table 1. Comparison between Taylor’s model and the improved model
模型类型 Taylor模型 针对滞后流的改进模型 流体速度 pkρwcw pkρwcw+1ρwR∫t0pkdt 连续条件 vp = vi − vr vp = vi − vr = vt -
[1] TAY Y Y, FLORES P, LANKARANI H. Crashworthiness analysis of an aircraft fuselage section with an auxiliary fuel tank using a hybrid multibody/plastic hinge approach [J]. International Journal of Crashworthiness, 2020, 25(1): 95–105. DOI: 10.1080/13588265.2018.1524547. [2] KIM D H, KIM S, KIM S W. Numerical analysis of drop impact-induced damage of a composite fuel tank assembly on a helicopter considering liquid sloshing [J]. Composite Structures, 2019, 229: 111438. DOI: 10.1016/j.compstruct.2019.111438. [3] ATKINSON G. Blast damage to storage tanks and steel clad buildings [J]. Process Safety and Environmental Protection, 2011, 89(6): 382–390. DOI: 10.1016/j.psep.2011.06.020. [4] 汤德文, 刘均, 程远胜. 耐压液舱极限承载能力的影响因素分析与匹配设计 [J]. 中国舰船研究, 2023, 18(4): 251–257. DOI: 10.19693/j.issn.1673-3185.02397.TANG D W, LIU J, CHENG Y S. Influencing factors analyses and matching design of ultimate bearing capacity of external pressure tank [J]. Chinese Journal of Ship Research, 2023, 18(4): 251–257. DOI: 10.19693/j.issn.1673-3185.02397. [5] WANG Y H, LIEW J Y R, LEE S C. A novel multi-functional water façade system for energy saving and blast resisting [J]. Materials & Design, 2016, 106: 98–111. DOI: 10.1016/j.matdes.2016.05.126. [6] 赵著杰, 侯海量, 李典, 等. 爆炸载荷下多胞元液舱结构的防护效能研究 [J]. 振动与冲击, 2023, 42(2): 293–302. DOI: 10.13465/j.cnki.jvs.2023.02.035.ZHAO Z J, HOU H L, LI D, et al. Anti-explosive performances of multicell liquid cabin structures [J]. Journal of Vibration and Shock, 2023, 42(2): 293–302. DOI: 10.13465/j.cnki.jvs.2023.02.035. [7] LIU Y J, LI D, HOU H L, et al. Experimental study on anti-penetration mechanism of bolted composite protective structure with limited span under impact of low-velocity projectile [J]. Defence Technology, 2022, 18(6): 995–1005. DOI: 10.1016/j.dt.2021.05.005. [8] WU G, WANG X, JI C, et al. Damage response of polyurea-coated steel plates under combined blast and fragments loading [J]. Journal of Constructional Steel Research, 2022, 190: 107126. DOI: 10.1016/j.jcsr.2021.107126. [9] 管文博, 杨会伟, 胡建星, 等. 落锤冲击作用下充液半球壳的实验和数值分析 [J]. 振动与冲击, 2014, 33(21): 148–154. DOI: 10.13465/j.cnki.jvs.2014.21.025.GUAN W B, YANG H W, HU J X, et al. Numerical simulations for deformations and energy absorption of liquid-filled thin hemispherical shells under a drop hammer impact [J]. Journal of Vibration and Shock, 2014, 33(21): 148–154. DOI: 10.13465/j.cnki.jvs.2014.21.025. [10] 陈焌良, 纪杨子燚, 李向东, 等. 破片撞击充液容器引起的液体喷溅特性研究 [J]. 振动与冲击, 2023, 42(19): 212–220, 239. DOI: 10.13465/j.cnki.jvs.2023.19.028.CHEN J L, JIYANG Z Y, LI X D, et al. Characteristics of liquid splashing caused by fragment impacting a liquid-filled container [J]. Journal of Vibration and Shock, 2023, 42(19): 212–220, 239. DOI: 10.13465/j.cnki.jvs.2023.19.028. [11] ZHENG F, ZHANG M G, SONG J, et al. Analysis on risk of multi-factor disaster and disaster control in oil and gas storage tank [J]. Procedia Engineering, 2018, 211: 1058–1064. DOI: 10.1016/j.proeng.2017.12.110. [12] 吴晓光, 李典, 吴国民, 等. 高速杆式弹侵彻下蓄液结构的防护能力 [J]. 爆炸与冲击, 2018, 38(1): 76–84. DOI: 10.11883/bzycj-2016-0146.WU X G, LI D, WU G M, et al. Protection ability of liquid-filled structure subjected to penetration by high-velocity long-rod projectile [J]. Explosion and Shock Waves, 2018, 38(1): 76–84. DOI: 10.11883/bzycj-2016-0146. [13] ZOU D L, HAO Y F, WU H, et al. Safety assessment of large-scale all steel LNG storage tanks under wind-borne missile impact [J]. Thin-Walled Structures, 2022, 174: 109078. DOI: 10.1016/j.tws.2022.109078. [14] 柴崧淋, 侯海量, 金键, 等. 水下接触爆炸下舷侧防雷舱吸能结构形式试验研究 [J]. 兵工学报, 2022, 43(6): 1395–1406. DOI: 10.12382/bgxb.2021.0328.CHAI S L, HOU H L, JIN J, et al. Experimental study on the energy-absorbing structure of broadside defense cabin subjected to underwater contact explosion [J]. Acta Armamentarii, 2022, 43(6): 1395–1406. DOI: 10.12382/bgxb.2021.0328. [15] WANG Y H, XIONG M X. Analysis of axially restrained water storage tank under blast loading [J]. International Journal of Impact Engineering, 2015, 86: 167–178. DOI: 10.1016/j.ijimpeng.2015.07.012. [16] THIYAHUDDIN M I, GU Y T, THAMBIRATNAM D P, et al. Impact and energy absorption of portable water-filled road safety barrier system fitted with foam [J]. International Journal of Impact Engineering, 2014, 72: 26–39. DOI: 10.1016/j.ijimpeng.2014.04.008. [17] LA FAUCI G, PARISI M, NANNI A, et al. Design and proof-of-concept of an advanced protective system for the dissipation of tangential impact energy in helmets, based on non-Newtonian fluids [J]. Smart Materials and Structures, 2023, 32(4): 044004. DOI: 10.1088/1361-665X/acc148. [18] CHEN Y, HUANG W, CONSTANTINI S. Blast shock wave mitigation using the hydraulic energy redirection and release technology [J]. PLoS One, 2012, 7(6): e39353. DOI: 10.1371/journal.pone.0039353. [19] YANG L, WANG T, BIAN X B, et al. Evaluation of blast mitigation performance of cylindrical explosion containment vessels based on water containers [J]. International Journal of Impact Engineering, 2023, 181: 104729. DOI: 10.1016/j.ijimpeng.2023.104729. [20] 邱日祥, 胡志昂. 反恐防爆水墙——一种新型的防爆隔爆装备 [J]. 警察技术, 2013(3): 70–72. DOI: 10.3969/j.issn.1009-9875.2013.03.019.QIU R X, HU Z A. Anti-terrorism explosion-proof water wall: a new type of explosion-proof equipment [J]. Police Technology, 2013(3): 70–72. DOI: 10.3969/j.issn.1009-9875.2013.03.019. [21] 侯海量, 王克, 柴崧淋, 等. 水下接触爆炸下夹芯式防雷舱抗爆效能研究 [J]. 船舶力学, 2023, 27(10): 1550–1561. DOI: 10.3969/j.issn.1007-7294.2023.10.012.HOU H L, WANG K, CHAI S L, et al. Anti-knock efficiency of sandwich defensive structures subjected to underwater contact explosion [J]. Journal of Ship Mechanics, 2023, 27(10): 1550–1561. DOI: 10.3969/j.issn.1007-7294.2023.10.012. [22] 陈娟, 吴国民. 船底双层板架结构水下近场爆炸试验 [J]. 中国舰船研究, 2019, 14(S1): 143–150. DOI: 10.19693/j.issn.1673-3185.01571.CHEN J, WU G M. Underwater near-field explosion experiment of double-wall bottom grillage [J]. Chinese Journal of Ship Research, 2019, 14(S1): 143–150. DOI: 10.19693/j.issn.1673-3185.01571. [23] 陈思佑, 姚颖康, 谢先启, 等. 钢混立柱爆破个别飞散物运动特性与水袋防护效果 [J]. 工程爆破, 2023, 29(4): 94–100, 113. DOI: 10.19931/j.EB.20220422.CHEN S Y, YAO Y K, XIE X Q, et al. Motion characteristics of individual blasting flying rock and protective effect of water bag in reinforced concrete column blasting [J]. Engineering Blasting, 2023, 29(4): 94–100, 113. DOI: 10.19931/j.EB.20220422. [24] 金键, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述 [J]. 爆炸与冲击, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.JIN J, ZHU X, HOU H L, et al. Review on the damage and protection of large naval warships subjected to underwater contact explosions [J]. Explosion and Shock Waves, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105. [25] 刘小川, 张宇. 