A review of the dynamic response and protection mechanism of liquid filled structures under impact loads
-
摘要: 工程实际中,飞机油箱、船舶液舱、油液储罐等各类蓄液结构可能面临炸药爆炸冲击波、弹丸侵彻等冲击载荷的威胁。在冲击载荷作用下,蓄液结构的动响应受载荷特性、结构形式、充液方式等多种因素影响,相应的结构防护机理涉及多相介质的流固耦合、波在不同介质中的传播、液体介质的空化、结构动态力学特性等多个科学问题。针对冲击载荷下蓄液结构的动响应及防护机理,总结了工程领域中典型的蓄液结构形式,分析了各类蓄液结构在爆炸冲击波、弹体侵彻及其联合作用等载荷下的结构动响应过程、结构破坏模式、载荷耗散过程、能量转化与吸收过程,总结了蓄液结构的冲击动响应特性,归纳了蓄液结构对各类冲击载荷的防护机理,从结构构型、结构动响应、理论研究方法、抗冲击防护技术等方面对蓄液结构抗冲击防护研究进行了展望。Abstract: Aircraft fuel tanks, marine liquid tanks, oil liquid storage tanks, and other types of liquid filled structures may be threatened by blast waves, projectile penetration, and other impact loads in engineering practice. The dynamic response of the liquid filled structure under impact load is affected by various factors such as the characteristics of the load, the configuration of the structure, and the way of liquid filling. Accordingly, the protection mechanism of the liquid filled structure against various types of shock loads involves the fluid-solid interaction of multiphase media, wave propagation in different media, cavitation of liquid media, dynamic mechanical properties of the structure, and several other scientific issues. In this paper, the dynamic response and protection mechanism of the liquid filled structures under different impact loads are reviewed, the typical forms of the liquid filled structures in engineering are summarized, and the dynamic response processes, damage modes, load dissipation processes, energy conversion and absorption processes of various types of the liquid filled structures under the loads of blast shock wave, projectile penetration and their combined effects are analyzed. Furthermore, the impact dynamic response characteristics of the liquid filled structures under the action of blast shock wave loading, projectile penetration loading, and the combined loads of blast shock wave and high-speed fragmentation group are summarized. The protection mechanisms of the liquid filled structures against various types of impact loads are summarized from the perspectives of attenuating and dissipating loads, as well as the energy transformation and conversion. In the end, the prospects of the investigation on anti-impact characteristics of the liquid filled structures are described from the aspects of dynamic response and protection characteristics of the multi-cell liquid filled structures, mechanisms for destruction of the liquid filled structures by combined loads, efficient numerical computation methods, as well as the dynamic response and protection mechanism of the liquid filled structures made of new materials.
-
随着航天事业的发展,将会有越来越多的卫星等航天器在轨运行,这些卫星的运行区域大都在空间碎片密集区域,受空间碎片撞击损伤的威胁很高。载人航天器的运行轨道也处于空间碎片密集区域,而空间碎片撞击将直接影响到航天员的安全,决定载人航天任务的成败。为了保障在轨的安全,航天器必须具备一定的防护能力。目前,在航天器空间碎片防护结构上采用了Whipple防护结构、多层冲击防护结构、网格双防护屏结构及填充防护结构等[1-4],这些防护结构普遍采用了高性能纤维材料,如Nextel、Kevlar,且Nextel/Kevlar填充防护结构几乎覆盖了国际空间站的全部高风险区域。尽管对玄武岩及Kevlar纤维布填充防护结构超高速撞击损伤和防护性能已进行了大量研究,但是由于实验中填充材料及填充层的面密度各不相同,且实验条件不统一,因此所得结论也大相径庭[5-7]。同时,实验中所采用的弹丸直径过于单一,没有准确地给出玄武岩/Kevlar纤维布填充防护结构相对于Nextel/Kevlar填充防护结构及三层铝防护结构的防护性能的优劣。此外,现有文献中仅对玄武岩/Kevlar纤维布填充防护结构的损伤有一些零星的报道,并没有给出造成其不同损伤形貌的具体原因[6]。
本文中,针对玄武岩/Kevlar纤维布填充防护结构进行不同直径弹丸的超高速撞击实验,拟合撞击极限曲线,并与Nextel/Kevlar填充防护结构及三层铝防护结构的撞击极限曲线进行对比,分析玄武岩/Kevlar纤维布填充防护结构的防护性能;研究防护屏、填充层及舱壁的损伤形式,分析造成防护屏、填充层与舱壁不同损伤形貌的原因,探索玄武岩/Kevlar纤维布填充防护结构的防护机理。
1. 实验方案及结果
超高速撞击实验采用二级轻气炮发射装置,其中二级轻气炮一级高压泵管口径为57 mm,二级发射管口径为10 mm。一级驱动气体为氮气,二级驱动气体为氢气。速度测量采用磁感应方法,测量精度高于2%。
玄武岩/Kevlar纤维布填充防护结构形式如图 1所示,第1层防护屏为1 mm厚的6061-T6铝合金板,填充层由3层玄武岩纤维布和3层Kevlar纤维布组成,相对于弹丸撞击方向而言,玄武岩纤维布在前,Kevlar纤维布在后,填充层的面密度为0.168 g/cm2,舱壁为2.5 mm厚的5A06铝合金板,防护结构总的面密度为1.106 g/cm2。防护结构总防护间距(即舱壁前表面到最外层防护屏背面的距离)为100 mm, 填充层位于最外层铝合金防护屏和舱壁中间,即处于总防护间距一半的位置。实验中使用3.97、4.76、6.35和7.94 mm等4种不同直径的2017铝合金弹丸撞击玄武岩/Kevlar纤维布填充防护结构,撞击速度为0.6~5.0 km/s,撞击角为0°。
玄武岩/Kevlar布填充防护结构超高速撞击实验结果见表 1,表中dp、v和Dh分别为弹丸直径、撞击速度和防护屏穿孔直径。实验过程中,玄武岩/Kevlar纤维布填充防护结构防护效果的判定以铝合金舱壁是否穿孔、剥落为评价依据:舱壁无穿孔、无剥落,防护有效;有穿孔、剥落,防护失效。如果舱壁出现微裂纹损伤形式,则认为防护失效。
表 1 玄武岩/Kevlar纤维填充防护结构超高速撞击实验结果Table 1. Results of hypervelocity impact tests for basalt/Kevlar stuffed shields实验
编号dp/mm v/(km·s-1) Dh/mm 舱壁
损伤防护
效果SW-33 7.94 0.650 8.15 鼓包 有效 SW-22 7.94 0.680 8.26 鼓包 有效 SW-32 7.94 0.750 8.42 穿孔 失效 SW-34 7.94 0.868 8.61 穿孔 失效 SW-26 7.94 0.977 8.73 穿孔 失效 SW-24 7.94 1.076 8.41 穿孔 失效 SW-23 7.94 1.097 8.65 穿孔 失效 SW-01 6.35 0.818 6.81 鼓包 有效 SW-02 6.35 0.940 7.74 微裂纹 失效 SW-04 6.35 0.974 7.01 微裂纹 失效 SW-05 6.35 1.112 7.30 微裂纹 失效 SW-03 6.35 1.149 7.09 穿孔 失效 SW-25 6.35 1.259 7.66 穿孔 失效 SW-13 4.76 1.374 6.04 鼓包 有效 SW-12 4.76 1.525 6.06 开裂 失效 SW-11 4.76 1.595 6.06 穿孔 失效 SW-08 3.97 1.211 5.58 鼓包 有效 SW-09 3.97 1.776 5.62 开裂 失效 SW-07 3.97 1.972 5.74 穿孔 失效 SW-06 3.97 2.242 6.05 穿孔 失效 SW-10 6.35 4.438 10.51 穿孔 失效 SW-47 6.35 4.443 10.34 穿孔 失效 SW-49 6.35 4.450 10.55 微裂 失效 SW-48 6.35 4.700 10.63 鼓包 有效 SW-18 4.76 3.205 7.76 穿孔 失效 SW-40 4.76 3.550 7.56 穿孔 失效 SW-19 4.76 3.572 7.51 穿孔 失效 SW-20 4.76 3.572 7.92 双鼓包 有效 SW-45 4.76 3.660 8.05 微鼓包 有效 SW-36 4.76 3.910 8.31 微鼓包 有效 SW-42 3.97 2.660 6.32 穿孔 失效 SW-43 3.97 2.660 6.55 微裂纹 失效 SW-16 3.97 2.809 6.44 穿孔 失效 SW-46 3.97 2.860 6.71 微裂纹 失效 SW-17 3.97 2.907 6.60 微裂纹 失效 SW-15 3.97 3.379 6.90 微鼓包 有效 SW-14 3.97 3.572 7.09 鼓包 有效 2. 分析
2.1 撞击极限特性
撞击极限曲线是基于撞击极限方程得到的描述防护结构的临界弹丸直径dcr与撞击参数、结构参数之间关系的曲线,其是评价防护结构防护性能的重要手段,同样也是航天器防护结构设计的重要依据。由于弹丸超高速撞击填充防护结构,在不同速度区段呈现不同的动力学特性,因此撞击极限方程分为3段函数来表达。填充防护结构撞击极限方程可表示为:
弹道区(v≤vL):
dcr=CLF∗ρk1pvk2cosk3θ 对于Nextel/Kevlar填充防护结构而言,几何模型函数:
F∗=tw(σ/275.8)0.5+cbmb 液化/气化区(v≥vH):
dcr=CH(twρw)k4Sk5(σ/σ0)k6ρk7bρk8pvk9cosk10θ 破碎区(vL<v<vH):
dcr=dcr,vHvH−vvH−vL+dcr,vLv−vLvH−vL 上述方程中:CL、CH、cb、α、k1~k10为撞击极限方程参数; vL、vH为弹道区、破碎区、熔化/气化区3区的临界速度(km/s),分别称为第1速度阈值和第2速度阈值; ρp、ρb、ρw分别为弹丸、防护屏和舱壁密度(g/cm3); S为防护屏间距(cm); σ为舱壁材料极限屈服强度(MPa); tw为舱壁厚度(cm); θ为撞击角(°)。
对于特定材料弹丸超高速撞击某一填充防护结构,当撞击角为0°时,几何模型函数、弹丸密度、防护屏密度、舱壁密度、舱壁厚度及防护间距等参数均为常数,因此,撞击极限方程简化为:弹道区,dcr=C′Lvk2;液化/汽化区,dcr=C′Hvk2;破碎区, dcr=CMvk2; 其中C′L,C′H,CM为待定系数。
对于本文玄武岩/Kevlar纤维布填充防护结构,根据表 1实验结果,拟合得到预测撞击极限方程为:弹道区(v≤2.528 km/s), dcr=0.605v-0.735; 破碎区, dcr=0.16v-0.105。
图 2给出了玄武岩/Kevlar纤维布填充防护结构的预测撞击极限曲线和同等面密度的Nextel/Kevlar填充防护结构的撞击极限曲线[8-9]及三层铝防护屏的撞击极限曲线[10]。由图 2可知,玄武岩/Kevlar纤维布填充防护结构的撞击极限曲线与Nextel/Kevlar填充防护结构和三层铝防护结构的撞击极限曲线整体趋势基本相同。弹道区时,3种防护结构的撞击极限曲线几乎重合,表明在该碰撞速度范围内,在防护结构面密度相等的条件下,3种防护构型的防护性能相当。破碎区时,玄武岩/Kevlar纤维布填充防护结构的撞击极限曲线始终处于最上端,Nextel/Kevlar填充防护结构的撞击极限曲线位于中间,三层铝防护屏的撞击极限曲线则处于最下端。这表明,在防护结构面密度相等的条件下,三层铝防护屏的防护性能最差,玄武岩/Kevlar纤维布填充防护结构的防护性能最好。总体而言,纤维织物填充防护结构的防护性能优于三层铝防护屏的防护性能,玄武岩/Kevlar纤维布填充防护结构的防护性能已经达到了Nextel/Kevlar填充防护结构的防护水平,可以作为一种新的用于空间碎片防护的填充防护结构。
2.2 损伤特性
2.2.1 防护屏穿孔特性
最外层防护屏穿孔损伤形貌如图 3所示,其均为圆形穿孔损伤。当撞击速度较低时,防护屏正面孔口边缘有瓣形突缘(堆积突起);防护屏背面也存在突缘,并有明显的后翘拉伸变形,其为充塞边缘端口。随着撞击速度的升高,处于破碎区段时,防护屏正面瓣形突起产生飞散,并减少;背面孔边缘也产生同正面一样的堆积飞散。其主要原因是弹丸撞击铝合金防护屏,在撞击界面产生巨大的冲击压力,防护屏材料在冲击压缩波的扰动下产生大量能量(热量),发生熔化,体积迅速增大,并在剪切流动的作用下,以很高的速度飞溅出去,未飞溅出去的材料粘附于圆孔周边,形成了防护屏正面的瓣形突缘。撞击速度愈高,剪切流动力愈大,防护屏熔化材料飞溅速度也愈高,使得残留粘附于孔周边的材料减少。撞击速度较低时,防护屏在拉伸波的扰动下产生整体变形,形成鼓包,并由高速弹丸充塞出一块防护屏材料,形成拉伸形突缘断口;随着撞击速度的增加,弹丸贯穿防护屏的速度大于拉伸波扰动防护屏产生整体变形的速度,使得防护屏未产生整体变形(鼓包)前便被充塞出一块,由于应力做功产生大量能量,防护屏材料熔化,熔化材料在剪切力的作用下沿弹丸飞行方向飞溅。
图 4给出了防护屏穿孔直径随撞击速度的变化曲线。弹丸直径一定时,穿孔直径随撞击速度的升高而增大,呈非线性变化。目前,预测穿孔直径的经验公式主要有Maiden[11]、Nysmith[12]、Sawle[13]、Guan[14]等经验公式。由图 4可知,对于直径为3.97 mm的铝球撞击铝合金防护屏,上述穿孔直径方程并不适用于本文实验结果。其中,Swale[13]公式高估了防护屏穿孔直径,Maiden[11]、Nysmith[12]与Guan[14]3个公式则低估了防护屏穿孔直径,且4个方程预测结果与本文实验结果之间误差均大于20%,最大误差超过50%。综上所述,由于实验和预测公式间选用的材料在性能方面存在差异,预测结果也会带来较大的误差,因此,有必要针对本文材料进行超高速撞击特性研究。
2.2.2 填充层损伤特性
弹丸击穿防护屏后,会产生飞散碎片,飞散碎片会对填充层造成不同形式的损伤。图 5(a)表明,当撞击速度处于低速区时,填充层前面的玄武岩纤维面层上有较规则的方孔,方孔四边分别平行于玄武岩纤维布的经纱和纬纱,且纤维断裂面平滑,纱线断口附近没有出现明显的弯曲变形;背面Kevlar面层也产生了穿孔,但其断裂纱线产生了较大的拉伸变形,形成球冠状突起,遮住贯穿孔,孔周边纱线被弹丸推开,形成倒圆锥式凹陷,并伴有少量抽纱。随着撞击速度接近第1速度阈值时,玄武岩纤维面层上出现许多孔,如图 5(b)和(c)所示,其中弹丸主体在填充层上形成一个方形大孔,而小碎片则在周围形成一些小孔,大小沿径向向外逐渐减小。大孔断面纤维整齐光滑,周围小孔断面不一。Kevlar填充层背面为一个方孔,四边也平行于Kevlar面层的经、纬纱,但断口不是很平滑,纱线拉伸变形较大,且有些纱线明显被拉长但没有断裂,产生推移变形,形成倒圆锥式突起,并伴有少量抽纱。
当撞击速度为破碎区时,填充层正面损伤为圆形大孔,周围有许多小孔呈散射分布;玄武岩和Kevlar断裂的纱线向弹丸飞行的反向翻转,断口不整齐,有毛边。填充层背面为近似方形孔,伴有撕裂,断口不整齐,Kevlar纤维布有明显抽纱现象,如图 5(d)所示。
玄武岩布和Kevlar布的细观损伤形态如图 6所示。玄武岩纤维作为一种陶瓷纤维材料,脆性很强,破坏时发生脆性断裂,随着撞击速度的增高,其纤维断裂截面趋于规整;而Kevlar作为一个高分子聚合物,具有较大韧性,随着撞击速度的提高,应变率升高,Kevlar纤维丝强度增高,韧性减小,侧向劈裂和原纤化加剧。此外,Kevlar纤维材料具有较低的玻璃化温度,撞击过程中Kevlar纤维发生明显的热塑性变形。