作战飞机关键结构易损性评估方法研究进展与展望 [J]. 航空科学技术, 2021, 32(12): 43–56. DOI: 10.19452/j.issn1007-5453.2021.12.005.LIU X C, ZHANG Y. Research progress and prospects of vulnerability assessment methods for key structures of combat aircraft [J]. Aeronautical Science and Technology, 2021, 32(12): 43–56. DOI: 10.19452/j.issn1007-5453.2021.12.005. [26] PANCIROLI R. Water entry of flexible wedges: some issues on the FSI phenomena [J]. Applied Ocean Research, 2013, 39: 72–74. DOI: 10.1016/j.apor.2012.10.010. [27] POPLAVSKI S V, MINAKOV A V, SHEBELEVA A A, et al. On the interaction of water droplet with a shock wave: experiment and numerical simulation [J]. International Journal of Multiphase Flow, 2020, 127: 103273. DOI: 10.1016/j.ijmultiphaseflow.2020.103273. [28] SHAH Q H. Experimental and numerical study on the orthogonal and oblique impact on water filled pipes [J]. International Journal of Impact Engineering, 2011, 38(5): 330–338. DOI: 10.1016/j.ijimpeng.2010.12.001. [29] GODOY L A, AMEIJEIRAS M P. Plastic buckling of oil storage tanks under blast loads [J]. Structures, 2023, 53: 361–372. DOI: 10.1016/j.istruc.2023.04.057. [30] GAO S Z, LI D, HOU H L, et al. Investigation on dynamic response of liquid-filled concave cell structures subject to the penetration of high-speed projectiles [J]. Thin-Walled Structures, 2020, 157: 107119. DOI: 10.1016/j.tws.2020.107119. [31] 王卓, 张朴, 孔祥韶, 等. 高速弹体侵彻液舱试验研究 [J]. 船舶力学, 2021, 25(7): 917–926. DOI: 10.3969/j.issn.1007-7294.2021.07.009.WANG Z, ZHANG P, KONG X S, et al. Experimental study on liquid cabin penetrated by high-velocity projectile [J]. Journal of Ship Mechanics, 2021, 25(7): 917–926. DOI: 10.3969/j.issn.1007-7294.2021.07.009. [32] 仲强, 侯海量, 李典. 陶瓷/液舱复合结构抗侵彻机理试验研究 [J]. 船舶力学, 2017, 21(10): 1282–1290. DOI: 10.3969/j.issn.1007-7294.2017.10.012.ZHONG Q, HOU H L, LI D. Experimental study on anti-penetration mechanism of ceramic/fluid cabin composite structure [J]. Journal of Ship Mechanics, 2017, 21(10): 1282–1290. DOI: 10.3969/j.issn.1007-7294.2017.10.012. [33] SUGIYAMA Y, SHIBUE K, MATSUO A. The blast mitigation mechanism of a single water droplet layer and improvement of the blast mitigation effect using multilayers in a confined geometry [J]. International Journal of Multiphase Flow, 2023, 159: 104322. DOI: 10.1016/j.ijmultiphaseflow.2022.104322. [34] 杨磊, 刘瀚, 黄广炎, 等. 典型防爆装备对TNT爆炸冲击波的防护性能 [J]. 兵工学报, 2023, 44(10): 2871–2884. DOI: 10.12382/bgxb.2023.0281.YANG L, LIU H, HUANG G Y, et al. Protection performance of typical explosion-proof equipment against TNT blast shock wave [J]. Acta Armamentarii, 2023, 44(10): 2871–2884. DOI: 10.12382/bgxb.2023.0281. [35] ZHANG H T, SONG C M, WANG M Y, et al. On the dynamic response of rectangular liquid storage structure subjected to blast-induced ground shock [J]. Engineering Structures, 2023, 285: 116071. DOI: 10.1016/j.engstruct.2023.116071. [36] REN P, SHI L, YE R C, et al. A combined experimental and numerical investigation on projectiles penetrating into water-filled container [J]. Thin-Walled Structures, 2019, 143: 106230. DOI: 10.1016/j.tws.2019.106230. [37] LIU H Q, ZHU H X, FU K K, et al. High-impact resistant hybrid sandwich panel filled with shear thickening fluid [J]. Composite Structures, 2022, 284: 115208. DOI: 10.1016/j.compstruct.2022.115208. [38] 朱景山, 习赵军, 吴仲达, 等. 水囊组合件空投跌落冲击仿真及优化设计 [J]. 包装工程, 2023, 44(7): 307–313. DOI: 10.19554/j.cnki.1001-3563.2023.07.036.ZHU J S, XI Z J, WU Z D, et al. Airdrop impact simulation and optimization design of water sac assembly [J]. Packaging Engineering, 2023, 44(7): 307–313. DOI: 10.19554/j.cnki.1001-3563.2023.07.036. [39] 王宏, 赵西友, 曾康斌. 空投水袋高空跌落冲击过程数值分析 [J]. 包装工程, 2016, 37(11): 88–92. DOI: 10.19554/j.cnki.1001-3563.2016.11.017.WANG H, ZHAO X Y, ZENG K B. Numerical analysis on high-altitude air-drop impact process of water bag [J]. Packaging Engineering, 2016, 37(11): 88–92. DOI: 10.19554/j.cnki.1001-3563.2016.11.017. [40] ZHU W, HUANG G Y, LIU H, et al. Experimental and numerical investigation of a hollow cylindrical water based barrier against internal blast induced fragment loading [J]. International Journal of Impact Engineering, 2020, 138: 103503. DOI: 10.1016/j.ijimpeng.2020.103503. [41] CHEN D P, CHEN L, FANG Q Z, et al. Uniform loading on the reinforced concrete beam produced by the specific cylinder-shaped rubber bags fully filled with air or water [J]. Advances in Structural Engineering, 2020, 23(9): 1934–1947. DOI: 10.1177/1369433220904006. [42] ZHU W, HUANG G Y, GUO Z W, et al. Ballistic penetration of bi-layer structures with water container and fiber composite: Effects of the container position [J]. Composite Structures, 2019, 227: 111320. DOI: 10.1016/j.compstruct.2019.111320. [43] 习赵军, 胡麟, 李毅超, 等. 聚氨酯/聚乙烯水袋无伞空投跌落仿真 [J]. 南京航空航天大学学报, 2021, 53(2): 211–215. DOI: 10.16356/j.1005-2615.2021.02.007.XI Z J, HU L, LI Y C, et al. Numerical investigation of free drop of polyurethane/polyethylene water bag [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(2): 211–215. DOI: 10.16356/j.1005-2615.2021.02.007. [44] BALASUBRAMANIAN P, FERRARI G, AMABILI M. Nonlinear vibrations of a fluid-filled, soft circular shell: experiments and system identification [J]. Nonlinear Dynamics, 2020, 102(3): 1409–1418. DOI: 10.1007/s11071-020-06007-5. [45] LI Z H, MEI G X, WU Z W, et al. Experimental investigation on the oil permeation mechanism of underwater oil storage method with flexible oil bladder [J]. Energy, 2023, 282: 128798. DOI: 10.1016/j.energy.2023.128798. [46] SONG W F, WANG F M. The hybrid personal cooling system (PCS) could effectively reduce the heat strain while exercising in a hot and moderate humid environment [J]. Ergonomics, 2016, 59(8): 1009–1018. DOI: 10.1080/00140139.2015.1105305. [47] ZHANG L, FANG Q, MAO Y M, et al. Blast mitigation effects of water walls: numerical simulation and analytical approach [J]. International Journal of Protective Structures, 2015, 6(3): 551–565. DOI: 10.1260/2041-4196.6.3.551. [48] LIU Y L, WANG L F. Enhanced stiffness, strength and energy absorption for co-continuous composites with liquid filler [J]. Composite Structures, 2015, 128: 274–283. DOI: 10.1016/j.compstruct.2015.03.064. [49] DENG X B, ZHANG C, CHEN Y L, et al. Crush behaviors of polyvinyl chloride cellular structures with liquid filler [J]. Composite Structures, 2018, 189: 428–434. DOI: 10.1016/j.compstruct.2018.01.103. [50] ZHAO Z J, LI D, HOU H L, et al. Study on dynamic response and loading mitigation characteristics of liquid-filled cell under drop-weight impact [J]. Engineering Structures, 2021, 248: 113283. DOI: 10.1016/j.engstruct.2021.113283. [51] VARAS D, LÓPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact [J]. International Journal of Impact Engineering, 2009, 36(1): 81–91. DOI: 10.1016/j.ijimpeng.2008.04.006. [52] 张弩, 于馨, 明付仁. 