以上分析表明,玄武岩/Kevlar纤维布填充层通过纤维丝的断裂和拉伸变形吸收弹丸撞击能量。另外,根据文献[5]可知,玄武岩纤维布具有切割、破碎弹丸的能力,使大碎片或弹丸进一步破碎,且不产生新的大碎片,这也正是玄武岩/Kevlar纤维布填充防护结构防护性能优于Nextel/Kevlar填充防护结构和三层铝防护屏的重要原因。
2.2.3 舱壁损伤特性
图 7给出了不同速度区段舱壁的超高速撞击损伤形貌。弹丸撞击速度低于第1速度阈值时,弹丸仅产生塑性变形,以完整的形态撞击舱壁,造成舱壁穿孔或撞击坑损伤;随着撞击速度的提高,弹丸发生少量破碎,造成舱壁贯穿孔或大撞击坑周围形成小撞击坑。随着弹丸撞击速度的继续提高,当其超过第1速度阈值后,舱壁中心区域损伤最严重,并沿着径向向外损伤程度逐渐减轻。
此外,击穿防护屏后,弹丸形成碎片云,并发生熔化或气化,熔化/气化的碎片云具有较高的温度和速度,当撞击到面层纤维丝时,产生较高的冲击压力,并伴有多种冲击现象,包括弹性波、塑性波和流动波。而纤维丝在横波和纵波的作用下发生解体,以短纤维、纤维团或纤维束的形式喷向舱壁,使舱壁损伤区有黑色喷溅物和丝状物,如图 7(c)所示,其中黑色喷溅物为金属铝液化或气化喷射物和填充层纤维丝烧蚀后的喷射物;丝状物为Kevlar纤维丝,其都以束状或团状出现,一般位于黑色喷溅区边界处。随着撞击速度的提高,这些丝状物逐渐被烧蚀碳化,由于碳化粉末仍有较高的温度,其可以造成舱壁正面烧蚀损伤,如图 7(d)所示。
2.3 防护机理
玄武岩/Kevlar纤维布填充防护结构的防护机理如图 8所示,弹丸撞击铝合金防护屏,在撞击界面产生巨大的冲击压力。
如撞击速度较低时,冲击压力不足以使弹丸破碎,弹丸贯穿防护屏,头部产生塑性变形,飞行速度降低,其继续撞击纤维布填充层,纤维面层主要通过玄武岩纤维丝的剪切断裂和Kevlar纤维丝拉伸变形消耗弹丸动能,使弹丸剩余能量造成的舱壁损伤减轻。
如果撞击速度较高,弹丸和防护屏在冲击压缩波扰动下破碎,并使弹丸和防护屏材料产生液化或者气化,形成高温碎片云,高温碎片云撞击纤维布填充层,根据2.2.2和2.2.3节可知,玄武岩纤维丝切割碎片,使碎片进一步细化,Kevlar纤维丝对细化碎片进行拦截。
此外,高温高速碎片云使纤维丝体解,烧蚀并粉末化,在舱壁正面形成较大喷溅区,喷溅区面积较大,使得作用在舱壁单位面积上的能量较小,从而减小了对舱壁的损伤。
综上所述,玄武岩/Kevlar纤维布填充防护结构通过填充层消耗、吸收和分散弹丸或碎片云的能量,以起到更好的防护效果。
3. 结论
(1) 通过超高速撞击实验研究了玄武岩/Kevlar纤维布填充防护结构的撞击极限,与同等面密度的Nextel/Kevlar填充防护结构和三层铝防护屏进行比较,得出玄武岩/Kevlar纤维布填充防护结构的防护性能优于三层铝防护屏的防护性能,且也已经达到Nextel/Kevlar填充防护结构的防护水平,完全可以作为一种新的用于空间碎片防护的填充防护结构。
(2) 研究了防护屏、填充层和舱壁的超高速撞击损伤特性,分析了造成防护屏、填充层与舱壁不同损伤形貌的原因,初步探索了玄武岩/Kevlar填充防护结构的防护机理。玄武岩纤维布破碎弹丸,使弹丸或碎片破碎,同时连同Kevlar纤维布一起消耗、吸收弹丸的撞击能量,使玄武岩/Kevlar纤维布填充防护结构具有和Nextel/Kevlar填充防护结构类似的防护效果,优于三层铝防护屏的防护性能。
下一步工作重点是,进一步扩大超高速撞击实验的速度范围,深入分析撞击极限的弹丸形状效应。
-
表 1 Taylor模型与改进模型的比较
Table 1. Comparison between Taylor’s model and the improved model
模型类型 Taylor模型 针对滞后流的改进模型 流体速度 pkρwcw pkρwcw+1ρwR∫t0pkdt 连续条件 vp = vi − vr vp = vi − vr = vt -
[1] TAY Y Y, FLORES P, LANKARANI H. Crashworthiness analysis of an aircraft fuselage section with an auxiliary fuel tank using a hybrid multibody/plastic hinge approach [J]. International Journal of Crashworthiness, 2020, 25(1): 95–105. DOI: 10.1080/13588265.2018.1524547. [2] KIM D H, KIM S, KIM S W. Numerical analysis of drop impact-induced damage of a composite fuel tank assembly on a helicopter considering liquid sloshing [J]. Composite Structures, 2019, 229: 111438. DOI: 10.1016/j.compstruct.2019.111438. [3] ATKINSON G. Blast damage to storage tanks and steel clad buildings [J]. Process Safety and Environmental Protection, 2011, 89(6): 382–390. DOI: 10.1016/j.psep.2011.06.020. [4] 汤德文, 刘均, 程远胜. 耐压液舱极限承载能力的影响因素分析与匹配设计 [J]. 中国舰船研究, 2023, 18(4): 251–257. DOI: 10.19693/j.issn.1673-3185.02397.TANG D W, LIU J, CHENG Y S. Influencing factors analyses and matching design of ultimate bearing capacity of external pressure tank [J]. Chinese Journal of Ship Research, 2023, 18(4): 251–257. DOI: 10.19693/j.issn.1673-3185.02397. [5] WANG Y H, LIEW J Y R, LEE S C. A novel multi-functional water façade system for energy saving and blast resisting [J]. Materials & Design, 2016, 106: 98–111. DOI: 10.1016/j.matdes.2016.05.126. [6] 赵著杰, 侯海量, 李典, 等. 爆炸载荷下多胞元液舱结构的防护效能研究 [J]. 振动与冲击, 2023, 42(2): 293–302. DOI: 10.13465/j.cnki.jvs.2023.02.035.ZHAO Z J, HOU H L, LI D, et al. Anti-explosive performances of multicell liquid cabin structures [J]. Journal of Vibration and Shock, 2023, 42(2): 293–302. DOI: 10.13465/j.cnki.jvs.2023.02.035. [7] LIU Y J, LI D, HOU H L, et al. Experimental study on anti-penetration mechanism of bolted composite protective structure with limited span under impact of low-velocity projectile [J]. Defence Technology, 2022, 18(6): 995–1005. DOI: 10.1016/j.dt.2021.05.005. [8] WU G, WANG X, JI C, et al. Damage response of polyurea-coated steel plates under combined blast and fragments loading [J]. Journal of Constructional Steel Research, 2022, 190: 107126. DOI: 10.1016/j.jcsr.2021.107126. [9] 管文博, 杨会伟, 胡建星, 等. 落锤冲击作用下充液半球壳的实验和数值分析 [J]. 振动与冲击, 2014, 33(21): 148–154. DOI: 10.13465/j.cnki.jvs.2014.21.025.GUAN W B, YANG H W, HU J X, et al. Numerical simulations for deformations and energy absorption of liquid-filled thin hemispherical shells under a drop hammer impact [J]. Journal of Vibration and Shock, 2014, 33(21): 148–154. DOI: 10.13465/j.cnki.jvs.2014.21.025. [10] 陈焌良, 纪杨子燚, 李向东, 等. 破片撞击充液容器引起的液体喷溅特性研究 [J]. 振动与冲击, 2023, 42(19): 212–220, 239. DOI: 10.13465/j.cnki.jvs.2023.19.028.CHEN J L, JIYANG Z Y, LI X D, et al. Characteristics of liquid splashing caused by fragment impacting a liquid-filled container [J]. Journal of Vibration and Shock, 2023, 42(19): 212–220, 239. DOI: 10.13465/j.cnki.jvs.2023.19.028. [11] ZHENG F, ZHANG M G, SONG J, et al. Analysis on risk of multi-factor disaster and disaster control in oil and gas storage tank [J]. Procedia Engineering, 2018, 211: 1058–1064. DOI: 10.1016/j.proeng.2017.12.110. [12] 吴晓光, 李典, 吴国民, 等. 高速杆式弹侵彻下蓄液结构的防护能力 [J]. 爆炸与冲击, 2018, 38(1): 76–84. DOI: 10.11883/bzycj-2016-0146.WU X G, LI D, WU G M, et al. Protection ability of liquid-filled structure subjected to penetration by high-velocity long-rod projectile [J]. Explosion and Shock Waves, 2018, 38(1): 76–84. DOI: 10.11883/bzycj-2016-0146. [13] ZOU D L, HAO Y F, WU H, et al. Safety assessment of large-scale all steel LNG storage tanks under wind-borne missile impact [J]. Thin-Walled Structures, 2022, 174: 109078. DOI: 10.1016/j.tws.2022.109078. [14] 柴崧淋, 侯海量, 金键, 等. 水下接触爆炸下舷侧防雷舱吸能结构形式试验研究 [J]. 兵工学报, 2022, 43(6): 1395–1406. DOI: 10.12382/bgxb.2021.0328.CHAI S L, HOU H L, JIN J, et al. Experimental study on the energy-absorbing structure of broadside defense cabin subjected to underwater contact explosion [J]. Acta Armamentarii, 2022, 43(6): 1395–1406. DOI: 10.12382/bgxb.2021.0328. [15] WANG Y H, XIONG M X. Analysis of axially restrained water storage tank under blast loading [J]. International Journal of Impact Engineering, 2015, 86: 167–178. DOI: 10.1016/j.ijimpeng.2015.07.012. [16] THIYAHUDDIN M I, GU Y T, THAMBIRATNAM D P, et al. Impact and energy absorption of portable water-filled road safety barrier system fitted with foam [J]. International Journal of Impact Engineering, 2014, 72: 26–39. DOI: 10.1016/j.ijimpeng.2014.04.008. [17] LA FAUCI G, PARISI M, NANNI A, et al. Design and proof-of-concept of an advanced protective system for the dissipation of tangential impact energy in helmets, based on non-Newtonian fluids [J]. Smart Materials and Structures, 2023, 32(4): 044004. DOI: 10.1088/1361-665X/acc148. [18] CHEN Y, HUANG W, CONSTANTINI S. Blast shock wave mitigation using the hydraulic energy redirection and release technology [J]. PLoS One, 2012, 7(6): e39353. DOI: 10.1371/journal.pone.0039353. [19] YANG L, WANG T, BIAN X B, et al. Evaluation of blast mitigation performance of cylindrical explosion containment vessels based on water containers [J]. International Journal of Impact Engineering, 2023, 181: 104729. DOI: 10.1016/j.ijimpeng.2023.104729. [20] 邱日祥, 胡志昂. 反恐防爆水墙——一种新型的防爆隔爆装备 [J]. 警察技术, 2013(3): 70–72. DOI: 10.3969/j.issn.1009-9875.2013.03.019.QIU R X, HU Z A. Anti-terrorism explosion-proof water wall: a new type of explosion-proof equipment [J]. Police Technology, 2013(3): 70–72. DOI: 10.3969/j.issn.1009-9875.2013.03.019. [21] 侯海量, 王克, 柴崧淋, 等. 水下接触爆炸下夹芯式防雷舱抗爆效能研究 [J]. 船舶力学, 2023, 27(10): 1550–1561. DOI: 10.3969/j.issn.1007-7294.2023.10.012.HOU H L, WANG K, CHAI S L, et al. Anti-knock efficiency of sandwich defensive structures subjected to underwater contact explosion [J]. Journal of Ship Mechanics, 2023, 27(10): 1550–1561. DOI: 10.3969/j.issn.1007-7294.2023.10.012. [22] 陈娟, 吴国民. 船底双层板架结构水下近场爆炸试验 [J]. 中国舰船研究, 2019, 14(S1): 143–150. DOI: 10.19693/j.issn.1673-3185.01571.CHEN J, WU G M. Underwater near-field explosion experiment of double-wall bottom grillage [J]. Chinese Journal of Ship Research, 2019, 14(S1): 143–150. DOI: 10.19693/j.issn.1673-3185.01571. [23] 陈思佑, 姚颖康, 谢先启, 等. 钢混立柱爆破个别飞散物运动特性与水袋防护效果 [J]. 工程爆破, 2023, 29(4): 94–100, 113. DOI: 10.19931/j.EB.20220422.CHEN S Y, YAO Y K, XIE X Q, et al. Motion characteristics of individual blasting flying rock and protective effect of water bag in reinforced concrete column blasting [J]. Engineering Blasting, 2023, 29(4): 94–100, 113. DOI: 10.19931/j.EB.20220422. [24] 金键, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述 [J]. 