复合材料层合板在水下多层防护结构中的抗爆效能 [J]. 兵工学报, 2021, 42(S1): 135–141. DOI: 10.3969/j.issn.1000-1093.2021.S1.017.ZHANG N, YU X, MING F R. Anti-explosion performance of composite laminates in underwater multi-layer defensive structure [J]. Acta Armamentarii, 2021, 42(S1): 135–141. DOI: 10.3969/j.issn.1000-1093.2021.S1.017. [53] BORNSTEIN H, RYAN S, MOURITZ A P. Evaluation of blast protection using novel-shaped water-filled containers: experiments and simulations [J]. International Journal of Impact Engineering, 2019, 127: 41–61. DOI: 10.1016/j.ijimpeng.2019.01.006. [54] WANG Y H, LIEW J Y R, LEE S C. Structural performance of water tank under static and dynamic pressure loading [J]. International Journal of Impact Engineering, 2015, 85: 110–123. DOI: 10.1016/j.ijimpeng.2015.06.018. [55] LU G Y, HAN Z J, LEI J P, et al. A study on the impact response of liquid-filled cylindrical shells [J]. Thin-Walled Structures, 2009, 47(12): 1557–1566. DOI: 10.1016/j.tws.2009.05.005. [56] 邵文杨, 阳光武, 肖守讷, 等. 基于流固耦合的机车燃油箱冲击计算及试验验证 [J]. 振动与冲击, 2023, 42(7): 267–272. DOI: 10.13465/j.cnki.jvs.2023.07.031.SHAO W Y, YANG G W, XIAO S N, et al. Impact calculation and test verification of locomotive fuel tank based on fluid-structure coupling [J]. Journal of Vibration and Shock, 2023, 42(7): 267–272. DOI: 10.13465/j.cnki.jvs.2023.07.031. [57] 徐文龙, 杨艺, 高明, 等. 爆炸冲击作用下储油罐毁伤特性的数值模拟 [J]. 安全与环境学报, 2023, 23(7): 2334–2339. DOI: 10.13637/j.issn.1009-6094.2022.0240.XU W L, YANG Y, GAO M, et al. Research on damage characteristics of oil storage tank under the impact of explosion by numerical simulations [J]. Journal of Safety and Environment, 2023, 23(7): 2334–2339. DOI: 10.13637/j.issn.1009-6094.2022.0240. [58] THIYAHUDDIN I, GU Y T, THAMBIRATNAM D P, et al. Impact & energy absorption of road safety barriers by coupled SPH/FEM [J]. International Journal of Protective Structures, 2012, 3(3): 257–273. DOI: 10.1260/2041-4196.3.3.257. [59] ZHANG L, CHEN L, FANG Q, et al. Mitigation of blast loadings on structures by an anti-blast plastic water wall [J]. Journal of Central South University, 2016, 23(2): 461–469. DOI: 10.1007/s11771-016-3091-3. [60] JIANG Y X, ZHANG B Y, WANG L, et al. Dynamic response of polyurea coated thin steel storage tank to long duration blast loadings [J]. Thin-Walled Structures, 2021, 163: 107747. DOI: 10.1016/j.tws.2021.107747. [61] KONG X S, WANG X Y, ZHENG C, et al. Experimental and numerical investigations of dynamic response and failure of fluid-filled container under blast loadings from a cased charge [J]. Composite Structures, 2019, 227: 111339. DOI: 10.1016/j.compstruct.2019.111339. [62] LIU F, KONG X S, ZHENG C, et al. The influence of rubber layer on the response of fluid-filled container due to high-velocity impact [J]. Composite Structures, 2018, 183: 671–681. DOI: 10.1016/j.compstruct.2017.09.005. [63] TAO C, JI C, ZHAO C X, et al. Mechanism of polyurea in protecting liquid-filled square aluminum tube from the impact of high-velocity projectile [J]. Thin-Walled Structures, 2023, 182: 110315. DOI: 10.1016/j.tws.2022.110315. [64] WANG X, JI C, WU G, et al. Damage response of high elastic polyurea coated liquid-filled tank subjected to close-in blast induced by charge with prefabricated fragments [J]. International Journal of Impact Engineering, 2022, 167: 104260. DOI: 10.1016/j.ijimpeng.2022.104260. [65] WANG B W, ZHANG Y, BAI C Y, et al. Mitigating hydrodynamic ram effect by a novel perforated lattice filled tank [J]. Thin-Walled Structures, 2023, 182: 110232. DOI: 10.1016/j.tws.2022.110232. [66] 吴庭翱, 张弩, 侯海量, 等. 水下接触爆炸下多舱防护结构载荷特性及动响应研究进展 [J]. 中国舰船研究, 2018, 13(3): 1–12. DOI: 10.19693/j.issn.1673-3185.01051.WU T A, ZHANG N, HOU H L, et al. Research progress on load characteristics and dynamic response of multicamerate defense structure subjected to contact underwater explosion [J]. Chinese Journal of Ship Research, 2018, 13(3): 1–12. DOI: 10.19693/j.issn.1673-3185.01051. [67] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. 2nd ed. Cambridge: Cambridge University Press, 1997. [68] 张栗铭, 杨德庆. 力学与声学超材料在船舶工程中的应用研究综述 [J]. 中国舰船研究, 2023, 18(2): 1–19, 47. DOI: 10.19693/j.issn.1673-3185.03139.ZHANG L M, YANG D Q. Review on the applied research of mechanical and acoustic metamaterials in ship engineering [J]. Chinese Journal of Ship Research, 2023, 18(2): 1–19, 47. DOI: 10.19693/j.issn.1673-3185.03139. [69] HU Q F, LU G X, HAMEED N, et al. Dynamic compressive behaviour of shear thickening fluid-filled honeycomb [J]. International Journal of Mechanical Sciences, 2022, 229: 107493. DOI: 10.1016/j.ijmecsci.2022.107493. [70] ZHAO Z J, HOU H L, LI D, et al. Dynamic response and protection effectiveness of fluid filled concave multicell structure under air blast [J]. Materials & Design, 2023, 229: 111876. DOI: 10.1016/j.matdes.2023.111876. [71] LAM L, CHEN W S, HAO H, et al. Dynamic crushing and energy absorption of bio-inspired shear thickening fluid-filled origami metastructure [J]. Engineering Structures, 2024, 299: 117122. DOI: 10.1016/j.engstruct.2023.117122. [72] WANG X, YU R P, ZHANG Q C, et al. Dynamic response of clamped sandwich beams with fluid-filled corrugated cores [J]. International Journal of Impact Engineering, 2020, 139: 103533. DOI: 10.1016/j.ijimpeng.2020.103533. [73] WU X Q, XIAO K L, YIN Q Y, et al. Experimental study on dynamic compressive behaviour of sandwich panel with shear thickening fluid filled pyramidal lattice truss core [J]. International Journal of Mechanical Sciences, 2018, 138/139: 467–475. DOI: 10.1016/j.ijmecsci.2018.02.029. [74] WANG Y H, LIEW J Y R, ZHAI X M, et al. Numerical and analytical investigation on a multilayer water façade system subjected to blast loading [J]. Composite Structures, 2016, 158: 175–186. DOI: 10.1016/j.compstruct.2016.09.035. [75] GODOY L A. Buckling of vertical oil storage steel tanks: review of static buckling studies [J]. Thin-Walled Structures, 2016, 103: 1–21. DOI: 10.1016/j.tws.2016.01.026. [76] KOHOUT A, JAIN P, DICK W. Review, identification and analysis of local impact of projectile hazards in the LNG industry [J]. Journal of Loss Prevention in the Process Industries, 2019, 57: 304–319. DOI: 10.1016/j.jlp.2018.07.018. [77] CUI X Y, YE L, WANG H J, et al. Solidification of a shear thickening fluid in a finite volume under low-velocity impact [J]. International Journal of Impact Engineering, 2022, 170: 104358. DOI: 10.1016/j.ijimpeng.2022.104358. [78] EL WAHED A K, SPROSTON J L, SCHLEYER G K. Electrorheological and magnetorheological fluids in blast resistant design applications [J]. Materials & Design, 2002, 23(4): 391–404. DOI: 10.1016/S0261-3069(02)00003-1. [79] SENOL K, PARVARI G, ROTBAUM Y, et al. Mitigation of shock loading on structures using aqueous methylcellulose solution [J]. International Journal of Impact Engineering, 2020, 140: 103547. DOI: 10.1016/j.ijimpeng.2020.103547. [80] SUN Y T, LI Y B, ZHAO C, et al. Crushing of circular steel tubes filled with nanoporous-materials-functionalized liquid [J]. International Journal of Damage Mechanics, 2018, 27(3): 439–450. DOI: 10.1177/1056789516683539. [81] 程翔宇, 白中浩, 蒋彬辉, 等. 