爆炸与冲击, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.JIN J, ZHU X, HOU H L, et al. Review on the damage and protection of large naval warships subjected to underwater contact explosions [J]. Explosion and Shock Waves, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105. [25] 刘小川, 张宇. 作战飞机关键结构易损性评估方法研究进展与展望 [J]. 航空科学技术, 2021, 32(12): 43–56. DOI: 10.19452/j.issn1007-5453.2021.12.005.LIU X C, ZHANG Y. Research progress and prospects of vulnerability assessment methods for key structures of combat aircraft [J]. Aeronautical Science and Technology, 2021, 32(12): 43–56. DOI: 10.19452/j.issn1007-5453.2021.12.005. [26] PANCIROLI R. Water entry of flexible wedges: some issues on the FSI phenomena [J]. Applied Ocean Research, 2013, 39: 72–74. DOI: 10.1016/j.apor.2012.10.010. [27] POPLAVSKI S V, MINAKOV A V, SHEBELEVA A A, et al. On the interaction of water droplet with a shock wave: experiment and numerical simulation [J]. International Journal of Multiphase Flow, 2020, 127: 103273. DOI: 10.1016/j.ijmultiphaseflow.2020.103273. [28] SHAH Q H. Experimental and numerical study on the orthogonal and oblique impact on water filled pipes [J]. International Journal of Impact Engineering, 2011, 38(5): 330–338. DOI: 10.1016/j.ijimpeng.2010.12.001. [29] GODOY L A, AMEIJEIRAS M P. Plastic buckling of oil storage tanks under blast loads [J]. Structures, 2023, 53: 361–372. DOI: 10.1016/j.istruc.2023.04.057. [30] GAO S Z, LI D, HOU H L, et al. Investigation on dynamic response of liquid-filled concave cell structures subject to the penetration of high-speed projectiles [J]. Thin-Walled Structures, 2020, 157: 107119. DOI: 10.1016/j.tws.2020.107119. [31] 王卓, 张朴, 孔祥韶, 等. 高速弹体侵彻液舱试验研究 [J]. 船舶力学, 2021, 25(7): 917–926. DOI: 10.3969/j.issn.1007-7294.2021.07.009.WANG Z, ZHANG P, KONG X S, et al. Experimental study on liquid cabin penetrated by high-velocity projectile [J]. Journal of Ship Mechanics, 2021, 25(7): 917–926. DOI: 10.3969/j.issn.1007-7294.2021.07.009. [32] 仲强, 侯海量, 李典. 陶瓷/液舱复合结构抗侵彻机理试验研究 [J]. 船舶力学, 2017, 21(10): 1282–1290. DOI: 10.3969/j.issn.1007-7294.2017.10.012.ZHONG Q, HOU H L, LI D. Experimental study on anti-penetration mechanism of ceramic/fluid cabin composite structure [J]. Journal of Ship Mechanics, 2017, 21(10): 1282–1290. DOI: 10.3969/j.issn.1007-7294.2017.10.012. [33] SUGIYAMA Y, SHIBUE K, MATSUO A. The blast mitigation mechanism of a single water droplet layer and improvement of the blast mitigation effect using multilayers in a confined geometry [J]. International Journal of Multiphase Flow, 2023, 159: 104322. DOI: 10.1016/j.ijmultiphaseflow.2022.104322. [34] 杨磊, 刘瀚, 黄广炎, 等. 典型防爆装备对TNT爆炸冲击波的防护性能 [J]. 兵工学报, 2023, 44(10): 2871–2884. DOI: 10.12382/bgxb.2023.0281.YANG L, LIU H, HUANG G Y, et al. Protection performance of typical explosion-proof equipment against TNT blast shock wave [J]. Acta Armamentarii, 2023, 44(10): 2871–2884. DOI: 10.12382/bgxb.2023.0281. [35] ZHANG H T, SONG C M, WANG M Y, et al. On the dynamic response of rectangular liquid storage structure subjected to blast-induced ground shock [J]. Engineering Structures, 2023, 285: 116071. DOI: 10.1016/j.engstruct.2023.116071. [36] REN P, SHI L, YE R C, et al. A combined experimental and numerical investigation on projectiles penetrating into water-filled container [J]. Thin-Walled Structures, 2019, 143: 106230. DOI: 10.1016/j.tws.2019.106230. [37] LIU H Q, ZHU H X, FU K K, et al. High-impact resistant hybrid sandwich panel filled with shear thickening fluid [J]. Composite Structures, 2022, 284: 115208. DOI: 10.1016/j.compstruct.2022.115208. [38] 朱景山, 习赵军, 吴仲达, 等. 水囊组合件空投跌落冲击仿真及优化设计 [J]. 包装工程, 2023, 44(7): 307–313. DOI: 10.19554/j.cnki.1001-3563.2023.07.036.ZHU J S, XI Z J, WU Z D, et al. Airdrop impact simulation and optimization design of water sac assembly [J]. Packaging Engineering, 2023, 44(7): 307–313. DOI: 10.19554/j.cnki.1001-3563.2023.07.036. [39] 王宏, 赵西友, 曾康斌. 空投水袋高空跌落冲击过程数值分析 [J]. 包装工程, 2016, 37(11): 88–92. DOI: 10.19554/j.cnki.1001-3563.2016.11.017.WANG H, ZHAO X Y, ZENG K B. Numerical analysis on high-altitude air-drop impact process of water bag [J]. Packaging Engineering, 2016, 37(11): 88–92. DOI: 10.19554/j.cnki.1001-3563.2016.11.017. [40] ZHU W, HUANG G Y, LIU H, et al. Experimental and numerical investigation of a hollow cylindrical water based barrier against internal blast induced fragment loading [J]. International Journal of Impact Engineering, 2020, 138: 103503. DOI: 10.1016/j.ijimpeng.2020.103503. [41] CHEN D P, CHEN L, FANG Q Z, et al. Uniform loading on the reinforced concrete beam produced by the specific cylinder-shaped rubber bags fully filled with air or water [J]. Advances in Structural Engineering, 2020, 23(9): 1934–1947. DOI: 10.1177/1369433220904006. [42] ZHU W, HUANG G Y, GUO Z W, et al. Ballistic penetration of bi-layer structures with water container and fiber composite: Effects of the container position [J]. Composite Structures, 2019, 227: 111320. DOI: 10.1016/j.compstruct.2019.111320. [43] 习赵军, 胡麟, 李毅超, 等. 聚氨酯/聚乙烯水袋无伞空投跌落仿真 [J]. 南京航空航天大学学报, 2021, 53(2): 211–215. DOI: 10.16356/j.1005-2615.2021.02.007.XI Z J, HU L, LI Y C, et al. Numerical investigation of free drop of polyurethane/polyethylene water bag [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(2): 211–215. DOI: 10.16356/j.1005-2615.2021.02.007. [44] BALASUBRAMANIAN P, FERRARI G, AMABILI M. Nonlinear vibrations of a fluid-filled, soft circular shell: experiments and system identification [J]. Nonlinear Dynamics, 2020, 102(3): 1409–1418. DOI: 10.1007/s11071-020-06007-5. [45] LI Z H, MEI G X, WU Z W, et al. Experimental investigation on the oil permeation mechanism of underwater oil storage method with flexible oil bladder [J]. Energy, 2023, 282: 128798. DOI: 10.1016/j.energy.2023.128798. [46] SONG W F, WANG F M. The hybrid personal cooling system (PCS) could effectively reduce the heat strain while exercising in a hot and moderate humid environment [J]. Ergonomics, 2016, 59(8): 1009–1018. DOI: 10.1080/00140139.2015.1105305. [47] ZHANG L, FANG Q, MAO Y M, et al. Blast mitigation effects of water walls: numerical simulation and analytical approach [J]. International Journal of Protective Structures, 2015, 6(3): 551–565. DOI: 10.1260/2041-4196.6.3.551. [48] LIU Y L, WANG L F. Enhanced stiffness, strength and energy absorption for co-continuous composites with liquid filler [J]. Composite Structures, 2015, 128: 274–283. DOI: 10.1016/j.compstruct.2015.03.064. [49] DENG X B, ZHANG C, CHEN Y L, et al. Crush behaviors of polyvinyl chloride cellular structures with liquid filler [J]. Composite Structures, 2018, 189: 428–434. DOI: 10.1016/j.compstruct.2018.01.103. [50] ZHAO Z J, LI D, HOU H L, et al. Study on dynamic response and loading mitigation characteristics of liquid-filled cell under drop-weight impact [J]. Engineering Structures, 2021, 248: 113283. DOI: 10.1016/j.engstruct.2021.113283. [51] VARAS D, LÓPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact [J]. International Journal of Impact Engineering, 2009, 36(1): 81–91. DOI: 10.1016/j.ijimpeng.2008.04.006. [52] 张弩, 于馨, 明付仁. 复合材料层合板在水下多层防护结构中的抗爆效能 [J]. 兵工学报, 2021, 42(S1): 135–141. DOI: 10.3969/j.issn.1000-1093.2021.S1.017.ZHANG N, YU X, MING F R. Anti-explosion performance of composite laminates in underwater multi-layer defensive structure [J]. Acta Armamentarii, 2021, 42(S1): 135–141. DOI: 10.3969/j.issn.1000-1093.2021.S1.017. [53] BORNSTEIN H, RYAN S, MOURITZ A P. Evaluation of blast protection using novel-shaped water-filled containers: experiments and simulations [J]. International Journal of Impact Engineering, 2019, 127: 41–61. DOI: 10.1016/j.ijimpeng.2019.01.006. [54] WANG Y H, LIEW J Y R, LEE S C. Structural performance of water tank under static and dynamic pressure loading [J]. International Journal of Impact Engineering, 2015, 85: 110–123. DOI: 10.1016/j.ijimpeng.2015.06.018. [55] LU G Y, HAN Z J, LEI J P, et al. A study on the impact response of liquid-filled cylindrical shells [J]. Thin-Walled Structures, 2009, 47(12): 1557–1566. DOI: 10.1016/j.tws.2009.05.005. [56] 邵文杨, 阳光武, 肖守讷, 等. 