磁流变液仿生薄壁吸能管及其耐撞性可控度的研究 [J]. 汽车工程, 2021, 43(12): 1806–1816,1831. DOI: 10.19562/j.chinasae.qcgc.2021.12.010.CHENG X Y, BAI Z H, JIANG B H, et al. Study on magnetorheological-fluid bio-inspired thin-walled energy-absorbing tube and its crashworthiness controllability [J]. Automotive Engineering, 2021, 43(12): 1806–1816,1831. DOI: 10.19562/j.chinasae.qcgc.2021.12.010. [82] LI M Z, LI J F, BARBAT S, et al. Enhanced filler-tube wall interaction in liquid nanofoam-filled thin-walled tubes [J]. Composite Structures, 2018, 200: 120–126. DOI: 10.1016/j.compstruct.2018.05.101. [83] VARFMAN B H, RITTEL D. Shock energy attenuation of liquid aqueous methylcellulose hydrogels [J]. Extreme Mechanics Letters, 2022, 51: 101586. DOI: 10.1016/j.eml.2021.101586. [84] GÜRGEN S, KUŞHAN M C, LI W H. Shear thickening fluids in protective applications: a review [J]. Progress in Polymer Science, 2017, 75: 48–72. DOI: 10.1016/j.progpolymsci.2017.07.003. [85] 侯海量, 朱锡, 古美邦. 爆炸载荷作用下加筋板的失效模式分析及结构优化设计 [J]. 爆炸与冲击, 2007, 27(1): 26–33. DOI: 10.11883/1001-1455(2007)01-0026-08.HOU H L, ZHU X, GU M B. Study on failure mode of stiffened plate and optimized design of structure subjected to blast load [J]. Explosion and Shock Waves, 2007, 27(1): 26–33. DOI: 10.11883/1001-1455(2007)01-0026-08. [86] 杜志鹏, 李晓彬, 夏利娟, 等. 舰船防护水舱在接近爆炸载荷作用下响应的理论研究 [J]. 船舶力学, 2007, 11(1): 119–127. DOI: 10.3969/j.issn.1007-7294.2007.01.015.DU Z P, LI X B, XIA L J, et al. Theory research on the response of the warship protective tank under near-by explosion [J]. Journal of Ship Mechanics, 2007, 11(1): 119–127. DOI: 10.3969/j.issn.1007-7294.2007.01.015. [87] 李思宇, 李晓彬, 赵鹏铎. 近爆荷载作用下固支水背方板的变形挠度研究 [J]. 振动与冲击, 2017, 36(14): 174–177, 215. DOI: 10.13465/j.cnki.jvs.2017.14.027.LI S Y, LI X B, ZHAO P D. Deflection of clamped square plates subjected to a close-range explosion [J]. Journal of Vibration and Shock, 2017, 36(14): 174–177, 215. DOI: 10.13465/j.cnki.jvs.2017.14.027. [88] 唐廷, 朱锡, 韦灼彬, 等. 水下爆炸冲击波作用下空气背衬平板的运动 [J]. 兵工学报, 2012, 33(7): 831–835.TANG T, ZHU X, WEI Z B, et al. Movement of air backed plane plates subjected to shock wave of underwater explosion [J]. Acta Armamentarii, 2012, 33(7): 831–835. [89] LIU Z K, YOUNG Y L. Transient response of submerged plates subject to underwater shock loading: an analytical perspective [J]. Journal of Applied Mechanics, 2008, 75(4): 044504. DOI: 10.1115/1.2871129. [90] KAMBOUCHEV N, NOELS L, RADOVITZKY R. Nonlinear compressibility effects in fluid-structure interaction and their implications on the air-blast loading of structures [J]. Journal of Applied Physics, 2006, 100(6): 063519. DOI: 10.1063/1.2349483. [91] GHOSHAL R, MITRA N. Non-contact near-field underwater explosion induced shock-wave loading of submerged rigid structures: nonlinear compressibility effects in fluid structure interaction [J]. Journal of Applied Physics, 2012, 112(2): 024911. DOI: 10.1063/1.4737778. [92] 刘晓波, 李帅, 张阿漫. 水下爆炸冲击波壁压理论及数值计算方法改进研究 [J]. 爆炸与冲击, 2022, 42(1): 014202. DOI: 10.11883/bzycj-2021-0106.LIU X B, LI S, ZHANG A M. An improvement of the wall-pressure theory and numerical method for shock waves in underwater explosion [J]. Explosion and Shock Waves, 2022, 42(1): 014202. DOI: 10.11883/bzycj-2021-0106. [93] SCHIFFER A, TAGARIELLI V L. The response of rigid plates to blast in deep water: fluid–structure interaction experiments [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468(2145): 2807–2828. DOI: 10.1098/rspa.2012.0076. [94] SCHIFFER A, TAGARIELLI V L. One-dimensional response of sandwich plates to underwater blast: fluid-structure interaction experiments and simulations [J]. International Journal of Impact Engineering, 2014, 71: 34–49. DOI: 10.1016/j.ijimpeng.2014.04.001. [95] SCHIFFER A, TAGARIELLI V L, PETRINIC N, et al. The response of rigid plates to deep water blast: analytical models and finite element predictions [J]. Journal of Applied Mechanics, 2012, 79(6): 061014. DOI: 10.1115/1.4006458. [96] SCHIFFER A, TAGARIELLI V L. Underwater blast loading of water-backed sandwich plates with elastic cores: theoretical modelling and simulations [J]. International Journal of Impact Engineering, 2017, 102: 62–73. DOI: 10.1016/j.ijimpeng.2016.11.014. [97] WANG Z Y, LIANG X, LIU G H. An analytical method for evaluating the dynamic response of plates subjected to underwater shock employing Mindlin plate theory and Laplace transforms [J]. Mathematical Problems in Engineering, 2013: 803609. DOI: 10.1155/2013/803609. [98] FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. DOI: 10.1115/1.1629109. [99] KISHORE S, SENOL K, NAIK PARRIKAR P, et al. Underwater implosion pressure pulse interactions with submerged plates [J]. Journal of the Mechanics and Physics of Solids, 2020, 143: 104051. DOI: 10.1016/j.jmps.2020.104051. [100] AGHAEI A, SCHIMMELS S, SCHLURMANN T, et al. Numerical investigation of the effect of aeration and hydroelasticity on impact loading and structural response for elastic plates during water entry [J]. Ocean Engineering, 2020, 201: 107098. DOI: 10.1016/j.oceaneng.2020.107098. [101] 吴巧瑞, 张珍, 陈明辉, 等. 计及气垫效应的曲面楔形体入水砰击研究 [J]. 中国造船, 2023, 64(1): 87–98. DOI: 10.3969/j.issn.1000-4882.2023.01.008.WU Q R, ZHANG Z, CHEN M H, et al. Investigation of water entry slamming of wedges accounting effect of air-cushion [J]. Shipbuilding of China, 2023, 64(1): 87–98. DOI: 10.3969/j.issn.1000-4882.2023.01.008. [102] KHABAKHPASHEVA T I, KOROBKIN A A, MALENICA S. Fluid impact onto a corrugated panel with trapped gas cavity [J]. Applied Ocean Research, 2012, 39: 97–112. DOI: 10.1016/j.apor.2012.10.005. [103] 李典, 朱锡, 侯海量, 等. 近距爆炸破片作用下芳纶纤维夹芯复合舱壁结构毁伤特性实验研究 [J]. 兵工学报, 2016, 37(8): 1436–1442. DOI: 10.3969/j.issn.1000-1093.2016.08.014.LI D, ZHU X, HOU H L, et al. Experimental research on damage of aramid fiber sandwich bulkhead under close range explosion and fragment loadings [J]. Acta Armamentarii, 2016, 37(8): 1436–1442. DOI: 10.3969/j.issn.1000-1093.2016.08.014. [104] 纪杨子燚, 李向东, 周兰伟, 等. 高速侵彻体撞击充液容器形成的液压水锤效应研究进展 [J]. 