基于流固耦合的机车燃油箱冲击计算及试验验证 [J]. 振动与冲击, 2023, 42(7): 267–272. DOI: 10.13465/j.cnki.jvs.2023.07.031.SHAO W Y, YANG G W, XIAO S N, et al. Impact calculation and test verification of locomotive fuel tank based on fluid-structure coupling [J]. Journal of Vibration and Shock, 2023, 42(7): 267–272. DOI: 10.13465/j.cnki.jvs.2023.07.031. [57] 徐文龙, 杨艺, 高明, 等. 爆炸冲击作用下储油罐毁伤特性的数值模拟 [J]. 安全与环境学报, 2023, 23(7): 2334–2339. DOI: 10.13637/j.issn.1009-6094.2022.0240.XU W L, YANG Y, GAO M, et al. Research on damage characteristics of oil storage tank under the impact of explosion by numerical simulations [J]. Journal of Safety and Environment, 2023, 23(7): 2334–2339. DOI: 10.13637/j.issn.1009-6094.2022.0240. [58] THIYAHUDDIN I, GU Y T, THAMBIRATNAM D P, et al. Impact & energy absorption of road safety barriers by coupled SPH/FEM [J]. International Journal of Protective Structures, 2012, 3(3): 257–273. DOI: 10.1260/2041-4196.3.3.257. [59] ZHANG L, CHEN L, FANG Q, et al. Mitigation of blast loadings on structures by an anti-blast plastic water wall [J]. Journal of Central South University, 2016, 23(2): 461–469. DOI: 10.1007/s11771-016-3091-3. [60] JIANG Y X, ZHANG B Y, WANG L, et al. Dynamic response of polyurea coated thin steel storage tank to long duration blast loadings [J]. Thin-Walled Structures, 2021, 163: 107747. DOI: 10.1016/j.tws.2021.107747. [61] KONG X S, WANG X Y, ZHENG C, et al. Experimental and numerical investigations of dynamic response and failure of fluid-filled container under blast loadings from a cased charge [J]. Composite Structures, 2019, 227: 111339. DOI: 10.1016/j.compstruct.2019.111339. [62] LIU F, KONG X S, ZHENG C, et al. The influence of rubber layer on the response of fluid-filled container due to high-velocity impact [J]. Composite Structures, 2018, 183: 671–681. DOI: 10.1016/j.compstruct.2017.09.005. [63] TAO C, JI C, ZHAO C X, et al. Mechanism of polyurea in protecting liquid-filled square aluminum tube from the impact of high-velocity projectile [J]. Thin-Walled Structures, 2023, 182: 110315. DOI: 10.1016/j.tws.2022.110315. [64] WANG X, JI C, WU G, et al. Damage response of high elastic polyurea coated liquid-filled tank subjected to close-in blast induced by charge with prefabricated fragments [J]. International Journal of Impact Engineering, 2022, 167: 104260. DOI: 10.1016/j.ijimpeng.2022.104260. [65] WANG B W, ZHANG Y, BAI C Y, et al. Mitigating hydrodynamic ram effect by a novel perforated lattice filled tank [J]. Thin-Walled Structures, 2023, 182: 110232. DOI: 10.1016/j.tws.2022.110232. [66] 吴庭翱, 张弩, 侯海量, 等. 水下接触爆炸下多舱防护结构载荷特性及动响应研究进展 [J]. 中国舰船研究, 2018, 13(3): 1–12. DOI: 10.19693/j.issn.1673-3185.01051.WU T A, ZHANG N, HOU H L, et al. Research progress on load characteristics and dynamic response of multicamerate defense structure subjected to contact underwater explosion [J]. Chinese Journal of Ship Research, 2018, 13(3): 1–12. DOI: 10.19693/j.issn.1673-3185.01051. [67] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. 2nd ed. Cambridge: Cambridge University Press, 1997. [68] 张栗铭, 杨德庆. 力学与声学超材料在船舶工程中的应用研究综述 [J]. 中国舰船研究, 2023, 18(2): 1–19, 47. DOI: 10.19693/j.issn.1673-3185.03139.ZHANG L M, YANG D Q. Review on the applied research of mechanical and acoustic metamaterials in ship engineering [J]. Chinese Journal of Ship Research, 2023, 18(2): 1–19, 47. DOI: 10.19693/j.issn.1673-3185.03139. [69] HU Q F, LU G X, HAMEED N, et al. Dynamic compressive behaviour of shear thickening fluid-filled honeycomb [J]. International Journal of Mechanical Sciences, 2022, 229: 107493. DOI: 10.1016/j.ijmecsci.2022.107493. [70] ZHAO Z J, HOU H L, LI D, et al. Dynamic response and protection effectiveness of fluid filled concave multicell structure under air blast [J]. Materials & Design, 2023, 229: 111876. DOI: 10.1016/j.matdes.2023.111876. [71] LAM L, CHEN W S, HAO H, et al. Dynamic crushing and energy absorption of bio-inspired shear thickening fluid-filled origami metastructure [J]. Engineering Structures, 2024, 299: 117122. DOI: 10.1016/j.engstruct.2023.117122. [72] WANG X, YU R P, ZHANG Q C, et al. Dynamic response of clamped sandwich beams with fluid-filled corrugated cores [J]. International Journal of Impact Engineering, 2020, 139: 103533. DOI: 10.1016/j.ijimpeng.2020.103533. [73] WU X Q, XIAO K L, YIN Q Y, et al. Experimental study on dynamic compressive behaviour of sandwich panel with shear thickening fluid filled pyramidal lattice truss core [J]. International Journal of Mechanical Sciences, 2018, 138/139: 467–475. DOI: 10.1016/j.ijmecsci.2018.02.029. [74] WANG Y H, LIEW J Y R, ZHAI X M, et al. Numerical and analytical investigation on a multilayer water façade system subjected to blast loading [J]. Composite Structures, 2016, 158: 175–186. DOI: 10.1016/j.compstruct.2016.09.035. [75] GODOY L A. Buckling of vertical oil storage steel tanks: review of static buckling studies [J]. Thin-Walled Structures, 2016, 103: 1–21. DOI: 10.1016/j.tws.2016.01.026. [76] KOHOUT A, JAIN P, DICK W. Review, identification and analysis of local impact of projectile hazards in the LNG industry [J]. Journal of Loss Prevention in the Process Industries, 2019, 57: 304–319. DOI: 10.1016/j.jlp.2018.07.018. [77] CUI X Y, YE L, WANG H J, et al. Solidification of a shear thickening fluid in a finite volume under low-velocity impact [J]. International Journal of Impact Engineering, 2022, 170: 104358. DOI: 10.1016/j.ijimpeng.2022.104358. [78] EL WAHED A K, SPROSTON J L, SCHLEYER G K. Electrorheological and magnetorheological fluids in blast resistant design applications [J]. Materials & Design, 2002, 23(4): 391–404. DOI: 10.1016/S0261-3069(02)00003-1. [79] SENOL K, PARVARI G, ROTBAUM Y, et al. Mitigation of shock loading on structures using aqueous methylcellulose solution [J]. International Journal of Impact Engineering, 2020, 140: 103547. DOI: 10.1016/j.ijimpeng.2020.103547. [80] SUN Y T, LI Y B, ZHAO C, et al. Crushing of circular steel tubes filled with nanoporous-materials-functionalized liquid [J]. International Journal of Damage Mechanics, 2018, 27(3): 439–450. DOI: 10.1177/1056789516683539. [81] 程翔宇, 白中浩, 蒋彬辉, 等. 磁流变液仿生薄壁吸能管及其耐撞性可控度的研究 [J]. 汽车工程, 2021, 43(12): 1806–1816,1831. DOI: 10.19562/j.chinasae.qcgc.2021.12.010.CHENG X Y, BAI Z H, JIANG B H, et al. Study on magnetorheological-fluid bio-inspired thin-walled energy-absorbing tube and its crashworthiness controllability [J]. Automotive Engineering, 2021, 43(12): 1806–1816,1831. DOI: 10.19562/j.chinasae.qcgc.2021.12.010. [82] LI M Z, LI J F, BARBAT S, et al. Enhanced filler-tube wall interaction in liquid nanofoam-filled thin-walled tubes [J]. Composite Structures, 2018, 200: 120–126. DOI: 10.1016/j.compstruct.2018.05.101. [83] VARFMAN B H, RITTEL D. Shock energy attenuation of liquid aqueous methylcellulose hydrogels [J]. Extreme Mechanics Letters, 2022, 51: 101586. DOI: 10.1016/j.eml.2021.101586. [84] GÜRGEN S, KUŞHAN M C, LI W H. Shear thickening fluids in protective applications: a review [J]. Progress in Polymer Science, 2017, 75: 48–72. DOI: 10.1016/j.progpolymsci.2017.07.003. [85] 侯海量, 朱锡, 古美邦. 爆炸载荷作用下加筋板的失效模式分析及结构优化设计 [J]. 爆炸与冲击, 2007, 27(1): 26–33. DOI: 10.11883/1001-1455(2007)01-0026-08.HOU H L, ZHU X, GU M B. Study on failure mode of stiffened plate and optimized design of structure subjected to blast load [J]. Explosion and Shock Waves, 2007, 27(1): 26–33. DOI: 10.11883/1001-1455(2007)01-0026-08. [86] 杜志鹏, 李晓彬, 夏利娟, 等. 舰船防护水舱在接近爆炸载荷作用下响应的理论研究 [J]. 船舶力学, 2007, 11(1): 119–127. DOI: 10.3969/j.issn.1007-7294.2007.01.015.DU Z P, LI X B, XIA L J, et al. Theory research on the response of the warship protective tank under near-by explosion [J]. Journal of Ship Mechanics, 2007, 11(1): 119–127. DOI: 10.3969/j.issn.1007-7294.2007.01.015. [87] 李思宇, 李晓彬, 赵鹏铎. 近爆荷载作用下固支水背方板的变形挠度研究 [J]. 振动与冲击, 2017, 36(14): 174–177, 215. DOI: 10.13465/j.cnki.jvs.2017.14.027.LI S Y, LI X B, ZHAO P D. Deflection of clamped square plates subjected to a close-range explosion [J]. Journal of Vibration and Shock, 2017, 36(14): 174–177, 215. DOI: 10.13465/j.cnki.jvs.2017.14.027. [88] 唐廷, 朱锡, 韦灼彬, 等. 水下爆炸冲击波作用下空气背衬平板的运动 [J]. 兵工学报, 2012, 33(7): 831–835.TANG T, ZHU X, WEI Z B, et al. Movement of air backed plane plates subjected to shock wave of underwater explosion [J]. Acta Armamentarii, 2012, 33(7): 831–835. [89] LIU Z K, YOUNG Y L. Transient response of submerged plates subject to underwater shock loading: an analytical perspective [J]. Journal of Applied Mechanics, 2008, 75(4): 044504. DOI: 10.1115/1.2871129. [90] KAMBOUCHEV N, NOELS L, RADOVITZKY R. Nonlinear compressibility effects in fluid-structure interaction and their implications on the air-blast loading of structures [J]. Journal of Applied Physics, 2006, 100(6): 063519. DOI: 10.1063/1.2349483. [91] GHOSHAL R, MITRA N. Non-contact near-field underwater explosion induced shock-wave loading of submerged rigid structures: nonlinear compressibility effects in fluid structure interaction [J]. Journal of Applied Physics, 2012, 112(2): 024911. DOI: 10.1063/1.4737778. [92] 刘晓波, 李帅, 张阿漫. 水下爆炸冲击波壁压理论及数值计算方法改进研究 [J]. 爆炸与冲击, 2022, 42(1): 014202. DOI: 10.11883/bzycj-2021-0106.LIU X B, LI S, ZHANG A M. An improvement of the wall-pressure theory and numerical method for shock waves in underwater explosion [J]. Explosion and Shock Waves, 2022, 42(1): 014202. DOI: 10.11883/bzycj-2021-0106. [93] SCHIFFER A, TAGARIELLI V L. The response of rigid plates to blast in deep water: fluid–structure interaction experiments [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468(2145): 2807–2828. DOI: 10.1098/rspa.2012.0076. [94] SCHIFFER A, TAGARIELLI V L. One-dimensional response of sandwich plates to underwater blast: fluid-structure interaction experiments and simulations [J]. International Journal of Impact Engineering, 2014, 71: 34–49. DOI: 10.1016/j.ijimpeng.2014.04.001. [95] SCHIFFER A, TAGARIELLI V L, PETRINIC N, et al. The response of rigid plates to deep water blast: analytical models and finite element predictions [J]. Journal of Applied Mechanics, 2012, 79(6): 061014. DOI: 10.1115/1.4006458. [96] SCHIFFER A, TAGARIELLI V L. Underwater blast loading of water-backed sandwich plates with elastic cores: theoretical modelling and simulations [J]. International Journal of Impact Engineering, 2017, 102: 62–73. DOI: 10.1016/j.ijimpeng.2016.11.014. [97] WANG Z Y, LIANG X, LIU G H. An analytical method for evaluating the dynamic response of plates subjected to underwater shock employing Mindlin plate theory and Laplace transforms [J]. Mathematical Problems in Engineering, 2013: 803609. DOI: 10.1155/2013/803609. [98] FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. DOI: 10.1115/1.1629109. [99] KISHORE S, SENOL K, NAIK PARRIKAR P, et al. Underwater implosion pressure pulse interactions with submerged plates [J]. Journal of the Mechanics and Physics of Solids, 2020, 143: 104051. DOI: 10.1016/j.jmps.2020.104051. [100] AGHAEI A, SCHIMMELS S, SCHLURMANN T, et al. Numerical investigation of the effect of aeration and hydroelasticity on impact loading and structural response for elastic plates during water entry [J]. Ocean Engineering, 2020, 201: 107098. DOI: 10.1016/j.oceaneng.2020.107098. [101] 吴巧瑞, 张珍, 陈明辉, 等. 计及气垫效应的曲面楔形体入水砰击研究 [J]. 中国造船, 2023, 64(1): 87–98. DOI: 10.3969/j.issn.1000-4882.2023.01.008.WU Q R, ZHANG Z, CHEN M H, et al. Investigation of water entry slamming of wedges accounting effect of air-cushion [J]. Shipbuilding of China, 2023, 64(1): 87–98. DOI: 10.3969/j.issn.1000-4882.2023.01.008. [102] KHABAKHPASHEVA T I, KOROBKIN A A, MALENICA S. Fluid impact onto a corrugated panel with trapped gas cavity [J]. Applied Ocean Research, 2012, 39: 97–112. DOI: 10.1016/j.apor.2012.10.005. [103] 李典, 朱锡, 侯海量, 等. 近距爆炸破片作用下芳纶纤维夹芯复合舱壁结构毁伤特性实验研究 [J]. 兵工学报, 2016, 37(8): 1436–1442. DOI: 10.3969/j.issn.1000-1093.2016.08.014.LI D, ZHU X, HOU H L, et al. Experimental research on damage of aramid fiber sandwich bulkhead under close range explosion and fragment loadings [J]. Acta Armamentarii, 2016, 37(8): 1436–1442. DOI: 10.3969/j.issn.1000-1093.2016.08.014. [104] 纪杨子燚, 李向东, 周兰伟, 等. 高速侵彻体撞击充液容器形成的液压水锤效应研究进展 [J]. 振动与冲击, 2019, 38(19): 242–252. DOI: 10.13465/j.cnki.jvs.2019.19.036.JIYANG Z Y, LI X D, ZHOU L W, et al. Review of study on hydrodynamic ram effect generated due to high-velocity penetrator impacting fluid-filled container [J]. Journal of Vibration and Shock, 2019, 38(19): 242–252. DOI: 10.13465/j.cnki.jvs.2019.19.036. [105] CHEN A R, LI X D, ZHOU L W, et al. Experimental study on the cavity evolution and liquid spurt of hydrodynamic ram [J]. Defence Technology, 2022, 18(11): 2008–2022. DOI: 10.1016/j.dt.2021.09.002. [106] DEAR J P, FIELD J E. High-speed photography of surface geometry effects in liquid/solid impact [J]. Journal of Applied Physics, 1988, 63(4): 1015–1021. DOI: 10.1063/1.340000. [107] CHEN T, GUO Z T, ZHAO G, et al. A discrete method and experimental study for the propagation of shock wave induced by high-speed projectile entering water-filled tanks [J]. Ocean Engineering, 2022, 248: 110835. DOI: 10.1016/j.oceaneng.2022.110835. [108] HUANG W, ZHANG W, REN P, et al. An experimental investigation of water-filled tank subjected to horizontal high speed impact [J]. Experimental Mechanics, 2015, 55(6): 1123–1138. DOI: 10.1007/s11340-015-0012-6. [109] 陈晨. 小型运动体亚/跨声速入水多相流动特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019. [110] 李营, 吴卫国, 郑元洲, 等. 舰船防护液舱吸收爆炸破片的机理 [J]. 中国造船, 2015, 56(2): 38–44. DOI: 10.3969/j.issn.1000-4882.2015.02.005.LI Y, WU W G, ZHENG Y Z, et al. Study on mechanism of explosive fragments absorbed by vessel protective tank [J]. Shipbuilding of China, 2015, 56(2): 38–44. DOI: 10.3969/j.issn.1000-4882.2015.02.005. [111] 沈晓乐, 朱锡, 侯海量, 等. 高速破片入水镦粗变形及侵彻特性有限元分析 [J]. 舰船科学技术, 2012, 34(7): 25–29. DOI: 10.3404/j.issn.1672-7649.2012.07.005.SHEN X L, ZHU X, HOU H L, et al. Finite element analysis of underwater high velocity fragment mushrooming and penetration properties [J]. Ship Science and Technology, 2012, 34(7): 25–29. DOI: 10.3404/j.issn.1672-7649.2012.07.005. [112] 孔祥韶, 石干, 王旭阳, 等. 截锥形弹体在液体介质中运动速度衰减规律分析 [J]. 爆炸与冲击, 2021, 41(1): 013301. DOI: 10.11883/bzycj-2020-0075.KONG X S, SHI G, WANG X Y, et al. On velocity attenuation of a truncated cone-shaped projectile vertically penetrating through liquid [J]. Explosion and Shock Waves, 2021, 41(1): 013301. DOI: 10.11883/bzycj-2020-0075. [113] LECYSYN N, BONY-DANDRIEUX A, APRIN L, et al. Experimental study of hydraulic ram effects on a liquid storage tank: analysis of overpressure and cavitation induced by a high-speed projectile [J]. Journal of Hazardous Materials, 2010, 178(1): 635–643. DOI: 10.1016/j.jhazmat.2010.01.132. [114] LEE M, LONGORIA R G, WILSON D E. Cavity dynamics in high-speed water entry [J]. Physics of Fluids, 1997, 9(3): 540–550. DOI: 10.1063/1.869472. [115] ZHAO B L, ZHAO J G, CUI C Y, et al. Growth model of cavity generated by the projectile impacting liquid-filled tank [J]. Defence Technology, 2020, 16(3): 609–616. DOI: 10.1016/j.dt.2019.09.013. [116] TRUSCOTT T T, EPPS B P, BELDEN J. Water entry of projectiles [J]. Annual Review of Fluid Mechanics, 2014, 46: 355–378. DOI: 10.1146/annurev-fluid-011212-140753. [117] HELD M. Verification of the equation for radial crater growth by shaped charge jet penetration [J]. International Journal of Impact Engineering, 1995, 17(1): 387–398. DOI: 10.1016/0734-743X(95)99864-N. [118] LEE M, LONGORIA R G, WILSON D E. Ballistic waves in high-speed water entry [J]. Journal of Fluids and Structures, 1997, 11(7): 819–844. DOI: 10.1006/jfls.1997.0103. [119] LIU T, CHEN C H, CHENG Y S. A new analytical model for ballistic waves generated by subsonic penetration in water [J]. Ocean Engineering, 2022, 264: 112472. DOI: 10.1016/j.oceaneng.2022.112472. [120] GUO Z T, CHEN T, ZHANG W, et al. Cavity dynamics in hydrodynamic ram analysis of confined containers under ballistic impacts [J]. Ocean Engineering, 2020, 218: 108036. DOI: 10.1016/j.oceaneng.2020.108036. [121] GUO Z T, CHEN T, ZHAO G, et al. Hydrodynamic ram analysis in high-speed projectile penetrating into water-filled vessels [J]. Ocean Engineering, 2022, 251: 111092. DOI: 10.1016/j.oceaneng.2022.111092. [122] 徐双喜, 吴卫国, 李晓彬, 等. 