振动与冲击, 2019, 38(19): 242–252. DOI: 10.13465/j.cnki.jvs.2019.19.036.JIYANG Z Y, LI X D, ZHOU L W, et al. Review of study on hydrodynamic ram effect generated due to high-velocity penetrator impacting fluid-filled container [J]. Journal of Vibration and Shock, 2019, 38(19): 242–252. DOI: 10.13465/j.cnki.jvs.2019.19.036. [105] CHEN A R, LI X D, ZHOU L W, et al. Experimental study on the cavity evolution and liquid spurt of hydrodynamic ram [J]. Defence Technology, 2022, 18(11): 2008–2022. DOI: 10.1016/j.dt.2021.09.002. [106] DEAR J P, FIELD J E. High-speed photography of surface geometry effects in liquid/solid impact [J]. Journal of Applied Physics, 1988, 63(4): 1015–1021. DOI: 10.1063/1.340000. [107] CHEN T, GUO Z T, ZHAO G, et al. A discrete method and experimental study for the propagation of shock wave induced by high-speed projectile entering water-filled tanks [J]. Ocean Engineering, 2022, 248: 110835. DOI: 10.1016/j.oceaneng.2022.110835. [108] HUANG W, ZHANG W, REN P, et al. An experimental investigation of water-filled tank subjected to horizontal high speed impact [J]. Experimental Mechanics, 2015, 55(6): 1123–1138. DOI: 10.1007/s11340-015-0012-6. [109] 陈晨. 小型运动体亚/跨声速入水多相流动特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019. [110] 李营, 吴卫国, 郑元洲, 等. 舰船防护液舱吸收爆炸破片的机理 [J]. 中国造船, 2015, 56(2): 38–44. DOI: 10.3969/j.issn.1000-4882.2015.02.005.LI Y, WU W G, ZHENG Y Z, et al. Study on mechanism of explosive fragments absorbed by vessel protective tank [J]. Shipbuilding of China, 2015, 56(2): 38–44. DOI: 10.3969/j.issn.1000-4882.2015.02.005. [111] 沈晓乐, 朱锡, 侯海量, 等. 高速破片入水镦粗变形及侵彻特性有限元分析 [J]. 舰船科学技术, 2012, 34(7): 25–29. DOI: 10.3404/j.issn.1672-7649.2012.07.005.SHEN X L, ZHU X, HOU H L, et al. Finite element analysis of underwater high velocity fragment mushrooming and penetration properties [J]. Ship Science and Technology, 2012, 34(7): 25–29. DOI: 10.3404/j.issn.1672-7649.2012.07.005. [112] 孔祥韶, 石干, 王旭阳, 等. 截锥形弹体在液体介质中运动速度衰减规律分析 [J]. 爆炸与冲击, 2021, 41(1): 013301. DOI: 10.11883/bzycj-2020-0075.KONG X S, SHI G, WANG X Y, et al. On velocity attenuation of a truncated cone-shaped projectile vertically penetrating through liquid [J]. Explosion and Shock Waves, 2021, 41(1): 013301. DOI: 10.11883/bzycj-2020-0075. [113] LECYSYN N, BONY-DANDRIEUX A, APRIN L, et al. Experimental study of hydraulic ram effects on a liquid storage tank: analysis of overpressure and cavitation induced by a high-speed projectile [J]. Journal of Hazardous Materials, 2010, 178(1): 635–643. DOI: 10.1016/j.jhazmat.2010.01.132. [114] LEE M, LONGORIA R G, WILSON D E. Cavity dynamics in high-speed water entry [J]. Physics of Fluids, 1997, 9(3): 540–550. DOI: 10.1063/1.869472. [115] ZHAO B L, ZHAO J G, CUI C Y, et al. Growth model of cavity generated by the projectile impacting liquid-filled tank [J]. Defence Technology, 2020, 16(3): 609–616. DOI: 10.1016/j.dt.2019.09.013. [116] TRUSCOTT T T, EPPS B P, BELDEN J. Water entry of projectiles [J]. Annual Review of Fluid Mechanics, 2014, 46: 355–378. DOI: 10.1146/annurev-fluid-011212-140753. [117] HELD M. Verification of the equation for radial crater growth by shaped charge jet penetration [J]. International Journal of Impact Engineering, 1995, 17(1): 387–398. DOI: 10.1016/0734-743X(95)99864-N. [118] LEE M, LONGORIA R G, WILSON D E. Ballistic waves in high-speed water entry [J]. Journal of Fluids and Structures, 1997, 11(7): 819–844. DOI: 10.1006/jfls.1997.0103. [119] LIU T, CHEN C H, CHENG Y S. A new analytical model for ballistic waves generated by subsonic penetration in water [J]. Ocean Engineering, 2022, 264: 112472. DOI: 10.1016/j.oceaneng.2022.112472. [120] GUO Z T, CHEN T, ZHANG W, et al. Cavity dynamics in hydrodynamic ram analysis of confined containers under ballistic impacts [J]. Ocean Engineering, 2020, 218: 108036. DOI: 10.1016/j.oceaneng.2020.108036. [121] GUO Z T, CHEN T, ZHAO G, et al. Hydrodynamic ram analysis in high-speed projectile penetrating into water-filled vessels [J]. Ocean Engineering, 2022, 251: 111092. DOI: 10.1016/j.oceaneng.2022.111092. [122] 徐双喜, 吴卫国, 李晓彬, 等. 舰船舷侧防护液舱舱壁对爆炸破片的防御作用 [J]. 爆炸与冲击, 2010, 30(4): 395–400. DOI: 10.11883/1001-1455(2010)04-0395-06.XU S X, WU W G, LI X B, et al. Protective effect of guarding fluid cabin bulkhead under attacking by explosion fragments [J]. Explosion and Shock Waves, 2010, 30(4): 395–400. DOI: 10.11883/1001-1455(2010)04-0395-06. [123] 陈长海, 侯海量, 张元豪, 等. 中厚背水金属靶板抗钝头弹高速侵彻机制分析 [J]. 上海交通大学学报, 2017, 51(12): 1428–1434. DOI: 10.16183/j.cnki.jsjtu.2017.12.004.CHEN C H, HOU H L, ZHANG Y H, et al. Research on the mechanism of moderately thick water-backed metal plates penetrated by high-velocity blunt-nosed projectiles [J]. Journal of Shanghai Jiaotong University, 2017, 51(12): 1428–1434. DOI: 10.16183/j.cnki.jsjtu.2017.12.004. [124] 陈长海, 侯海量, 张元豪, 等. 钝头弹高速斜侵彻中厚背水金属靶板的机理研究 [J]. 工程力学, 2017, 34(11): 240–248. DOI: 10.6052/j.issn.1000-4750.2016.07.0559.CHEN C H, HOU H L, ZHANG Y H, et al. Mechanisms of moderately thick water-backed metal plates obliquely penetrated by high-velocity blunt-nosed projectiles [J]. Engineering Mechanics, 2017, 34(11): 240–248. DOI: 10.6052/j.issn.1000-4750.2016.07.0559. [125] 张玮, 张小强, 陈子豪, 等. 弹体侵彻作用下液舱舱壁压力载荷的试验研究 [J]. 中国科学: 物理学 力学 天文学, 2021, 51(12): 124613. DOI: 10.1360/SSPMA-2020-0363.ZHANG W, ZHANG X Q, CHEN Z H, et al. Experimental study on pressure load of tank bulkhead under penetration of projectile [J]. Scientia Sinica Physica: Mechanica & Astronomica, 2021, 51(12): 124613. DOI: 10.1360/SSPMA-2020-0363. [126] 李典, 侯海量, 朱锡, 等. 高速杆式弹侵彻下蓄液结构耗能机理数值分析 [J]. 海军工程大学学报, 2018, 30(2): 60–65. DOI: 10.7495/j.issn.1009-3486.2018.02.012.LI D, HOU H L, ZHU X, et al. Numerical analysis of energy dissipation mechanism of liquid-filled structure subjected to high velocity rod projectile penetration [J]. Journal of Naval University of Engineering, 2018, 30(2): 60–65. DOI: 10.7495/j.issn.1009-3486.2018.02.012. [127] 孔祥韶, 吴卫国, 刘芳, 等. 舰船舷侧防护液舱对爆炸破片的防御作用研究 [J]. 船舶力学, 2014, 18(8): 996–1004. DOI: 10.3969/j.issn.1007-7294.2014.08.015.KONG X S, WU W G, LIU F, et al. Research on protective effect of guarding fluid cabin under attacking by explosion fragments [J]. Journal of Ship Mechanics, 2014, 18(8): 996–1004. DOI: 10.3969/j.issn.1007-7294.2014.08.015. [128] 王卓, 张朴, 孔祥韶, 等. 高速弹体穿透铝合金靶板液舱速度衰减特性研究 [J]. 中国造船, 2022, 63(1): 65–76. DOI: 10.3969/j.issn.1000-4882.2022.01.006.WANG Z, ZHANG P, KONG X S, et al. Research on velocity decay of projectiles aluminum alloy target penetrating liquid cabin [J]. Shipbuilding of China, 2022, 63(1): 65–76. DOI: 10.3969/j.issn.1000-4882.2022.01.006. [129] DELETOMBE E, FABIS J, DUPAS J, et al. Experimental analysis of 7.62 mm hydrodynamic ram in containers [J]. Journal of Fluids and Structures, 2013, 37: 1–21. DOI: 10.1016/j.jfluidstructs.2012.11.003. [130] DISIMILE P J, TOY N. Liquid spurt caused by hydrodynamic ram [J]. International Journal of Impact Engineering, 2015, 75: 65–74. DOI: 10.1016/j.ijimpeng.2014.08.001. [131] 陈安然, 李向东, 周兰伟, 等. 液压水锤效应引起液体喷溅特性及其影响因素试验研究 [J]. 