舰船舷侧防护液舱舱壁对爆炸破片的防御作用 [J]. 爆炸与冲击, 2010, 30(4): 395–400. DOI: 10.11883/1001-1455(2010)04-0395-06.XU S X, WU W G, LI X B, et al. Protective effect of guarding fluid cabin bulkhead under attacking by explosion fragments [J]. Explosion and Shock Waves, 2010, 30(4): 395–400. DOI: 10.11883/1001-1455(2010)04-0395-06. [123] 陈长海, 侯海量, 张元豪, 等. 中厚背水金属靶板抗钝头弹高速侵彻机制分析 [J]. 上海交通大学学报, 2017, 51(12): 1428–1434. DOI: 10.16183/j.cnki.jsjtu.2017.12.004.CHEN C H, HOU H L, ZHANG Y H, et al. Research on the mechanism of moderately thick water-backed metal plates penetrated by high-velocity blunt-nosed projectiles [J]. Journal of Shanghai Jiaotong University, 2017, 51(12): 1428–1434. DOI: 10.16183/j.cnki.jsjtu.2017.12.004. [124] 陈长海, 侯海量, 张元豪, 等. 钝头弹高速斜侵彻中厚背水金属靶板的机理研究 [J]. 工程力学, 2017, 34(11): 240–248. DOI: 10.6052/j.issn.1000-4750.2016.07.0559.CHEN C H, HOU H L, ZHANG Y H, et al. Mechanisms of moderately thick water-backed metal plates obliquely penetrated by high-velocity blunt-nosed projectiles [J]. Engineering Mechanics, 2017, 34(11): 240–248. DOI: 10.6052/j.issn.1000-4750.2016.07.0559. [125] 张玮, 张小强, 陈子豪, 等. 弹体侵彻作用下液舱舱壁压力载荷的试验研究 [J]. 中国科学: 物理学 力学 天文学, 2021, 51(12): 124613. DOI: 10.1360/SSPMA-2020-0363.ZHANG W, ZHANG X Q, CHEN Z H, et al. Experimental study on pressure load of tank bulkhead under penetration of projectile [J]. Scientia Sinica Physica: Mechanica & Astronomica, 2021, 51(12): 124613. DOI: 10.1360/SSPMA-2020-0363. [126] 李典, 侯海量, 朱锡, 等. 高速杆式弹侵彻下蓄液结构耗能机理数值分析 [J]. 海军工程大学学报, 2018, 30(2): 60–65. DOI: 10.7495/j.issn.1009-3486.2018.02.012.LI D, HOU H L, ZHU X, et al. Numerical analysis of energy dissipation mechanism of liquid-filled structure subjected to high velocity rod projectile penetration [J]. Journal of Naval University of Engineering, 2018, 30(2): 60–65. DOI: 10.7495/j.issn.1009-3486.2018.02.012. [127] 孔祥韶, 吴卫国, 刘芳, 等. 舰船舷侧防护液舱对爆炸破片的防御作用研究 [J]. 船舶力学, 2014, 18(8): 996–1004. DOI: 10.3969/j.issn.1007-7294.2014.08.015.KONG X S, WU W G, LIU F, et al. Research on protective effect of guarding fluid cabin under attacking by explosion fragments [J]. Journal of Ship Mechanics, 2014, 18(8): 996–1004. DOI: 10.3969/j.issn.1007-7294.2014.08.015. [128] 王卓, 张朴, 孔祥韶, 等. 高速弹体穿透铝合金靶板液舱速度衰减特性研究 [J]. 中国造船, 2022, 63(1): 65–76. DOI: 10.3969/j.issn.1000-4882.2022.01.006.WANG Z, ZHANG P, KONG X S, et al. Research on velocity decay of projectiles aluminum alloy target penetrating liquid cabin [J]. Shipbuilding of China, 2022, 63(1): 65–76. DOI: 10.3969/j.issn.1000-4882.2022.01.006. [129] DELETOMBE E, FABIS J, DUPAS J, et al. Experimental analysis of 7.62 mm hydrodynamic ram in containers [J]. Journal of Fluids and Structures, 2013, 37: 1–21. DOI: 10.1016/j.jfluidstructs.2012.11.003. [130] DISIMILE P J, TOY N. Liquid spurt caused by hydrodynamic ram [J]. International Journal of Impact Engineering, 2015, 75: 65–74. DOI: 10.1016/j.ijimpeng.2014.08.001. [131] 陈安然, 李向东, 周兰伟, 等. 液压水锤效应引起液体喷溅特性及其影响因素试验研究 [J]. 国防科技大学学报, 2021, 43(5): 144–152. DOI: 10.11887/j.cn.202105017.CHEN A R, LI X D, ZHOU L W, et al. Experimental study on the characteristics and influencing factors of liquid spurt caused by hydrodynamic ram [J]. Journal of National University of Defense Technology, 2021, 43(5): 144–152. DOI: 10.11887/j.cn.202105017. [132] CHEN A R, LI X D, ZHOU L W, et al. Study of liquid spurt caused by hydrodynamic ram in liquid-filled container [J]. International Journal of Impact Engineering, 2020, 144: 103658. DOI: 10.1016/j.ijimpeng.2020.103658. [133] 高圣智, 侯海量, 白雪飞, 等. 高速弹体侵彻下充液结构的破坏特性及防护技术研究进展 [J]. 舰船科学技术, 2021, 43(1): 1–10. DOI: 10.3404/j.issn.1672-7649.2021.01.001.GAO S Z, HOU H L, BAI X F, et al. Reviews of study on damage characteristics and protection technologies of liquid-filled structures subjected to the penetration of high-speed projectiles [J]. Ship Science and Technology, 2021, 43(1): 1–10. DOI: 10.3404/j.issn.1672-7649.2021.01.001. [134] WANG H F, XIE J W, GE C, et al. Experimental investigation on enhanced damage to fuel tanks by reactive projectiles impact [J]. Defence Technology, 2021, 17(2): 599–608. DOI: 10.1016/j.dt.2020.03.017. [135] 李茂, 侯海量, 朱锡, 等. 模拟破片杀伤战斗部空爆冲击波与高速破片群联合作用的等效试验方法 [J]. 振动与冲击, 2020, 39(1): 184–190. DOI: 10.13465/j.cnki.jvs.2020.01.025.LI M, HOU H L, ZHU X, et al. Equivalent test method to simulate combined damage action of air blast shock wave and high speed fragment group of fragment killing warhead [J]. Journal of Vibration and Shock, 2020, 39(1): 184–190. DOI: 10.13465/j.cnki.jvs.2020.01.025. [136] 陈长海, 侯海量, 李万, 等. 破片式战斗部空中爆炸下冲击波与破片先后作用的临界爆距研究 [J]. 海军工程大学学报, 2018, 30(2): 18–23. DOI: 10.7495/j.issn.1009-3486.2018.02.004.CHEN C H, HOU H L, LI W, et al. Critical stand-off distances of action order for air-blast waves and fragments by fragmentation warheads exploding in air [J]. Journal of Naval University of Engineering, 2018, 30(2): 18–23. DOI: 10.7495/j.issn.1009-3486.2018.02.004. [137] LI D, HOU H L, CHEN C H, et al. Experimental study on the combined damage of multi-layered composite structures subjected to close-range explosion of simulated warheads [J]. International Journal of Impact Engineering, 2018, 114: 133–146. DOI: 10.1016/j.ijimpeng.2017.12.007. [138] LYU X J, WANG X, YUN H L, et al. On water-entry modes of the latter sphere in tandem configuration with two spheres [J]. Journal of Fluids and Structures, 2022, 112: 103601. DOI: 10.1016/j.jfluidstructs.2022.103601. [139] WANG X, LYU X J. Experimental study on vertical water entry of twin spheres side-by-side [J]. Ocean Engineering, 2021, 221: 108508. DOI: 10.1016/j.oceaneng.2020.108508. [140] YANG C X, WANG X, LI H, et al. Numerical study on the fluid dynamics for tandem water entries of two cylinders [J]. Ocean Engineering, 2023, 286: 115633. DOI: 10.1016/j.oceaneng.2023.115633. [141] YUN H L, LYU X J, WEI Z Y. Experimental study on oblique water entry of two tandem spheres with collision effect [J]. Journal of Visualization, 2020, 23(1): 49–59. DOI: 10.1007/s12650-019-00602-4. [142] YUN H L, LYU X J, WEI Z Y. Experimental study on vertical water entry of two tandem spheres [J]. Ocean Engineering, 2020, 201: 107143. DOI: 10.1016/j.oceaneng.2020.107143. [143] RABBI R, SPEIRS N B, KIYAMA A, et al. Impact force reduction by consecutive water entry of spheres [J]. Journal of Fluid Mechanics, 2021, 915: A55. DOI: 10.1017/jfm.2020.1165. [144] 宋武超, 魏英杰, 路丽睿, 等. 基于势流理论的回转体并联入水双空泡演化动力学研究 [J]. 物理学报, 2018, 67(22): 224702. DOI: 10.7498/aps.67.20181375.SONG W C, WEI Y J, LU L R, et al. Dynamic characteristics of parallel water-entry cavity based on potential flow theory [J]. Acta Physica Sinica, 2018, 67(22): 224702. DOI: 10.7498/aps.67.20181375. [145] JIN J, HOU H L, CHEN P Y, et al. Experimental study on the combined damage of liquid cabin structure subjected to charge explosion with preset fragments [J]. International Journal of Impact Engineering, 2019, 130: 19–26. DOI: 10.1016/j.ijimpeng.2019.04.001. [146] KONG X S, WU W G, LI J, et al. Experimental and numerical investigation on a multi-layer protective structure under the synergistic effect of blast and fragment loadings [J]. International Journal of Impact Engineering, 2014, 65: 146–162. DOI: 10.1016/j.ijimpeng.2013.11.009. [147] 孔祥韶, 王旭阳, 徐敬博, 等. 复合防护液舱抗爆效能对比试验研究 [J]. 