国防科技大学学报, 2021, 43(5): 144–152. DOI: 10.11887/j.cn.202105017.CHEN A R, LI X D, ZHOU L W, et al. Experimental study on the characteristics and influencing factors of liquid spurt caused by hydrodynamic ram [J]. Journal of National University of Defense Technology, 2021, 43(5): 144–152. DOI: 10.11887/j.cn.202105017. [132] CHEN A R, LI X D, ZHOU L W, et al. Study of liquid spurt caused by hydrodynamic ram in liquid-filled container [J]. International Journal of Impact Engineering, 2020, 144: 103658. DOI: 10.1016/j.ijimpeng.2020.103658. [133] 高圣智, 侯海量, 白雪飞, 等. 高速弹体侵彻下充液结构的破坏特性及防护技术研究进展 [J]. 舰船科学技术, 2021, 43(1): 1–10. DOI: 10.3404/j.issn.1672-7649.2021.01.001.GAO S Z, HOU H L, BAI X F, et al. Reviews of study on damage characteristics and protection technologies of liquid-filled structures subjected to the penetration of high-speed projectiles [J]. Ship Science and Technology, 2021, 43(1): 1–10. DOI: 10.3404/j.issn.1672-7649.2021.01.001. [134] WANG H F, XIE J W, GE C, et al. Experimental investigation on enhanced damage to fuel tanks by reactive projectiles impact [J]. Defence Technology, 2021, 17(2): 599–608. DOI: 10.1016/j.dt.2020.03.017. [135] 李茂, 侯海量, 朱锡, 等. 模拟破片杀伤战斗部空爆冲击波与高速破片群联合作用的等效试验方法 [J]. 振动与冲击, 2020, 39(1): 184–190. DOI: 10.13465/j.cnki.jvs.2020.01.025.LI M, HOU H L, ZHU X, et al. Equivalent test method to simulate combined damage action of air blast shock wave and high speed fragment group of fragment killing warhead [J]. Journal of Vibration and Shock, 2020, 39(1): 184–190. DOI: 10.13465/j.cnki.jvs.2020.01.025. [136] 陈长海, 侯海量, 李万, 等. 破片式战斗部空中爆炸下冲击波与破片先后作用的临界爆距研究 [J]. 海军工程大学学报, 2018, 30(2): 18–23. DOI: 10.7495/j.issn.1009-3486.2018.02.004.CHEN C H, HOU H L, LI W, et al. Critical stand-off distances of action order for air-blast waves and fragments by fragmentation warheads exploding in air [J]. Journal of Naval University of Engineering, 2018, 30(2): 18–23. DOI: 10.7495/j.issn.1009-3486.2018.02.004. [137] LI D, HOU H L, CHEN C H, et al. Experimental study on the combined damage of multi-layered composite structures subjected to close-range explosion of simulated warheads [J]. International Journal of Impact Engineering, 2018, 114: 133–146. DOI: 10.1016/j.ijimpeng.2017.12.007. [138] LYU X J, WANG X, YUN H L, et al. On water-entry modes of the latter sphere in tandem configuration with two spheres [J]. Journal of Fluids and Structures, 2022, 112: 103601. DOI: 10.1016/j.jfluidstructs.2022.103601. [139] WANG X, LYU X J. Experimental study on vertical water entry of twin spheres side-by-side [J]. Ocean Engineering, 2021, 221: 108508. DOI: 10.1016/j.oceaneng.2020.108508. [140] YANG C X, WANG X, LI H, et al. Numerical study on the fluid dynamics for tandem water entries of two cylinders [J]. Ocean Engineering, 2023, 286: 115633. DOI: 10.1016/j.oceaneng.2023.115633. [141] YUN H L, LYU X J, WEI Z Y. Experimental study on oblique water entry of two tandem spheres with collision effect [J]. Journal of Visualization, 2020, 23(1): 49–59. DOI: 10.1007/s12650-019-00602-4. [142] YUN H L, LYU X J, WEI Z Y. Experimental study on vertical water entry of two tandem spheres [J]. Ocean Engineering, 2020, 201: 107143. DOI: 10.1016/j.oceaneng.2020.107143. [143] RABBI R, SPEIRS N B, KIYAMA A, et al. Impact force reduction by consecutive water entry of spheres [J]. Journal of Fluid Mechanics, 2021, 915: A55. DOI: 10.1017/jfm.2020.1165. [144] 宋武超, 魏英杰, 路丽睿, 等. 基于势流理论的回转体并联入水双空泡演化动力学研究 [J]. 物理学报, 2018, 67(22): 224702. DOI: 10.7498/aps.67.20181375.SONG W C, WEI Y J, LU L R, et al. Dynamic characteristics of parallel water-entry cavity based on potential flow theory [J]. Acta Physica Sinica, 2018, 67(22): 224702. DOI: 10.7498/aps.67.20181375. [145] JIN J, HOU H L, CHEN P Y, et al. Experimental study on the combined damage of liquid cabin structure subjected to charge explosion with preset fragments [J]. International Journal of Impact Engineering, 2019, 130: 19–26. DOI: 10.1016/j.ijimpeng.2019.04.001. [146] KONG X S, WU W G, LI J, et al. Experimental and numerical investigation on a multi-layer protective structure under the synergistic effect of blast and fragment loadings [J]. International Journal of Impact Engineering, 2014, 65: 146–162. DOI: 10.1016/j.ijimpeng.2013.11.009. [147] 孔祥韶, 王旭阳, 徐敬博, 等. 复合防护液舱抗爆效能对比试验研究 [J]. 兵工学报, 2018, 39(12): 2438–2449. DOI: 10.3969/j.issn.1000-1093.2018.12.018.KONG X S, WANG X Y, XU J B, et al. Comparative experimental study of anti-explosion performance of compound protective liquid cabin [J]. Acta Armamentarii, 2018, 39(12): 2438–2449. DOI: 10.3969/j.issn.1000-1093.2018.12.018. [148] QIAN L, QU M, FENG G. Study on terminal effects of dense fragment cluster impact on armor plate. part Ⅰ: analytical model [J]. International Journal of Impact Engineering, 2005, 31(6): 755–767. DOI: 10.1016/j.ijimpeng.2004.03.014. [149] QIAN L, QU M. Study on terminal effects of dense fragment cluster impact on armor plate. part Ⅱ: numerical simulations [J]. International Journal of Impact Engineering, 2005, 31(6): 769–780. DOI: 10.1016/j.ijimpeng.2004.03.015. [150] JI Y Z Y, LI X D, ZHOU L W, et al. Comparison of the hydrodynamic ram caused by one and two projectiles impacting water-filled containers [J]. International Journal of Impact Engineering, 2020, 137: 103467. DOI: 10.1016/j.ijimpeng.2019.103467. [151] JI Y Z Y, LI X D, ZHOU L W, et al. Experimental and numerical study on the cumulative damage of water-filled containers impacted by two projectiles [J]. Thin-Walled Structures, 2019, 135: 45–64. DOI: 10.1016/j.tws.2018.10.043. [152] 李茂, 高圣智, 侯海量, 等. 圆柱形装药驱动轴向预制破片飞散特性 [J]. 国防科技大学学报, 2021, 43(2): 141–147. DOI: 10.11887/j.cn.202102019.LI M, GAO S Z, HOU H L, et al. Projection characteristics of axial prefabricated fragments driven by cylindrical charge [J]. Journal of National University of Defense Technology, 2021, 43(2): 141–147. DOI: 10.11887/j.cn.202102019. [153] 王旭阳. 战斗部近距离爆炸载荷对液舱的毁伤效应研究 [D]. 武汉: 武汉理工大学, 2019. [154] 郑红伟, 陈长海, 侯海量, 等. 爆炸冲击波和高速破片载荷的复合作用特性及判据研究 [J]. 振动与冲击, 2019, 38(3): 24–31, 38. DOI: 10.13465/j.cnki.jvs.2019.03.004.ZHENG H W, CHEN C H, HOU H L, et al. Multiple impact features of blast shock waves and high-velocity fragments on clamped square plates and a criterion to judge if multiple impact happens [J]. Journal of Vibration and Shock, 2019, 38(3): 24–31, 38. DOI: 10.13465/j.cnki.jvs.2019.03.004. [155] WU G, WANG X, JI C, et al. Experimental and numerical simulation study on polyurea-coated fuel tank subjected to combined action of blast shock waves and fragments [J]. Thin-Walled Structures, 2021, 169: 108436. DOI: 10.1016/j.tws.2021.108436. [156] YU R P, ZHANG Q C, WEI Z H, et al. Dynamic response of fully-clamped steel plate under laboratory-simulated sequential fragment impact and blast loading [J]. Thin-Walled Structures, 2023, 182: 110144. DOI: 10.1016/j.tws.2022.110144. [157] 张琳, 张涛, 刘土光, 等. 撞击载荷下充液双层结构响应特性的试验研究 [J]. 爆炸与冲击, 2020, 40(3): 033303. DOI: 10.11883/bzycj-2019-0094.ZHANG L, ZHANG T, LIU T G, et al. Experimental study on response characteristics of the water-filled double-layer structure under collision load [J]. Explosion and Shock Waves, 2020, 40(3): 033303. DOI: 10.11883/bzycj-2019-0094. [158] LI Y, ZHANG L, XIAO D B, et al. Experiment and numerical study on dynamic response of liquid cabin under internal blast loading [J]. Thin-Walled Structures, 2019, 145: 106405. DOI: 10.1016/j.tws.2019.106405. [159] CHEN L, ZHANG L, FANG Q, et al. Performance based investigation on the construction of anti-blast water wall [J]. International Journal of Impact Engineering, 2015, 81: 17–33. DOI: 10.1016/j.ijimpeng.2015.03.003. [160] CHEN L, FANG Q, ZHANG L, et al. Numerical investigation of a water barrier against blast loadings [J]. Engineering Structures, 2016, 111: 199–216. DOI: 10.1016/j.engstruct.2015.12.015. [161] BORNSTEIN H, RYAN S, MOURITZ A. Physical mechanisms for near-field blast mitigation with fluid containers: effect of container geometry [J]. International Journal of Impact Engineering, 2016, 96: 61–77. DOI: 10.1016/j.ijimpeng.2016.04.015. [162] BORNSTEIN H, PHILLIPS P, ANDERSON C. Evaluation of the blast mitigating effects of fluid containers [J]. International Journal of Impact Engineering, 2015, 75: 222–228. DOI: 10.1016/j.ijimpeng.2014.08.014. [163] WANG Y, LEE S C. Experimental study of water tank under impulsive loading [J]. Archives of Civil and Mechanical Engineering, 2015, 15(4): 986–996. DOI: 10.1016/j.acme.2014.09.006. [164] ZHANG Y H, WU X D, LU G Y, et al. Experimental and numerical studies on dynamic responses of liquid-filled hemispherical shell under axial impact [J]. Thin-Walled Structures, 2018, 131: 606–618. DOI: 10.1016/j.tws.2018.07.003. [165] CHENG L Y, JI C, GAO F Y, et al. Deformation and damage of liquid-filled cylindrical shell composite structures subjected to repeated explosion loads: experimental and numerical study [J]. Composite Structures, 2019, 220: 386–401. DOI: 10.1016/j.compstruct.2019.03.083. [166] JAMALI A, JALILI S. Experimental and numerical study on water-filled doubly layered cylindrical shells subjected to lateral impact [J]. Ocean Engineering, 2023, 279: 114617. DOI: 10.1016/j.oceaneng.2023.114617. [167] ZHOU Y, WANG T, ZHU W, et al. Evaluation of blast mitigation effects of hollow cylindrical barriers based on water and foam [J]. Composite Structures, 2022, 282: 115016. DOI: 10.1016/j.compstruct.2021.115016. [168] 李思宇, 李晓彬, 赵鹏铎, 等. 近爆载荷作用下液舱的吸能研究 [J]. 中国舰船研究, 2017, 12(1): 101–106, 133. DOI: 10.3969/j.issn.1673-3185.2017.01.015.LI S Y, LI X B, ZHAO P D, et al. Research into energy absorption of liquid cabin subjected to close-range explosion [J]. Chinese Journal of Ship Research, 2017, 12(1): 101–106, 133. DOI: 10.3969/j.issn.1673-3185.2017.01.015. [169] BORNSTEIN H, RYAN S, MOURITZ A P. Blast mitigation with fluid Containers: effect of mitigant type [J]. International Journal of Impact Engineering, 2018, 113: 106–117. DOI: 10.1016/j.ijimpeng.2017.11.012. [170] BARAGETTI S, ARCIERI E V. Study of impact phenomena for the design of a mobile anti-terror barrier: experiments and finite element analyses [J]. Engineering Failure Analysis, 2020, 113: 104564. DOI: 10.1016/j.engfailanal.2020.104564. [171] JENSON S, ALI M, NAIK B, et al. Experimental, analytical, and numerical investigation of multi-chambered fluid-filled barrier for highway crash attenuators [J]. International Journal of Impact Engineering, 2021, 156: 103964. DOI: 10.1016/j.ijimpeng.2021.103964. [172] WOLFSON J C. Blast damage mitigation of steel structures from near-contact charges [D]. California: University of California, 2008. [173] SUGIYAMA Y, HOMAE T, WAKABAYASHI K, et al. Numerical study on the mitigation effect of water in the immediate vicinity of a high explosive on the blast wave [J]. International Journal of Multiphase Flow, 2018, 99: 467–473. DOI: 10.1016/j.ijmultiphaseflow.2017.11.014. [174] GRUJICIC M, PANDURANGAN B, ZHAO C L, et al. A computational investigation of various water-induced explosion mitigation mechanisms [J]. Multidiscipline Modeling in Materials and Structures, 2007, 3(2): 185–212. DOI: 10.1163/157361107780744405. [175] 李营, 任广为, 张玮, 等. 水介质对舱内爆炸抑制作用的实验研究 [J]. 爆炸与冲击, 2017, 37(6): 1080–1086. DOI: 10.11883/1001-1455(2017)06-1080-07.LI Y, REN G W, ZHANG W, et al. Water mitigation effect under internal blast [J]. Explosion and Shock Waves, 2017, 37(6): 1080–1086. DOI: 10.11883/1001-1455(2017)06-1080-07. [176] ADIGA K C, WILLAUER H D, ANANTH R, et al. Implications of droplet breakup and formation of ultra fine mist in blast mitigation [J]. Fire Safety Journal, 2009, 44(3): 363–369. DOI: 10.1016/j.firesaf.2008.08.003. [177] WANG Y H, ZHOU H Y. Numerical study of water tank under blast loading [J]. Thin-Walled Structures, 2015, 90: 42–48. DOI: 10.1016/j.tws.2015.01.012. [178] 纪冲, 龙源, 刘影, 等. 充液及内空圆柱壳在爆炸荷载下动力屈曲特性研究 [J]. 振动与冲击, 2014, 33(2): 76–80, 88. DOI: 10.3969/j.issn.1000-3835.2014.02.015.JI C, LONG Y, LIU Y, et al. Dynamic buckling of liquid-filled and hallow thin-wall cylindrical shells subjected to explosion loading [J]. Journal of Vibration and Shock, 2014, 33(2): 76–80, 88. DOI: 10.3969/j.issn.1000-3835.2014.02.015. [179] MITTAL V, CHAKRABORTY T, MATSAGAR V. Dynamic analysis of liquid storage tank under blast using coupled Euler Lagrange formulation [J]. Thin-Walled Structures, 2014, 84: 91–111. DOI: 10.1016/j.tws.2014.06.004. [180] 赵著杰, 侯海量, 李典, 等. 部分充液多胞元结构的面内动态力学特性研究 [J]. 爆炸与冲击, 2022, 42(3): 033103. DOI: 10.11883/bzycj-2021-0173.ZHAO Z J, HOU H L, LI D, et al. In-plane dynamic mechanical properties of partially liquid filled multicell structure [J]. Explosion and Shock Waves, 2022, 42(3): 033103. DOI: 10.11883/bzycj-2021-0173. [181] 赵明媚, 张进秋, 彭志召, 等. 剪切增稠液体理论基础和工程应用进展概述 [J]. 