兵工学报, 2018, 39(12): 2438–2449. DOI: 10.3969/j.issn.1000-1093.2018.12.018.KONG X S, WANG X Y, XU J B, et al. Comparative experimental study of anti-explosion performance of compound protective liquid cabin [J]. Acta Armamentarii, 2018, 39(12): 2438–2449. DOI: 10.3969/j.issn.1000-1093.2018.12.018. [148] QIAN L, QU M, FENG G. Study on terminal effects of dense fragment cluster impact on armor plate. part Ⅰ: analytical model [J]. International Journal of Impact Engineering, 2005, 31(6): 755–767. DOI: 10.1016/j.ijimpeng.2004.03.014. [149] QIAN L, QU M. Study on terminal effects of dense fragment cluster impact on armor plate. part Ⅱ: numerical simulations [J]. International Journal of Impact Engineering, 2005, 31(6): 769–780. DOI: 10.1016/j.ijimpeng.2004.03.015. [150] JI Y Z Y, LI X D, ZHOU L W, et al. Comparison of the hydrodynamic ram caused by one and two projectiles impacting water-filled containers [J]. International Journal of Impact Engineering, 2020, 137: 103467. DOI: 10.1016/j.ijimpeng.2019.103467. [151] JI Y Z Y, LI X D, ZHOU L W, et al. Experimental and numerical study on the cumulative damage of water-filled containers impacted by two projectiles [J]. Thin-Walled Structures, 2019, 135: 45–64. DOI: 10.1016/j.tws.2018.10.043. [152] 李茂, 高圣智, 侯海量, 等. 圆柱形装药驱动轴向预制破片飞散特性 [J]. 国防科技大学学报, 2021, 43(2): 141–147. DOI: 10.11887/j.cn.202102019.LI M, GAO S Z, HOU H L, et al. Projection characteristics of axial prefabricated fragments driven by cylindrical charge [J]. Journal of National University of Defense Technology, 2021, 43(2): 141–147. DOI: 10.11887/j.cn.202102019. [153] 王旭阳. 战斗部近距离爆炸载荷对液舱的毁伤效应研究 [D]. 武汉: 武汉理工大学, 2019. [154] 郑红伟, 陈长海, 侯海量, 等. 爆炸冲击波和高速破片载荷的复合作用特性及判据研究 [J]. 振动与冲击, 2019, 38(3): 24–31, 38. DOI: 10.13465/j.cnki.jvs.2019.03.004.ZHENG H W, CHEN C H, HOU H L, et al. Multiple impact features of blast shock waves and high-velocity fragments on clamped square plates and a criterion to judge if multiple impact happens [J]. Journal of Vibration and Shock, 2019, 38(3): 24–31, 38. DOI: 10.13465/j.cnki.jvs.2019.03.004. [155] WU G, WANG X, JI C, et al. Experimental and numerical simulation study on polyurea-coated fuel tank subjected to combined action of blast shock waves and fragments [J]. Thin-Walled Structures, 2021, 169: 108436. DOI: 10.1016/j.tws.2021.108436. [156] YU R P, ZHANG Q C, WEI Z H, et al. Dynamic response of fully-clamped steel plate under laboratory-simulated sequential fragment impact and blast loading [J]. Thin-Walled Structures, 2023, 182: 110144. DOI: 10.1016/j.tws.2022.110144. [157] 张琳, 张涛, 刘土光, 等. 撞击载荷下充液双层结构响应特性的试验研究 [J]. 爆炸与冲击, 2020, 40(3): 033303. DOI: 10.11883/bzycj-2019-0094.ZHANG L, ZHANG T, LIU T G, et al. Experimental study on response characteristics of the water-filled double-layer structure under collision load [J]. Explosion and Shock Waves, 2020, 40(3): 033303. DOI: 10.11883/bzycj-2019-0094. [158] LI Y, ZHANG L, XIAO D B, et al. Experiment and numerical study on dynamic response of liquid cabin under internal blast loading [J]. Thin-Walled Structures, 2019, 145: 106405. DOI: 10.1016/j.tws.2019.106405. [159] CHEN L, ZHANG L, FANG Q, et al. Performance based investigation on the construction of anti-blast water wall [J]. International Journal of Impact Engineering, 2015, 81: 17–33. DOI: 10.1016/j.ijimpeng.2015.03.003. [160] CHEN L, FANG Q, ZHANG L, et al. Numerical investigation of a water barrier against blast loadings [J]. Engineering Structures, 2016, 111: 199–216. DOI: 10.1016/j.engstruct.2015.12.015. [161] BORNSTEIN H, RYAN S, MOURITZ A. Physical mechanisms for near-field blast mitigation with fluid containers: effect of container geometry [J]. International Journal of Impact Engineering, 2016, 96: 61–77. DOI: 10.1016/j.ijimpeng.2016.04.015. [162] BORNSTEIN H, PHILLIPS P, ANDERSON C. Evaluation of the blast mitigating effects of fluid containers [J]. International Journal of Impact Engineering, 2015, 75: 222–228. DOI: 10.1016/j.ijimpeng.2014.08.014. [163] WANG Y, LEE S C. Experimental study of water tank under impulsive loading [J]. Archives of Civil and Mechanical Engineering, 2015, 15(4): 986–996. DOI: 10.1016/j.acme.2014.09.006. [164] ZHANG Y H, WU X D, LU G Y, et al. Experimental and numerical studies on dynamic responses of liquid-filled hemispherical shell under axial impact [J]. Thin-Walled Structures, 2018, 131: 606–618. DOI: 10.1016/j.tws.2018.07.003. [165] CHENG L Y, JI C, GAO F Y, et al. Deformation and damage of liquid-filled cylindrical shell composite structures subjected to repeated explosion loads: experimental and numerical study [J]. Composite Structures, 2019, 220: 386–401. DOI: 10.1016/j.compstruct.2019.03.083. [166] JAMALI A, JALILI S. Experimental and numerical study on water-filled doubly layered cylindrical shells subjected to lateral impact [J]. Ocean Engineering, 2023, 279: 114617. DOI: 10.1016/j.oceaneng.2023.114617. [167] ZHOU Y, WANG T, ZHU W, et al. Evaluation of blast mitigation effects of hollow cylindrical barriers based on water and foam [J]. Composite Structures, 2022, 282: 115016. DOI: 10.1016/j.compstruct.2021.115016. [168] 李思宇, 李晓彬, 赵鹏铎, 等. 近爆载荷作用下液舱的吸能研究 [J]. 中国舰船研究, 2017, 12(1): 101–106, 133. DOI: 10.3969/j.issn.1673-3185.2017.01.015.LI S Y, LI X B, ZHAO P D, et al. Research into energy absorption of liquid cabin subjected to close-range explosion [J]. Chinese Journal of Ship Research, 2017, 12(1): 101–106, 133. DOI: 10.3969/j.issn.1673-3185.2017.01.015. [169] BORNSTEIN H, RYAN S, MOURITZ A P. Blast mitigation with fluid Containers: effect of mitigant type [J]. International Journal of Impact Engineering, 2018, 113: 106–117. DOI: 10.1016/j.ijimpeng.2017.11.012. [170] BARAGETTI S, ARCIERI E V. Study of impact phenomena for the design of a mobile anti-terror barrier: experiments and finite element analyses [J]. Engineering Failure Analysis, 2020, 113: 104564. DOI: 10.1016/j.engfailanal.2020.104564. [171] JENSON S, ALI M, NAIK B, et al. Experimental, analytical, and numerical investigation of multi-chambered fluid-filled barrier for highway crash attenuators [J]. International Journal of Impact Engineering, 2021, 156: 103964. DOI: 10.1016/j.ijimpeng.2021.103964. [172] WOLFSON J C. Blast damage mitigation of steel structures from near-contact charges [D]. California: University of California, 2008. [173] SUGIYAMA Y, HOMAE T, WAKABAYASHI K, et al. Numerical study on the mitigation effect of water in the immediate vicinity of a high explosive on the blast wave [J]. International Journal of Multiphase Flow, 2018, 99: 467–473. DOI: 10.1016/j.ijmultiphaseflow.2017.11.014. [174] GRUJICIC M, PANDURANGAN B, ZHAO C L, et al. A computational investigation of various water-induced explosion mitigation mechanisms [J]. Multidiscipline Modeling in Materials and Structures, 2007, 3(2): 185–212. DOI: 10.1163/157361107780744405. [175] 李营, 任广为, 张玮, 等. 水介质对舱内爆炸抑制作用的实验研究 [J]. 爆炸与冲击, 2017, 37(6): 1080–1086. DOI: 10.11883/1001-1455(2017)06-1080-07.LI Y, REN G W, ZHANG W, et al. Water mitigation effect under internal blast [J]. Explosion and Shock Waves, 2017, 37(6): 1080–1086. DOI: 10.11883/1001-1455(2017)06-1080-07. [176] ADIGA K C, WILLAUER H D, ANANTH R, et al. Implications of droplet breakup and formation of ultra fine mist in blast mitigation [J]. Fire Safety Journal, 2009, 44(3): 363–369. DOI: 10.1016/j.firesaf.2008.08.003. [177] WANG Y H, ZHOU H Y. Numerical study of water tank under blast loading [J]. Thin-Walled Structures, 2015, 90: 42–48. DOI: 10.1016/j.tws.2015.01.012. [178] 纪冲, 龙源, 刘影, 等. 充液及内空圆柱壳在爆炸荷载下动力屈曲特性研究 [J]. 振动与冲击, 2014, 33(2): 76–80, 88. DOI: 10.3969/j.issn.1000-3835.2014.02.015.JI C, LONG Y, LIU Y, et al. Dynamic buckling of liquid-filled and hallow thin-wall cylindrical shells subjected to explosion loading [J]. Journal of Vibration and Shock, 2014, 33(2): 76–80, 88. DOI: 10.3969/j.issn.1000-3835.2014.02.015. [179] MITTAL V, CHAKRABORTY T, MATSAGAR V. Dynamic analysis of liquid storage tank under blast using coupled Euler Lagrange formulation [J]. Thin-Walled Structures, 2014, 84: 91–111. DOI: 10.1016/j.tws.2014.06.004. [180] 赵著杰, 侯海量, 李典, 等. 部分充液多胞元结构的面内动态力学特性研究 [J]. 爆炸与冲击, 2022, 42(3): 033103. DOI: 10.11883/bzycj-2021-0173.ZHAO Z J, HOU H L, LI D, et al. In-plane dynamic mechanical properties of partially liquid filled multicell structure [J]. Explosion and Shock Waves, 2022, 42(3): 033103. DOI: 10.11883/bzycj-2021-0173. [181] 赵明媚, 张进秋, 彭志召, 等. 