材料导报, 2022, 36(9): 20070135. DOI: 10.11896/cldb.20070135.ZHAO M M, ZHANG J Q, PENG Z Z, et al. Theoretical basis and engineering application progress of shear thickening fluid [J]. Materials Reports, 2022, 36(9): 20070135. DOI: 10.11896/cldb.20070135. [182] WEI M H, SUN L, ZHU J. Effects of parameters controlling the impact resistance behavior of the GFRP fabric impregnated with a shear thickening fluid [J]. Materials & Design, 2020, 196: 109078. DOI: 10.1016/j.matdes.2020.109078. [183] FU K K, WANG H J, CHANG L, et al. Low-velocity impact behaviour of a shear thickening fluid (STF) and STF-filled sandwich composite panels [J]. Composites Science and Technology, 2018, 165: 74–83. DOI: 10.1016/j.compscitech.2018.06.013. [184] LAM L, CHEN W S, HAO H, et al. Numerical study of bio-inspired energy-absorbing device using shear thickening fluid (STF) [J]. International Journal of Impact Engineering, 2022, 162: 104158. DOI: 10.1016/j.ijimpeng.2022.104158. [185] LAM L, CHEN W S, HAO H, et al. Dynamic crushing performance of bio-inspired sandwich structures with beetle forewing cores [J]. International Journal of Impact Engineering, 2023, 173: 104456. DOI: 10.1016/j.ijimpeng.2022.104456. [186] RIJENSKY O, RITTEL D. Experimental investigation of polyurea coated aluminum plates under strong hydrodynamic shocks [J]. Thin-Walled Structures, 2020, 154: 106833. DOI: 10.1016/j.tws.2020.106833. [187] RIJENSKY O, RITTEL D. Numerical investigation of polyurea coated aluminum plates under hydrodynamic shocks [J]. Thin-Walled Structures, 2021, 166: 108074. DOI: 10.1016/j.tws.2021.108074. [188] LUO D J, WANG Y W, WANG F C, et al. The influence of metal cover plates on ballistic performance of silicon carbide subjected to large-scale tungsten projectile [J]. Materials & Design, 2020, 191: 108659. DOI: 10.1016/j.matdes.2020.108659. [189] 仲强, 侯海量, 朱锡, 等. 陶瓷/液舱复合结构抗侵彻数值分析 [J]. 爆炸与冲击, 2017, 37(3): 510–519. DOI: 10.11883/1001-1455(2017)03-0510-10.ZHONG Q, HOU H L, ZHU X, et al. Numerical analysis of penetration resistance of ceramic/fluid cabin composite structure [J]. Explosion and Shock Waves, 2017, 37(3): 510–519. DOI: 10.11883/1001-1455(2017)03-0510-10. [190] WANG K, HOU H L, LI D, et al. Study on the penetration characteristics of water entry rod projectile into liquid cabin at an attack angle [J]. Applied Sciences, 2022, 12(20): 10213. DOI: 10.3390/app122010213. [191] 王浩杰, 李晓彬, 赵鹏铎, 等. 倾斜式液舱壁防御爆炸破片侵彻机理研究 [J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(1): 151–154, 160. DOI: 10.3963/j.issn.2095-3844.2021.01.029.WANG H J, LI X B, ZHAO P D, et al. Study on penetration mechanism of tilt tank bulkhead defending explosion fragments [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(1): 151–154, 160. DOI: 10.3963/j.issn.2095-3844.2021.01.029. [192] JIANG A B, LI Y Q, LI D, et al. Deflection effect and mechanism of semi-cylindrical ceramic composite armor for flat-ended rod projectile [J]. Ceramics International, 2022, 48(20): 31023–31040. DOI: 10.1016/j.ceramint.2022.07.064. [193] 姜安邦, 李典, 李永清, 等. 偏转式抗侵彻防护技术研究现状 [J]. 材料导报, 2023, 37(24): 22060150. DOI: 10.11896/cldb.22060150.JIANG A B, LI D, LI Y Q, et al. Research status of deflected anti-penetration protection technology [J]. Materials Reports, 2023, 37(24): 22060150. DOI: 10.11896/cldb.22060150. [194] 王克, 侯海量, 李永清, 等. 攻角对杆状弹体入水侵彻特性影响数值分析 [J]. 舰船科学技术, 2023, 45(13): 6–13. DOI: 10.3404/j.issn.1672-7649.2023.13.002.WANG K, HOU H L, LI Y Q, et al. Numerical analysis of influence of angle of attack on penetration characteristics of long-rod projectile entering water [J]. Ship Science and Technology, 2023, 45(13): 6–13. DOI: 10.3404/j.issn.1672-7649.2023.13.002. [195] 张朴, 王卓, 孔祥韶, 等. 剪切增稠液体液舱侵彻实验 [J]. 爆炸与冲击, 2021, 41(4): 043301. DOI: 10.11883/bzycj-2020-0143.ZHANG P, WANG Z, KONG X S, et al. Experimental study on a cabin filled with shear-thickening fluid penetrated by projectiles [J]. Explosion and Shock Waves, 2021, 41(4): 043301. DOI: 10.11883/bzycj-2020-0143. [196] CHEN C H, LIU T, CHENG Y S. Impact response of flowing-fluid filled square vessels [J]. Ocean Engineering, 2022, 254: 111405. DOI: 10.1016/j.oceaneng.2022.111405. [197] LI L Q, AIRAUDO F N, LÖHNER R. Study of underwater explosion near rigid cylinder column with numerical method [J]. Ocean Engineering, 2023, 270: 113294. DOI: 10.1016/j.oceaneng.2022.113294. [198] DISIMILE P J, DAVIS J, TOY N. Mitigation of shock waves within a liquid filled tank [J]. International Journal of Impact Engineering, 2011, 38(2/3): 61–72. DOI: 10.1016/j.ijimpeng.2010.10.006. [199] ARTERO-GUERRERO J A, VARAS D, PERNAS-SÁNCHEZ J, et al. Experimental analysis of an attenuation method for Hydrodynamic Ram effects [J]. Materials & Design, 2018, 155: 451–462. DOI: 10.1016/j.matdes.2018.06.020. [200] XU S X, ZHANG W W, CAI Y, et al. Study on anti-penetration performance of Kevlar reinforced honeycomb liquid-filled cabin on warship: experimental verification and numerical analysis [J]. Ocean Engineering, 2023, 283: 114959. DOI: 10.1016/j.oceaneng.2023.114959. [201] 张宇, 王彬文, 刘小川, 等. 充液格栅结构抗射弹冲击数值模拟研究 [J]. 科学技术与工程, 2020, 20(19): 7689–7695.ZHANG Y, WANG B W, LIU X C, et al. Numerical simulation of projectile impact of liquid-filled grid structures [J]. Science Technology and Engineering, 2020, 20(19): 7689–7695. [202] TOWNSEND D, PARK N, DEVALL P M. Failure of fluid dilled structures due to high velocity fragment impact [J]. International Journal of Impact Engineering, 2003, 29(1): 723–733. DOI: 10.1016/j.ijimpeng.2003.10.019. [203] 李营, 张磊, 杜志鹏, 等. 夹芯强度对新型液舱防护效能的影响 [J]. 船舶力学, 2019, 23(1): 58–67. DOI: 10.3969/j.issn.1007-7294.2019.01.007.LI Y, ZHANG L, DU Z P, et al. Influence of core strength on protection efficiency for new safety liquid cabin [J]. Journal of Ship Mechanics, 2019, 23(1): 58–67. DOI: 10.3969/j.issn.1007-7294.2019.01.007. [204] GUO Z T, CHEN T, MU Z C, et al. An investigation into container constraint effects on the cavity characteristics due to high-speed projectile water entry [J]. Ocean Engineering, 2020, 210: 107449. DOI: 10.1016/j.oceaneng.2020.107449. [205] 高圣智, 赵著杰, 侯海量, 等. 胞元膨胀特性及其对水锤效应的影响数值分析(英文) [J]. 船舶力学, 2023, 27(12): 1840–1855. DOI: 10.3969/j.issn.1007-7294.2023.12.008.GAO S Z, ZHAO Z J, HOU H L, et al. Expansion characteristics of liquid-filled cell on hydrodynamic ram effect subject to the impact of high-speed projectile [J]. Journal of Ship Mechanics, 2023, 27(12): 1840–1855. DOI: 10.3969/j.issn.1007-7294.2023.12.008. [206] 金键, 侯海量, 吴梵, 等. 战斗部近炸下防护液舱破坏机理分析 [J]. 国防科技大学学报, 2019, 41(2): 163–169. DOI: 10.11887/j.cn.201902024.JIN J, HOU H L, WU F, et al. Analysis of failure mechanism on protective liquid cabin under warhead close explosion [J]. Journal of National University of Defense Technology, 2019, 41(2): 163–169. DOI: 10.11887/j.cn.201902024. [207] JIN J, LI D, HOU H L, et al. Attenuation effect of a preset bubble on hydrodynamic ram induced by fragments impacting fluid-filled tank [J]. Thin-Walled Structures, 2023, 192: 111085. DOI: 10.1016/j.tws.2023.111085. [208] ZHOU Y, XIE Y C, PAN T, et al. Flexible materials and structures for mitigating combined blast and fragment loadings–a review [J]. International Journal of Impact Engineering, 2023, 181: 104759. DOI: 10.1016/j.ijimpeng.2023.104759. 期刊类型引用(4)
1. 宋俊柏,刘振皓,吴振强,刘武刚,王龙,邢睿思. 隔热瓦组件低速撞击损伤特性及仿真研究. 航天器环境工程. 2025(01): 39-45 . 百度学术
2. 刘慕皓,张先锋,谈梦婷,包阔,韩国庆,李逸,孙伟境. 考虑微结构特征的陶瓷材料含损伤本构模型. 爆炸与冲击. 2024(01): 62-78 . 本站查看
3. 周若璞,曾治鑫,张雄. 超高速碰撞下相变效应的交错网格物质点法研究. 计算力学学报. 2024(01): 81-90 . 百度学术
4. 曹进,陈春林,马坤,高鹏飞,田洪畅,冯娜,钱秉文. 球形含能结构材料弹体超高速撞击多层薄钢靶的毁伤特性. 含能材料. 2023(08): 786-796 . 百度学术
其他类型引用(2)
-