剪切增稠液体理论基础和工程应用进展概述 [J]. 材料导报, 2022, 36(9): 20070135. DOI: 10.11896/cldb.20070135.ZHAO M M, ZHANG J Q, PENG Z Z, et al. Theoretical basis and engineering application progress of shear thickening fluid [J]. Materials Reports, 2022, 36(9): 20070135. DOI: 10.11896/cldb.20070135. [182] WEI M H, SUN L, ZHU J. Effects of parameters controlling the impact resistance behavior of the GFRP fabric impregnated with a shear thickening fluid [J]. Materials & Design, 2020, 196: 109078. DOI: 10.1016/j.matdes.2020.109078. [183] FU K K, WANG H J, CHANG L, et al. Low-velocity impact behaviour of a shear thickening fluid (STF) and STF-filled sandwich composite panels [J]. Composites Science and Technology, 2018, 165: 74–83. DOI: 10.1016/j.compscitech.2018.06.013. [184] LAM L, CHEN W S, HAO H, et al. Numerical study of bio-inspired energy-absorbing device using shear thickening fluid (STF) [J]. International Journal of Impact Engineering, 2022, 162: 104158. DOI: 10.1016/j.ijimpeng.2022.104158. [185] LAM L, CHEN W S, HAO H, et al. Dynamic crushing performance of bio-inspired sandwich structures with beetle forewing cores [J]. International Journal of Impact Engineering, 2023, 173: 104456. DOI: 10.1016/j.ijimpeng.2022.104456. [186] RIJENSKY O, RITTEL D. Experimental investigation of polyurea coated aluminum plates under strong hydrodynamic shocks [J]. Thin-Walled Structures, 2020, 154: 106833. DOI: 10.1016/j.tws.2020.106833. [187] RIJENSKY O, RITTEL D. Numerical investigation of polyurea coated aluminum plates under hydrodynamic shocks [J]. Thin-Walled Structures, 2021, 166: 108074. DOI: 10.1016/j.tws.2021.108074. [188] LUO D J, WANG Y W, WANG F C, et al. The influence of metal cover plates on ballistic performance of silicon carbide subjected to large-scale tungsten projectile [J]. Materials & Design, 2020, 191: 108659. DOI: 10.1016/j.matdes.2020.108659. [189] 仲强, 侯海量, 朱锡, 等. 陶瓷/液舱复合结构抗侵彻数值分析 [J]. 爆炸与冲击, 2017, 37(3): 510–519. DOI: 10.11883/1001-1455(2017)03-0510-10.ZHONG Q, HOU H L, ZHU X, et al. Numerical analysis of penetration resistance of ceramic/fluid cabin composite structure [J]. Explosion and Shock Waves, 2017, 37(3): 510–519. DOI: 10.11883/1001-1455(2017)03-0510-10. [190] WANG K, HOU H L, LI D, et al. Study on the penetration characteristics of water entry rod projectile into liquid cabin at an attack angle [J]. Applied Sciences, 2022, 12(20): 10213. DOI: 10.3390/app122010213. [191] 王浩杰, 李晓彬, 赵鹏铎, 等. 倾斜式液舱壁防御爆炸破片侵彻机理研究 [J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(1): 151–154, 160. DOI: 10.3963/j.issn.2095-3844.2021.01.029.WANG H J, LI X B, ZHAO P D, et al. Study on penetration mechanism of tilt tank bulkhead defending explosion fragments [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(1): 151–154, 160. DOI: 10.3963/j.issn.2095-3844.2021.01.029. [192] JIANG A B, LI Y Q, LI D, et al. Deflection effect and mechanism of semi-cylindrical ceramic composite armor for flat-ended rod projectile [J]. Ceramics International, 2022, 48(20): 31023–31040. DOI: 10.1016/j.ceramint.2022.07.064. [193] 姜安邦, 李典, 李永清, 等. 偏转式抗侵彻防护技术研究现状 [J]. 材料导报, 2023, 37(24): 22060150. DOI: 10.11896/cldb.22060150.JIANG A B, LI D, LI Y Q, et al. Research status of deflected anti-penetration protection technology [J]. Materials Reports, 2023, 37(24): 22060150. DOI: 10.11896/cldb.22060150. [194] 王克, 侯海量, 李永清, 等. 攻角对杆状弹体入水侵彻特性影响数值分析 [J]. 舰船科学技术, 2023, 45(13): 6–13. DOI: 10.3404/j.issn.1672-7649.2023.13.002.WANG K, HOU H L, LI Y Q, et al. Numerical analysis of influence of angle of attack on penetration characteristics of long-rod projectile entering water [J]. Ship Science and Technology, 2023, 45(13): 6–13. DOI: 10.3404/j.issn.1672-7649.2023.13.002. [195] 张朴, 王卓, 孔祥韶, 等. 剪切增稠液体液舱侵彻实验 [J]. 爆炸与冲击, 2021, 41(4): 043301. DOI: 10.11883/bzycj-2020-0143.ZHANG P, WANG Z, KONG X S, et al. Experimental study on a cabin filled with shear-thickening fluid penetrated by projectiles [J]. Explosion and Shock Waves, 2021, 41(4): 043301. DOI: 10.11883/bzycj-2020-0143. [196] CHEN C H, LIU T, CHENG Y S. Impact response of flowing-fluid filled square vessels [J]. Ocean Engineering, 2022, 254: 111405. DOI: 10.1016/j.oceaneng.2022.111405. [197] LI L Q, AIRAUDO F N, LÖHNER R. Study of underwater explosion near rigid cylinder column with numerical method [J]. Ocean Engineering, 2023, 270: 113294. DOI: 10.1016/j.oceaneng.2022.113294. [198] DISIMILE P J, DAVIS J, TOY N. Mitigation of shock waves within a liquid filled tank [J]. International Journal of Impact Engineering, 2011, 38(2/3): 61–72. DOI: 10.1016/j.ijimpeng.2010.10.006. [199] ARTERO-GUERRERO J A, VARAS D, PERNAS-SÁNCHEZ J, et al. Experimental analysis of an attenuation method for Hydrodynamic Ram effects [J]. Materials & Design, 2018, 155: 451–462. DOI: 10.1016/j.matdes.2018.06.020. [200] XU S X, ZHANG W W, CAI Y, et al. Study on anti-penetration performance of Kevlar reinforced honeycomb liquid-filled cabin on warship: experimental verification and numerical analysis [J]. Ocean Engineering, 2023, 283: 114959. DOI: 10.1016/j.oceaneng.2023.114959. [201] 张宇, 王彬文, 刘小川, 等. 充液格栅结构抗射弹冲击数值模拟研究 [J]. 科学技术与工程, 2020, 20(19): 7689–7695.ZHANG Y, WANG B W, LIU X C, et al. Numerical simulation of projectile impact of liquid-filled grid structures [J]. Science Technology and Engineering, 2020, 20(19): 7689–7695. [202] TOWNSEND D, PARK N, DEVALL P M. Failure of fluid dilled structures due to high velocity fragment impact [J]. International Journal of Impact Engineering, 2003, 29(1): 723–733. DOI: 10.1016/j.ijimpeng.2003.10.019. [203] 李营, 张磊, 杜志鹏, 等. 夹芯强度对新型液舱防护效能的影响 [J]. 船舶力学, 2019, 23(1): 58–67. DOI: 10.3969/j.issn.1007-7294.2019.01.007.LI Y, ZHANG L, DU Z P, et al. Influence of core strength on protection efficiency for new safety liquid cabin [J]. Journal of Ship Mechanics, 2019, 23(1): 58–67. DOI: 10.3969/j.issn.1007-7294.2019.01.007. [204] GUO Z T, CHEN T, MU Z C, et al. An investigation into container constraint effects on the cavity characteristics due to high-speed projectile water entry [J]. Ocean Engineering, 2020, 210: 107449. DOI: 10.1016/j.oceaneng.2020.107449. [205] 高圣智, 赵著杰, 侯海量, 等. 胞元膨胀特性及其对水锤效应的影响数值分析(英文) [J]. 船舶力学, 2023, 27(12): 1840–1855. DOI: 10.3969/j.issn.1007-7294.2023.12.008.GAO S Z, ZHAO Z J, HOU H L, et al. Expansion characteristics of liquid-filled cell on hydrodynamic ram effect subject to the impact of high-speed projectile [J]. Journal of Ship Mechanics, 2023, 27(12): 1840–1855. DOI: 10.3969/j.issn.1007-7294.2023.12.008. [206] 金键, 侯海量, 吴梵, 等. 战斗部近炸下防护液舱破坏机理分析 [J]. 国防科技大学学报, 2019, 41(2): 163–169. DOI: 10.11887/j.cn.201902024.JIN J, HOU H L, WU F, et al. Analysis of failure mechanism on protective liquid cabin under warhead close explosion [J]. Journal of National University of Defense Technology, 2019, 41(2): 163–169. DOI: 10.11887/j.cn.201902024. [207] JIN J, LI D, HOU H L, et al. Attenuation effect of a preset bubble on hydrodynamic ram induced by fragments impacting fluid-filled tank [J]. Thin-Walled Structures, 2023, 192: 111085. DOI: 10.1016/j.tws.2023.111085. [208] ZHOU Y, XIE Y C, PAN T, et al. Flexible materials and structures for mitigating combined blast and fragment loadings–a review [J]. International Journal of Impact Engineering, 2023, 181: 104759. DOI: 10.1016/j.ijimpeng.2023.104759. 期刊类型引用(8)
1. 武江凯,迟润强,韩增尧,庞宝君,郑世贵. 载人航天器密封舱结构超高速撞击易损性. 哈尔滨工业大学学报. 2023(08): 25-31 . 百度学术
2. 徐铧东,于东,刘文翔,石景富,苗常青. 屏间充气展开式多屏防护结构及其防护性能分析. 载人航天. 2022(01): 75-80 . 百度学术
3. 崔俊杰,郭章新,朱明,李永存,栾云博,杨强. 表面带金属层的复合材料层合板低速冲击数值模拟. 材料导报. 2021(04): 4150-4158 . 百度学术
4. 武强,张庆明,龚自正,任思远,刘海. 活性Whipple结构超高速撞击防护性能实验研究. 爆炸与冲击. 2021(02): 84-92 . 本站查看
5. 武强,龚自正,张庆明,任思远. 含能活性材料防护结构超高速撞击特性数值模拟研究. 振动与冲击. 2021(11): 202-210 . 百度学术
6. 屈雪蕊. Comp.B含能材料落锤冲击应力特性分析. 西安航空学院学报. 2021(03): 70-74+96 . 百度学术
7. 古青波,从强,常洁,王巍. 空间柔性充气密封舱用新型填充防护结构碎片撞击计算分析与实验研究. 航天器环境工程. 2020(02): 125-130 . 百度学术
8. 贾光辉,姚光乐,张帅. 填充式防护结构弹道极限方程的差异演化优化. 北京航空航天大学学报. 2018(07): 1489-1495 . 百度学术
其他类型引用(7)
-